首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ventral striatum is considered to be that portion of the striatum associated with the limbic system by virtue of its afferent connections from allocortical and mesolimbic areas as well as from the amygdala. The efferent projections from this striatal region in the primate were traced by using 3H aminoacids and Phaseolus vulgaris-leucoagglutinin (PHA-L). Particular attention was paid to the topographic organization of terminal fields in the globus pallidus and substantia nigra, the projections to non-extrapyramidal areas, the relationship between projections from the nucleus accumbens and the other parts of the ventral striatum, and the comparison between ventral and dorsal striatal projections. This study demonstrates that in monkeys a circumscribed region of the globus pallidus receives topographically organized efferent fibers from the ventral striatum. The ventral striatal fibers terminate in the ventral pallidum, the subcommissural part of the globus pallidus, the rostral pole of the external segment, and the rostromedial portion of the internal segment. The more central and caudal portions of the globus pallidus do not receive this input. This striatal output appears to remain segregated from the dorsal striatal efferent projections to pallidal structures. Fibers from the ventral striatum projecting to the substantia nigra are not as confined to a specific region as those projecting to the globus pallidus. Although the densest terminal fields occur in the medial portion, numerous fibers also extend laterally to innervate the dorsal stratum of dopaminergic neurons of the substantia nigra and the retrorubral area. Furthermore, they project throughout the rostral-caudal extent of the substantia nigra. Projections from the medial part of the ventral striatum reach the more caudally located pedunculopontine tegmental nucleus. Thus unlike the above described terminals in the globus pallidus, the ventral striatum project widely throughout the substantia nigra, a fact that indicates that they may contribute to the integration between limbic and other output systems of the striatum. Finally, the ventral striatum projects to non-extrapyramidal regions including the bed nucleus of the stria terminals, the nucleus basalis magnocellularis, the lateral hypothalamus, and the medial thalamus.  相似文献   

2.
The present study was undertaken to establish the precise anatomical relationship of the subthalamic nucleus (STh) with limbic lobe-afferented parts of the basal ganglia in the rat. The anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHA-L), injected in the STh, the globus pallidus, the ventral pallidum, the ventral striatum, and the parafascicular thalamic nucleus, and the retrograde tracers Fluoro-Gold (FG) and cholera toxin B (CTb), injected in the globus pallidus, the ventral pallidum, the ventral striatum, and the ventral mesencephalon, were used for this purpose. The results of these tracing experiments confirm the general notion of reciprocal connections between the STh and pallidal areas. Thus the dorsomedial part of the STh is connected with the subcommisural ventral pallidum, whereas a more ventral and lateral part of the medial STh is related to the medial globus pallidus. The lateral hypothalamic area, directly adjacent to the STh, containing neurons with a morphology quite similar to those in the STh, projects to parts of the ventral pallidum related to the olfactory tubercle. The reciprocal projection from this pallidal area to subthalamic regions appears to be very sparse. The medial STh sends strong projections to the medial part of the entopeduncular nucleus and the adjacent lateral hypothalamic area. Sparser projections from the medial STh reach the rostral and medial part of the caudate-putamen and the nucleus accumbens. The nucleus accumbens sends a very sparse projection back to the medial STh. The projections of the medial STh to the ventral mesencephalon appear also to be topographically organized. The lateral hypothalamus and a few cells in the most medial part of the STh project to the ventral tegmental area, whereas progressively more lateral parts of the ventral mesencephalon, in particular the substantia nigra, receive input from successively more lateral and caudal parts of the STh. In addition, a number of STh fibers reach the midbrain extrapyramidal area. The lateral part of the parafascicular thalamic nucleus projects to the lateral part of the STh, whereas parafascicular neurons medial to the fasciculus retroflexus project to the dorsomedial portion of the STh. The medial part of the STh and the adjacent lateral hypothalamus are intimately connected with limbic parts of the basal ganglia in a way similar and parallel to the connections of the lateral STh with motor-related parts of the basal ganglia. These findings suggest a role for the STh in nonmotor functions of the basal ganglia.  相似文献   

3.
4.
The immunohistochemical localization of neuronal cell bodies and axons reactive for substance P (SP) and methionine-enkephalin (ME) was investigated in the corpus striatum of the adult cat brain and compared with that of glutamate decarboxylase (GAD), synthetic enzyme for gamma-aminobutyric acid. Striatal cell bodies reactive for ME could be identified only in colchicine treated cats, are medium size, ovoid striatal cells, and are found in large numbers in a more or less even distribution throughout the caudate nucleus, putamen, and nucleus accumbens. The striatal region most densely occupied by ME-immunoreactive cells is the ventral and central part of the caudate head. Modest numbers of larger ME-reactive neurons are dispersed throughout the entopeduncular nucleus and the pars reticulata of the substantia nigra. Striatal cells of medium size reactive for SP could be identified, with or without colchicine, in largest numbers in the medial half of the caudal three-fourths of the putamen and in clusters of irregular size and shape in the head of the caudate nucleus. Cells reactive for SP are also common in layer II and the islands of Calleja of the olfactory tubercle. We could not reliably visualize GAD-positive cell bodies in the striatum, even with colchicine treatment; however, they could be seen readily in all pallidal structures such as the globus pallidus, ventral pallidum, entopeduncular nucleus, and substantia nigra. Axons reactive for ME are found mainly in the globus pallidus where they form a dense and even network throughout the nucleus. The globus pallidus is almost devoid of SP reactivity except near its extreme caudal pole. Conversely, SP-immunoreactive axons form dense meshworks in the entopeduncular nucleus and substantia nigra where ME immunoreactivity is minimal. Fewer, but still ample numbers, of SP-reactive axons are present also in the ventral tegmental and retrorubral areas of the midbrain tegmentum and in the ventral pallidum of the basal forebrain, but only sparse ME-reactive axons are present in these areas. This differential distribution of SP- and ME-containing axons in the pallidal and nigral structures stands in contrast to the relatively homogeneous and dense distribution of GAD-containing axons throughout the dorsal and ventral pallidum, entopeduncular nucleus, and substantia nigra.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Area X is a songbird basal ganglia nucleus that is required for vocal learning. Both Area X and its immediate surround, the medial striatum (MSt), contain cells displaying either striatal or pallidal characteristics. We used pathway-tracing techniques to compare directly the targets of Area X and MSt with those of the lateral striatum (LSt) and globus pallidus (GP). We found that the zebra finch LSt projects to the GP, substantia nigra pars reticulata (SNr) and pars compacta (SNc), but not the thalamus. The GP is reciprocally connected with the subthalamic nucleus (STN) and projects to the SNr and motor thalamus analog, the ventral intermediate area (VIA). In contrast to the LSt, Area X and surrounding MSt project to the ventral pallidum (VP) and dorsal thalamus via pallidal-like neurons. A dorsal strip of the MSt contains spiny neurons that project to the VP. The MSt, but not Area X, projects to the ventral tegmental area (VTA) and SNc, but neither MSt nor Area X projects to the SNr. Largely distinct populations of SNc and VTA dopaminergic neurons innervate Area X and surrounding the MSt. Finally, we provide evidence consistent with an indirect pathway from the cerebellum to the basal ganglia, including Area X. Area X projections thus differ from those of the GP and LSt, but are similar to those of the MSt. These data clarify the relationships among different portions of the oscine basal ganglia as well as among the basal ganglia of birds and mammals.  相似文献   

6.
There exists a topographically organized projection from the globus pallidus and ventral pallidum to the subthalamic nucleus and adjacent lateral hypothalamus. The participation of GABA as a neurotransmitter in this projection was evaluated by retrograde labeling of cells in the pallidal area from an iontophoretic deposit of Fluoro-Gold in the subthalamus combined with in situ hybridization for mRNA of the GABA synthetic enzyme, glutamate decarboxylase (GAD). A rostrocaudal gradient in the contribution of GABA to the projection was demonstrated with a relatively small percentage of retrogradely labeled cells in the rostra1 ventral pallidum containing GAD mRNA (7%) compared to the caudal globus pallidus which had over 70% of the Fluoro-Gold containing cells double-labeled for GAD mRNA. Overall the ventral pallidum contribution to the subthalamic nucleus was less GABAergic than the portion arising from the globus pallidus (35% vs. 61%, respectively). © 1995 Wiley-Liss, Inc.  相似文献   

7.
An atlas of transverse sections of the globus pallidus and striatum was established in macaque with reference to ventricular coordinates. The three-dimensional geometry of the striato-pallidal complex was investigated by means of sagittal and horizontal reconstructions. Both a personal case studied with autoradiography and data from literature were used to analyze the distribution of cortical axons into the striatum. One may distinguish two striatal territories: one, somatotopically arranged, sensorimotor territory extending over the major part of the putamen; and the other, an associative territory, comprising the caudate nucleus and antero-medial and postero-inferior parts of the putamen. The striato-pallido-nigral bundle was studied using Golgi, Perls, and Fink-Heimer techniques. The bundle is described in four parts: prepallidal (subdivided into caudato-pallidal and putamino-pallidal subparts), transpallidal, pallido-nigral, and nigral. The tracing of the limit between the caudate (associative) and putaminal (essentially sensorimotor) territories shows that the two components are of roughly the same size in the pallidum. The data were compared with geometry and orientation of the dendritic arborizations of large pallidal neurons analyzed in Yelnik et al. ('84). Each pallidal dendritic disc is able to receive axons from a wide region of the striatum. This leads to a convergence on pallidal neurons of striatal axons from different striatal somatotopic strips and from the sensorimotor and associative territories. This is an indication that the globus pallidus may have an integrative role.  相似文献   

8.
As part of an experimental study of the ventral striatum, the horseradish peroxidase (HRP) method was used to examine the afferent and efferent neuronal connections of the nucleus accumbens. Following iontophoretic applications or hydraulic injections of HRP in nucleus accumbens, cells labeled by retrograde transport of HRP were observed in the ipsilateral telencephalon in the posterior agranular insular, perirhinal, entorhinal, and primary olfactory cortices, in the subiculum and hippocampal field CA1, and in the anterior and posterior divisions of the basolateral amygdaloid nucleus. In the diencephalon, labeled neurons were present ipsilaterally in the central medial, paracentral and parafascicular intralaminar nuclei, and in the midline nuclei parataenialis, paraventricularis, and reuniens. Retrograde labeling was observed in the ipsilateral brainstem in cells of the ventral tegmental area and dorsal raphe. Many of these projections to nucleus accumbens were found to be topographically organized. Anterograde transport of HRP from nucleus accumbens demonstrated ipsilateral terminal fields in the ventral pallidum and substantia nigra, pars reticulata. The afferent projections to nucleus accumbens from the posterior insular and perirhinal neocortices, intralaminar thalamus, and the dopamine-containing ventral tegmental area are analogous to the connections of the caudatoputamen, as are the efferents from nucleus accumbens to the substantia nigra and ventral globus pallidus. These connections substantiate the classification of nucleus accumbens as a striatal structure and provide support for the recently proposed concept of the ventral striatum. Furthermore, the demonstration that a number of limbic system structures, including the amygdala, hippocampal formation, entorhinal cortex, and olfactory cortex are important sources of afferents to the nucleus accumbens, suggests that the ventral striatum may serve to integrate limbic information into the striatal system.  相似文献   

9.
The distribution of neurotensin immunoreactivity in the basal ganglia of the adult rat was evaluated by studying alternate serial vibratome sections that were exposed to antiserum against neurotensin, substance P, or cholecystokinin. It was observed that a heterogeneous distribution of neurotensin-immunoreactive fibers and terminals contributes to the neurochemical compartmentation of the ventral pallidum and ventral striatum, and that significant numbers of neurotensin-immunoreactive neurons occupy striatal districts of the olfactory tubercle, nucleus accumbens, and ventromedial caudate-putamen. An intense band of pallidal neurotensin immunoreactivity characterizes the medial part of the ventral pallidum adjacent to the nucleus accumbens, whose medial boundary is conveniently defined in sections incubated with cholecystokinin antiserum. Electron microscopic studies showed that the pallidal plexus of neurotensin-immunoreactive elements consists primarily of boutons, which contact large dendrites in arrangements that in all respects appear to be of the classical striatopallidal variety. A gradual decrease in immunolabel was observed approaching the lateral parts of the ventral pallidum, which display sparse neurotensin immunoreactivity. The results thus indicate the existence of a significant neurotensinergic striatopallidal pathway confined primarily, if not exclusively, to the medial part of the ventral striatopallidal system. The contribution of neurotensin-immunoreactive fibers and terminals to the compartmentation of ventral striatum is expressed most vividly in their exclusion from clusters of tightly packed medium-sized neurons, many of which are intensely substance P immunoreactive. Such clusters appear identical with those previously described as rich in opiate receptors and poor in acetylcholinesterase activity. In the ventral striatal region where the nucleus accumbens and ventromedial caudate-putamen merge, neurotensin-immunoreactive neurons are organized in clusters. Further rostral in the nucleus accumbens, they are more evenly distributed. Few were found in the dorsolateral quadrant of the neostriatum.  相似文献   

10.
The organization of the efferent connections of the subthalamic nucleus was studied in the squirrel monkey (Saimiri sciureus) by using the lectin Phaseolus vulgaris-leucoagglutinin (PHA-L) as an anterograde tracer. At the level of the basal forebrain, anterogradely labeled fibers and axon terminals were mostly found in the striatopallidal complex and the substantia innominata. In cases in which the PHA-L injection sites were placed in the central or the lateral third of the subthalamic nucleus, numerous anterogradely labeled fibers were seen to arise from the injection loci and innervate massively the globus pallidus. At pallidal levels the fibers formed bands lying parallel and adjacent to the medullary laminae. The number and the complexity of the topographical organization of these bands varied with the size and the location of the PHA-L injection site. When examined at a higher magnification, the bands of subthalamopallidal fibers appeared as rich plexuses of short axon collaterals with small bulbous enlargements that closely surrounded the cell bodies and primary dendrites of pallidal cells. In contrast, PHA-L injection involving the medial tip of the subthalamic nucleus did not produce bandlike fiber patterns in the globus pallidus. Instead, the labeled fibers formed a diffuse plexus occupying the ventral part of the rostral pole of the globus pallidus as well as the subcommissural pallidal region. The substantia innominata contained a moderate number of labeled fibers and axon terminals following injection of PHA-L in the medial tip of the subthalamic nucleus. A small to moderate number of anterogradely labeled fibers were seen in the putamen after all PHA-L injections. These subthalamostriatal fibers were long, linear, and branched infrequently. At midbrain level the substantia nigra contained a significant number of anterogradely labeled fibers and axon terminals following PHA-L injection in the subthalamic nucleus. The subthalamonigral fibers descended along the ventromedial part of the cerebral peduncle and swept laterally to reach their target. Most of these fibers formed small plexuses along the base of the pars reticulata, whereas a few others ascended along the cell columns of the pars compacta that impinged deeply within the pars reticulata. More caudally in the brainstem, a small number of fibers occurred in the area of the pedunculopontine nucleus and in the periaqueductal gray. These findings indicate that besides its well-known connection with the pallidum, the subthalamic nucleus gives rise to widespread projections to other components of the basal ganglia in primates.  相似文献   

11.
The organization of the dopaminergic mesostriatal fibers and their patterns of innervation of the basal ganglia in the squirrel monkey (Saimiri sciureus) were studied immunohistochemically with an antiserum raised against tyrosine hydroxylase (TH). Numerous fibers arose from midbrain TH-positive cell bodies of the substantia nigra pars compacta (group A9), the retrorubral area (group A8), and the lateral portion of the ventral tegmental area (group A10). These fibers accumulated dorsomedially to the rostral pole of the substantia nigra where they formed a massive bundle that coursed through the prerubral field and ascended along the laterodorsal aspect of the medial fore-brain bundle in the lateral hypothalamus. Some ventrally located fibers ran throughout the rostrocaudal extent of the lateral preopticohypothalamic area and could be followed up to the olfactory tubercle, whereas other fibers turned laterodorsally to invade the head of the caudate nucleus. At more dorsal levels in the lateral hypothalamus, many fiber fascicles detached themselves from the main bundle and swept laterally to reach the globus pallidus, the putamen, and the amygdala. Several TH-positive fibers coursed along the dorsal surface of the subthalamic nucleus, and some invaded the dorsomedial third of this structure. The remaining portion of the subthalamic nucleus contained relatively few TH-positive elements. In contrast, the globus pallidus received a dense dopaminergic innervation deriving mostly from two fascicles that coursed backward along the two major output pathways of the pallidum: the lenticular fasciculus caudodorsally and the ansa lenticularis rostroventrally. At the pallidal level, the labeled fibres merged within the medullary laminae and arborized profusely in the internal pallidal segment and less abundantly in the external pallidal segment. However, the caudoventral portion of the external pallidum displayed a dense field of TH-positive axonal varicosities. Other fibers ran through the dorsal two-thirds of the external pallidum en route to the putamen. The striatum contained a multitude of thin axonal varicosities among which a few long and varicosed fibers were scattered. These immunoreactive neuronal profiles were rather uniformly distributed along the rostrocaudal extent of the striatum but appeared slightly more numerous in the ventral striatum than in the dorsal striatum. The pattern of distribution of the TH-positive axonal varicosities in the dorsal striatum was markedly heterogeneous: it consisted of typical zones of poor TH immunoreactivity lying within a matrix of dense terminal labeling.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Bicuculline-induced convulsions increased glucose use throughout the brain and sharply demarcated the ventral pallidum and globus pallidus. Glucose use in the nucleus accumbens also increased after bicuculline-induced convulsions, except for a circumscribed region in the dorsomedial shell. Since the projection from the nucleus accumbens to the ventral pallidum contains gamma-aminobutyric acid (GABA) and the opioid peptide, enkephalin, the pattern of increased glucose use in the ventral pallidum and nucleus accumbens after bicuculline-induced convulsions was compared to the topography of GABAA and mu-opioid receptors. The pattern of glucose use in the nucleus accumbens and ventral pallidum resembled the topography of GABAA, but differed from that of mu-opioid receptors. Bicuculline may disinhibit GABAergic efferents to the ventral pallidum resulting in a dramatic increase in glucose use within striatopallidal synaptic terminals as well as in local terminals of the pallidal projection neurons.  相似文献   

13.
Retrograde and anterograde tract-tracing studies were carried out to determine whether the capacity of the nucleus accumbens to influence the thalamic mediodorsal nucleus via ventral striatopallidothalamic connections disproportionately favors the shell over the core subterritory. After injections of Fluoro-Gold into the mediodorsal thalamic nucleus, retrogradely labeled neurons were detected in sections also processed for calbindin-D 28-kD and neurotensin immunoreactivities to facilitate identification of subterritories in the ventral pallidum. Fluoro-Gold-labeled cells were counted in series of sections cut through the ventral pallidum, rostral globus pallidus, nucleus of the vertical limb of the diagonal band, preoptic region, lateral hypothalamus, and the sublenticular gray region, including parts of the extended amygdala. Data were expressed as cells/unit area and as percentages of all labeled forebrain cells. Mediodorsal nucleus-projecting rostroventral forebrain neurons were most numerous in the ventromedial part of the subcommissural ventral pallidum and pallidal parts of the olfactory tubercle. Few were observed in the dorsolateral part of the subcommissural ventral pallidum. In addition, following injections into the ventral pallidum, anterogradely transported biotinylated dextran amine was evaluated in sections processed for calbindin or tyrosine hydroxylase immunoreactivities. Injection into the ventromedial part of the subcommissural ventral pallidum resulted in robust anterograde labeling of the medial segment of the mediodorsal nucleus and ventral tegmental area and weak labeling of the substantia nigra and subthalamic nucleus. Conversely, after injection into the dorsolateral part of the subcommissural ventral pallidum, anterograde labeling was weak in the mediodorsal nucleus and ventral tegmental area, but robust in the substantia nigra and subthalamic nucleus. The results are consistent with a predominant accumbens shell influence on the mediodorsal nucleus and with cortico-ventral striatopallidal-thalamocortical pathways that begin and end in different parts of the frontal lobe. © 1996 Wiley-Liss, Inc.  相似文献   

14.
Alterations in local cerebral glucose utilization (LCGU) in conscious rats during electrical stimulation of the striatum and the globus pallidus were investigated using the [14C]deoxyglucose method. Stimulation of the globus pallidus produced a marked contraversive circling behavior, while stimulation of the striatum led only to contraversive head turning. Unilateral stimulation of the striatum increased LCGU bilaterally in the globus pallidus and substantia nigra pars compacta, but only ipsilaterally in the entopeduncular nucleus, substantia nigra pars reticulata and subthalamic nucleus. Similar stimulation of the globus pallidus increased LGCU in the globus pallidus, substantia nigra pars reticulata and compacta, entopeduncular nucleus, subthalamic nucleus, lateral habenular nucleus, parafascicular nucleus of the thalamus, deep layers of the superior colliculus and pedunculopontine nucleus, exclusively on the ipsilateral side. These results indicate that the electrical stimulation induces LCGU changes in the respective structures having both monosynaptic and transsynaptic neuronal inputs. Some changes may also be mediated by antidromic activation. They also suggest that activation of a synaptic process whether excitatory or inhibitory results in increases in LCGU. The bilateral modulatory effects of striatal stimulation may cancel out the circling behavior seen during pallidal stimulation, and cause only head turning.  相似文献   

15.
D S Zahm  S N Johnson 《Brain research》1989,483(2):301-311
Intraperitoneal administration of haloperidol (HAL) is reported to be followed within 24 h by increases in the numbers of NT-IR neurons selectively in the ventral striatum. We now report a similar but more dramatic response following unilateral 6-hydroxydopamine (6-OHDA) injections in the ventral tegmental area (VTA). Three days following such injections, NT-IR neurons were more numerous in striatal districts on the lesioned as compared to unlesioned sides of the brains. In contrast to conditions following DA receptor blockade, the distribution of NT-IR neurons extended to include dorsal striatal territories after 6-OHDA lesions, including the extreme dorsolateral quadrant, which in all previous studies has been reported devoid of NT-IR neurons. The moderate expansion of the NT-IR pallidal districts observed after HAL treatment was more pronounced after 6-OHDA. The NT-IR territory of the globus pallidus on the lesioned side was markedly larger than its counterpart on the unlesioned side. Lateral ventral pallidum, which gives rise to projections terminating in the substantia nigra and subthalamic nucleus and normally exhibits sparse NT-IR displayed intense NT-IR following the chemical lesion.  相似文献   

16.
The entopeduncular nucleus is one of the major output stations of the basal ganglia. In order to better understand the role of this structure in information flow through the basal ganglia, experiments have been performed in the rat to examine the chemical nature, morphology, and synaptology of the projections from the globus pallidus and striatum to the entopeduncular nucleus. In order to examine the morphology and synaptology of pallidoentopeduncular terminals and striatoentopeduncular terminals, rats were subjected to a double anterograde labelling study. The globus pallidus was injected with Phaseolus vulgaris-leucoagglutinin (PHA-L), and on the same side of the brain, the striatum was injected with biocytin. The entopeduncular nuclei of these animals were then examined for anterogradely labelled pallidal and striatal terminals. Rich plexuses of PHA-L-labelled pallidal terminals and biocytin-labelled striatal terminals were identified throughout the entopeduncular nucleus. At the electron microscopic level, the pallidal boutons were classified as two types. The majority (Type 1), were large boutons that formed symmetrical synapses with the dendrites and perikarya of neurones in the entopeduncular nucleus. Type 2 PHA-L-labelled terminals were much rarer, slightly smaller, and formed asymmetrical synapses. It is suggested that the Type 2 boutons are not derived from the globus pallidus but from the subthalamic nucleus. The biocytin-labelled terminals from the striatum had the typical morphological features of striatal terminals and formed symmetrical synapses. The distribution of the postsynaptic targets of the pallidal terminals and the striatal terminals differed in that the pallidal terminals preferentially made synaptic contact with the more proximal regions of the neurones in the entopeduncular nucleus, whereas the striatal terminals were located more distally on the dendritic trees. Examination in the electron microscope of areas where there was an overlap of the two sets of anterogradely labelled boutons revealed that terminals from the globus pallidus and the striatum made convergent synaptic contact with the perikarya and dendrites of individual neurones in the entopeduncular nucleus. In order to examine the chemical nature of the input to the entopeduncular nucleus from the globus pallidus and the striatum, ultrathin sections were immunostained by the postembedding method to reveal endogenous GABA. Three classes of GABA-containing terminals were identified; two of them formed symmetrical synapses and one rare type formed asymmetrical synapses. The combination of the GABA immunocytochemistry and anterograde labelling revealed that both the striatal and pallidal afferents that make symmetrical synapses with neurones in the entopeduncular nucleus, including those involved in convergent inputs, are GABAergic.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The purpose of this study was to identify sites where striatopallidal lesions produce two distinct sensory-triggered hyperkinetic syndromes: (1) exaggerated forelimb treading alone to oral taste infusions and (2) sensorimotor exaggerated treading plus enhanced aversive reactions to taste infusions. The behavioral characteristics of these syndromes have been described previously (Berridge, K.C. and Cromwell, H.C.,Behav. Neurosci., 104 (1990) 778–795). Bilateral excitotoxin lesions were made using quinolinic acid (10 μg in 1 μl) in the caudate/putamen, nucleus accumbens, globus pallidus or ventral pallidum/substantia innominata. In order to identify the precise center, borders, severity and size of lesion sites that caused these hyperkinetic treading syndromes, neuron counts (modified fractionator technique) and glial fibrillary acidic protein immunoreactivity (GFAP-IR) densitometry were used in a stereological mapping analysis. The site of lesions that produced the hyperkinetic treading syndrome without enhanced aversion was found to be restricted to the globus pallidus (GP). Damage exceeding 60% neuron loss bilaterally within a0.8 × 1.0 × 1.0 mm subregion of the ventromedial GP produced this syndrome. The site of lesions that produced the combined syndrome of hyperkinetic treading and aversive enhancement was ventral to the globus pallidus, within the ventral pallidum/substantia innominata (VP/SI). Damage exceeding 70% neuron loss bilaterally within a1.0 × 0.5 × 1.0m diameter subregion of the ventromedial ventral pallidum/substantia innominata produced this syndrome. This subterritory was located immediately lateral to the border of the lateral hypothalamus. Bilateral lesions to the caudate/putamen or nucleus accumbens did not produce either hyperkinetic treading syndrome. These results are discussed in terms of the connectivity of the ventral pallidal/substantia innominata and globus pallidus regions and in terms of neuropathological models of hyperkinetic disorders.  相似文献   

18.
19.
In contrast to the well-established dopaminergic innervation of the neostriatum, the existence of dopaminergic innervation of the subthalamic nucleus and globus pallidus is controversial. In the present study, tyrosine hydroxylase (TH)-immunoreactive elements were observed by light microscopy after antigen retrieval in the subthalamic nucleus and in the internal and external segments of the globus pallidus in postmortem human brain. Small islands of apparent neostriatal tissue with abundant arborization of fine, TH-immunoreactive axons in the vicinity of calbindin-positive small neurons resembling neostriatal medium spiny neurons were present in the external segment of the globus pallidus. Large numbers of medium-large, TH-immunoreactive axons were observed passing above and through the subthalamic nucleus and through both pallidal segments; these are presumed to be axons of passage on their way to the neostriatum. In addition, fine, TH-immunoreactive axons with meandering courses, occasional branches, and irregular outlines, morphologically suggestive of terminal axon arborizations with varicosities, were seen in both pallidal segments, including the ventral pallidum, and the subthalamic nucleus, consistent with a catecholaminergic (probably dopaminergic) innervation of these nuclei. This finding suggests that, in Parkinson's disease and in animal models of this disorder, loss of dopaminergic innervation might contribute to abnormal neuronal activation in these three nuclei.  相似文献   

20.
Bicuculline-induced convulsions increased glucose use throughout the brain and sharply demarcated the ventral pallidum and globus pallidus. Glucose use in the nucleus accumbens also increased after bicuculline-induced convulsions, except for a circumscribed region in the dorsomedial shell. Since the projection from the nucleus accumbens to the ventral pallidum contains γ-aminobutyric acid (GABA) and the opioid peptide, enkephalin, the pattern of increased glucose use in the ventral pallidum and nucleus accumbens after bicuculline-induced convulsions was compared to the topography of GABAA and μ-opioid receptors. The pattern of glucose use in the nucleus accumbens and ventral pallidum resembled the topography of GABAA, but differed from that of μ-opioid receptors. Bicuculline may disinhibit GABAergic efferents to the ventral pallidum resulting in a dramatic increase in glucose use within striatopallidal synaptic terminals as well as in local terminals of the pallidal projection neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号