首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2B4 is a surface molecule involved in activation of the natural killer (NK) cell-mediated cytotoxicity. It binds a protein termed Src homology 2 domain-containing protein (SH2D1A) or signaling lymphocyte activation molecule (SLAM)-associated protein (SAP), which in turn has been proposed to function as a regulator of the 2B4-associated signal transduction pathway. In this study, we analyzed patients with X-linked lymphoproliferative disease (XLP), a severe inherited immunodeficiency characterized by critical mutations in the SH2D1A gene and by the inability to control Epstein-Barr virus (EBV) infections. We show that, in these patients, 2B4 not only fails to transduce triggering signals, but also mediates a sharp inhibition of the NK-mediated cytolysis. Other receptors involved in NK cell triggering, including CD16, NKp46, NKp44, and NKp30, displayed a normal functional capability. However, their activating function was inhibited upon engagement of 2B4 molecules. CD48, the natural ligand of 2B4, is highly expressed on the surface of EBV(+) B cell lines. Remarkably, NK cells from XLP patients could not kill EBV(+) B cell lines. This failure was found to be the consequence of inhibitory signals generated by the interaction between 2B4 and CD48, as the antibody-mediated disruption of the 2B4-CD48 interaction restored lysis of EBV(+) target cells lacking human histocompatibility leukocyte antigen (HLA) class I molecules. In the case of autologous or allogeneic (HLA class I(+)) EBV(+) lymphoblastoid cell lines, restoration of lysis was achieved only by the simultaneous disruption of 2B4-CD48 and NK receptor-HLA class I interactions. Molecular analysis revealed that 2B4 molecules isolated from either XLP or normal NK cells were identical. As expected, in XLP-NK cells, 2B4 did not associate with SH2D1A, whereas similar to 2B4 molecules isolated from normal NK cells, it did associate with Src homology 2 domain-containing phosphatase 1.  相似文献   

2.
Patients with the primary immunodeficiency X-linked lymphoproliferative disease (XLP), which is caused by mutations in SH2D1A, are highly susceptible to Epstein-Barr virus (EBV) infection. Nonetheless, some XLP patients demonstrate less severe clinical manifestations after primary infection. SH2D1A encodes the adaptor molecule SLAM-associated protein (SAP), which is expressed in T and natural killer cells and is required for cytotoxicity against B cells, the reservoir for EBV. It is not known why the clinical presentation of XLP is so variable. In this study, we report for the first time the occurrence of somatic reversion in XLP. Reverted SAP-expressing cells resided exclusively within the CD8(+) T cell subset, displayed a CD45RA(-)CCR7(-) effector memory phenotype, and were maintained at a stable level over time. Importantly, revertant CD8(+) SAP(+) T cells, but not SAP(-) cells, proliferated in response to EBV and killed EBV-infected B cells. As somatic reversion correlated with EBV infection, we propose that the virus exerts a selective pressure on the reverted cells, resulting in their expansion in vivo and host protection against ongoing infection.  相似文献   

3.
X-linked lymphoproliferative disease (XLP) is a rare congenital immunodeficiency that leads to an extreme, usually fatal increase in the number of lymphocytes upon infection with EBV. It is most commonly defined molecularly by loss of expression of SLAM-associated protein (SAP). Despite this, there is little understanding of how SAP deficiency causes lymphocytosis following EBV infection. Here we show that T cells from individuals with XLP are specifically resistant to apoptosis mediated by TCR restimulation, a process that normally constrains T cell expansion during immune responses. Expression of SAP and the SLAM family receptor NK, T, and B cell antigen (NTB-A) were required for TCR-induced upregulation of key pro-apoptotic molecules and subsequent apoptosis. Further, SAP/NTB-A signaling augmented the strength of the proximal TCR signal to achieve the threshold required for restimulation-induced cell death (RICD). Strikingly, TCR ligation in activated T cells triggered increased recruitment of SAP to NTB-A, dissociation of the phosphatase SHP-1, and colocalization of NTB-A with CD3 aggregates. In contrast, NTB-A and SHP-1 contributed to RICD resistance in XLP T cells. Our results reveal what we believe to be novel roles for NTB-A and SAP in regulating T cell homeostasis through apoptosis and provide mechanistic insight into the pathogenesis of lymphoproliferative disease in XLP.  相似文献   

4.
SAP is an adaptor protein expressed in T cells and natural killer cells. It plays a critical role in immunity, as it is mutated in humans with X-linked lymphoproliferative syndrome (XLP), a fatal immunodeficiency characterized by an abnormal response to Epstein-Barr virus (EBV) infection. SAP interacts with the SLAM family receptors and promotes transduction signal events by these receptors through its capacity to recruit and activate the Src kinase FynT. Because it has been previously established that FynT is selectively required for the development of NKT cells, we examined NKT cells in SAP-deficient mice and in humans with XLP. In the absence of SAP, the development of NKT cells is severely impaired both in mice and in humans. These results imply that SAP is a potent regulator of NKT cell development. They also identify for the first time a defect in NKT cells associated with a human primary immunodeficiency, revealing a potential role of NKT cells in the immune response to EBV.  相似文献   

5.
In humans, natural killer (NK) cell function is regulated by a series of receptors and coreceptors with either triggering or inhibitory activity. Here we describe a novel 60-kD glycoprotein, termed NTB-A, that is expressed by all human NK, T, and B lymphocytes. Monoclonal antibody (mAb)-mediated cross-linking of NTB-A results in the induction of NK-mediated cytotoxicity. Similar to 2B4 (CD244) functioning as a coreceptor in the NK cell activation, NTB-A also triggers cytolytic activity only in NK cells expressing high surface densities of natural cytotoxicity receptors. This suggests that also NTB-A may function as a coreceptor in the process of NK cell activation. Molecular cloning of the cDNA coding for NTB-A molecule revealed a novel member of the immunoglobulin superfamily belonging to the CD2 subfamily. NTB-A is characterized, in its extracellular portion, by a distal V-type and a proximal C2-type domain and by a cytoplasmic portion containing three tyrosine-based motifs. NTB-A undergoes tyrosine phosphorylation and associates with the Src homology 2 domain-containing protein (SH2D1A) as well as with SH2 domain-containing phosphatases (SHPs). Importantly, analysis of NK cells derived from patients with X-linked lymphoproliferative disease (XLP) showed that the lack of SH2D1A protein profoundly affects the function not only of 2B4 but also of NTB-A. Thus, in XLP-NK cells, NTB-A mediates inhibitory rather than activating signals. These inhibitory signals are induced by the interaction of NTB-A with still undefined ligands expressed on Epstein-Barr virus (EBV)-infected target cells. Moreover, mAb-mediated masking of NTB-A can partially revert this inhibitory effect while a maximal recovery of target cell lysis can be obtained when both 2B4 and NTB-A are simultaneously masked. Thus, the altered function of NTB-A appears to play an important role in the inability of XLP-NK cells to kill EBV-infected target cells.  相似文献   

6.
X-linked lymphoproliferative disease (XLP) is an often-fatal immunodeficiency characterized by hypogammaglobulinemia, fulminant infectious mononucleosis, and/or lymphoma. The genetic lesion in XLP, SH2D1A, encodes the adaptor protein SAP (signaling lymphocytic activation molecule-associated [SLAM-associated] protein); however, the mechanism(s) by which mutations in SH2D1A causes hypogammaglobulinemia is unknown. Our analysis of 14 XLP patients revealed normal B cell development but a marked reduction in the number of memory B cells. The few memory cells detected were IgM(+), revealing deficient isotype switching in vivo. However, XLP B cells underwent proliferation and differentiation in vitro as efficiently as control B cells, which indicates that the block in differentiation in vivo is B cell extrinsic. This possibility is supported by the finding that XLP CD4(+) T cells did not efficiently differentiate into IL-10(+) effector cells or provide optimal B cell help in vitro. Importantly, the B cell help provided by SAP-deficient CD4(+) T cells was improved by provision of exogenous IL-10 or ectopic expression of SAP, which resulted in increased IL-10 production by T cells. XLP CD4(+) T cells also failed to efficiently upregulate expression of inducible costimulator (ICOS), a potent inducer of IL-10 production by CD4(+) T cells. Thus, insufficient IL-10 production may contribute to hypogammaglobulinemia in XLP. This finding suggests new strategies for treating this immunodeficiency.  相似文献   

7.
8.
X-linked lymphoproliferative disease is caused by mutations affecting SH2D1A/SAP, an adaptor that recruits Fyn to signal lymphocyte activation molecule (SLAM)-related receptors. After infection, SLAM-associated protein (SAP)-/- mice show increased T cell activation and impaired humoral responses. Although SAP-/- mice can respond to T-independent immunization, we find impaired primary and secondary T-dependent responses, with defective B cell proliferation, germinal center formation, and antibody production. Nonetheless, transfer of wild-type but not SAP-deficient CD4 cells rescued humoral responses in reconstituted recombination activating gene 2-/- and SAP-/- mice. To investigate these T cell defects, we examined CD4 cell function in vitro and in vivo. Although SAP-deficient CD4 cells have impaired T cell receptor-mediated T helper (Th)2 cytokine production in vitro, we demonstrate that the humoral defects can be uncoupled from cytokine expression defects in vivo. Instead, SAP-deficient T cells exhibit decreased and delayed inducible costimulator (ICOS) induction and heightened CD40L expression. Notably, in contrast to Th2 cytokine defects, humoral responses, ICOS expression, and CD40L down-regulation were rescued by retroviral reconstitution with SAP-R78A, a SAP mutant that impairs Fyn binding. We further demonstrate a role for SLAM/SAP signaling in the regulation of early surface CD40L expression. Thus, SAP affects expression of key molecules required for T-B cell collaboration by mechanisms that are distinct from its role in cytokine regulation.  相似文献   

9.
Individuals with X-linked lymphoproliferative disease (XLP) display defects in B cell differentiation in vivo. Specifically, XLP patients do not generate a normal number of CD27 memory B cells, and those few that are present are IgM. Recent studies have suggested that IgMCD27 B cells are not true memory cells, but rather B cells that guard against T cell-independent pathogens. Here we show that human XLP IgMCD27 B cells resemble normal memory B cells both morphologically and phenotypically. Additionally, IgMCD27 B cells exhibited functional characteristics of normal memory B cells, including the ability to secrete more Ig than naive B cells in response to both T cell-dependent and -independent stimuli. Analysis of spleens from XLP patients revealed a paucity of germinal centers (GCs), and the rare GCs detected were poorly formed. Despite this, Ig variable region genes expressed by XLP IgMCD27 B cells had undergone somatic hypermutation to an extent comparable to that of normal memory B cells. These findings reveal a differential requirement for the generation of IgM and Ig isotype-switched memory B cells, with the latter only being generated by fully formed GCs. Production of affinity-matured IgM by IgMCD27 B cells may protect against pathogens to which a normal immune response is elicited in XLP patients.  相似文献   

10.
The relative contribution to cytotoxicity of each of the multiple NK cell activation receptors has been difficult to assess. Using Drosophila insect cells, which express ligands of human NK cell receptors, we show that target cell lysis by resting NK cells is controlled by different receptor signals for cytolytic granule polarization and degranulation. Intercellular adhesion molecule (ICAM)-1 on insect cells was sufficient to induce polarization of granules, but not degranulation, in resting NK cells. Conversely, engagement of the Fc receptor CD16 by rabbit IgG on insect cells induced degranulation without specific polarization. Lysis by resting NK cells occurred when polarization and degranulation were induced by the combined presence of ICAM-1 and IgG on insect cells. Engagement of receptor 2B4 by CD48 on insect cells induced weak polarization and no degranulation. However, coengagement of 2B4 and CD16 by their respective ligands resulted in granule polarization and cytotoxicity in the absence of leukocyte functional antigen-1-mediated adhesion to target cells. These data show that cytotoxicity by resting NK cells is controlled tightly by separate or cooperative signals from different receptors for granule polarization and degranulation.  相似文献   

11.
Natural killer (NK) cells are critical in the immune response to tumor cells, virally infected cells, and bone marrow allografts. 2B4 (CD244) is expressed on all NK cells and the ligand for 2B4, CD48, is expressed on hematopoietic cells. Cross-linking 2B4 on NK cells with anti-2B4 monoclonal antibody leads to NK cell activation in vitro. Therefore, 2B4 is considered to be an activating receptor. Surprisingly, we have found, using antibody-blocking and 2B4-deficient NK cells, that NK lysis of CD48(+) tumor and allogeneic targets is inhibited by 2B4 ligation. Interferon gamma production by NK cells is also inhibited. Using a peritoneal tumor clearance assay, it was found that 2B4(-/-) mice have increased clearance of CD48(+) tumor cells in vivo. Retroviral transduction of 2B4 was sufficient to restore inhibition in 2B4(-/-) primary NK cells. It was found that although mature NK cells express SH2D1A, in vitro-derived NK cells do not. However, both populations are inhibited by 2B4 ligation. This indicates that 2B4 inhibitory signaling occurs regardless of the presence of SH2D1A. These findings reveal a novel role for 2B4 as a non-major histocompatibility complex binding negative regulator of NK cells.  相似文献   

12.
In this paper we describe the function and phenotype of natural killer (NK) lymphocytes from HLA class I–deficient patients. These cells are, as has been previously reported, unable to lyse HLA class I K562 cells, but are able to perform antibody-dependent cellular cytotoxicity (ADCC), although with lower efficiency as compared to NK cells from normal individuals. Transporter associated to antigen processing (TAP) NK cells proliferate when cultured in the presence of lymphoblastoid B cells (B-LCs) and interleukin 2 and develop a spectrum of cytotoxicity similar to that of activated normal NK cells. Importantly, activation of the TAP NK cells induces strong cytotoxicity to autologous B-LCs. Analysis of the phenotype of circulating TAP NK lymphocytes showed them to display a normal diverse repertoire of HLA class I–specific NK receptors. These receptors were expressed at normal levels, apart from the CD94–NKG2A complex, which appeared to be overexpressed. This latter finding could reflect an adaptation to the low expression of HLA class I molecules. Finally, functional analyses indicated that the inhibitory receptors in TAP individuals can transduce inhibitory signals. Our results suggest that in vivo, the NK cells of TAP patients could participate in immune defense, at least through ADCC, but upon activation, may be involved in autoimmune processes.Type I bare lymphocyte syndrome is a rare disease characterized by a strong reduction in the cell surface expression of HLA class I molecules. The patients are not reported to suffer from severe viral infections, which suggests that cell-mediated cytotoxic immune responses are efficient to some extent. However, chronic lung inflammation develops in late childhood. A few years ago we described two siblings, EMO and EFA, who are homozygous for a stop mutation in the gene encoding the TAP2 subunit of the peptide transporter associated to antigen processing (TAP; 1). As a result of this deficiency, most HLA class I molecules remain peptide-free and cannot reach the cell surface. Thus, the TAP-deficient cells from these patients express <3% of HLA class I molecules as compared to normal cells. Nevertheless, CD8+ α/β T cells are present among their PBMCs. Recent observations (2) suggest that some of these cells may recognize TAP-independent HLA class I–restricted viral antigens and participate in the development of the immune response, thus explaining the absence of a greater susceptibility to viral infection in these patients.Immune responses are also controlled by NK cells. These lymphocytes are cytotoxic to certain tumor cells, HLA class I cells, and virus-infected cells and mediate antibody-dependent cellular cytotoxicity (ADCC; 3). The importance of these cells in human immune responses is indicated by the association of severe infections with herpesvirus and EBV with an absence of NK cells or with a reduction of their activity (4, 5).Several molecules expressed at the surface of NK cells are involved in the recognition of target cells and control their cytotoxic activity (6). Some are activating receptors; among these is the type III low affinity receptor for IgG, or CD16, which is involved in ADCC. Other receptors, called killer inhibitory receptors (KIRs), block the cytotoxic process when they interact with the HLA class I molecules expressed on normal cells. In humans, these receptors may be classified in two main families. The receptors specific for subsets of the alleles of HLA-C (p58), HLA-B (p70), and HLA-A (p140) belong to the Ig superfamily (Ig-SF; 6). In contrast, the CD94–NKG2A (or -B) receptor complex is composed of proteins homologous to C-type lectins and displays a broader specificity for different HLA class I alleles (7). More recently, receptors have been described that are homologous to KIRs, but activate the cytotoxicity of NK cells (6, 7).In a previous paper, we reported that NK cells from TAP-deficient patients were unable to lyse HLA class I K562 tumor cells, suggesting that these cells were not functional (1). However, since the patients do not seem to suffer from severe herpesvirus or EBV infections, this may indicate that their NK cells possess immunological functions. The cytotoxic activity of NK cells from TAP-deficient patients was therefore reexamined in the present study. In a second step, we investigated whether a defective expression of class I molecules could affect the repertoire of HLA class I–specific receptors on NK cells. Finally, we explored the functionality of the inhibitory receptors of these cells.  相似文献   

13.
X-linked lymphoproliferative syndrome (XLP) is a rare, often fatal, primary immunodeficiency that has profound and damaging effects on the immune system of affected individuals. It is characterized by a dysregulated immune response, most commonly to Epstein-Barr viral infection. The defective gene in this syndrome has been identified as SAP-SLAM (signaling lymphocyte activation molecule)-associated protein. It is an adapter molecule that is required for appropriate function of the SLAM-related receptors. There is now a greater understanding of the molecular associations and cellular pathogenesis of SAP and this review will summarize the most recent findings. Clinically, XLP may be difficult to diagnose as a result of its varied clinical phenotype, and protein and genetic assays are currently used to make a definitive diagnosis. With the advances in gene analysis and genomics technology, it is likely that better and more rapid diagnostic techniques will become available.  相似文献   

14.
Tumor growth promotes the expansion of CD4+CD25+ regulatory T (T reg) cells that counteract T cell-mediated immune responses. An inverse correlation between natural killer (NK) cell activation and T reg cell expansion in tumor-bearing patients, shown here, prompted us to address the role of T reg cells in controlling innate antitumor immunity. Our experiments indicate that human T reg cells expressed membrane-bound transforming growth factor (TGF)-beta, which directly inhibited NK cell effector functions and down-regulated NKG2D receptors on the NK cell surface. Adoptive transfer of wild-type T reg cells but not TGF-beta-/- T reg cells into nude mice suppressed NK cell-mediated cytotoxicity, reduced NKG2D receptor expression, and accelerated the growth of tumors that are normally controlled by NK cells. Conversely, the depletion of mouse T reg cells exacerbated NK cell proliferation and cytotoxicity in vivo. Human NK cell-mediated tumor recognition could also be restored by depletion of T reg cells from tumor-infiltrating lymphocytes. These findings support a role for T reg cells in blunting the NK cell arm of the innate immune system.  相似文献   

15.
Natural killer (NK) cells play important roles in the immune defense against tumor cells. The function of NK cells is determined by a balance between activating and inhibitory signals. DNAX accessory molecule-1 (DNAM-1) and NK group 2 member D (NKG2D) are major NK cell activating receptors, which transduce activating signals after binding their ligands CD155, CD112 and major histocompatibility complex class I-related chains A and B (MICA/B). However, the expression and functions of these ligands in colon carcinoma are still elusive. Here, we show the higher expression of CD155, CD112 and MICA/B in colon carcinoma tissues, although no correlations between the ligands expression and patient clinicopathological parameters were found. The subsequent cytotoxicity assay indicated that NK cells effectively kill colon carcinoma cells. Functional blocking of these ligands and/or receptors with antibodies led to significant inhibition of NK cell cytotoxicity. Importantly, expression of DNAM-1 and NKG2D was reduced in NK cells of colon cancer patients, and this reduction could directly suppress the activation of NK cells. Moreover, colon cancer patients have higher serum concentrations of sCD155 and sMICA/B (soluble ligands, secreted or shed from cells) than those in healthy donors (sCD155, 127.82 ± 44.12 vs. 63.67 ± 22.30 ng/ml; sMICA, 331.51 ± 65.23 vs. 246.74 ± 20.76 pg/ml; and sMICB, 349.42 ± 81.69 vs. 52.61 ± 17.56 pg/ml). The up-regulation of these soluble ligands may down-regulate DNAM-1 and NKG2D on NK cells, ultimately leading to the inhibition of NK cytotoxicity. Colon cancer might be a promising target for NK cell-based adoptive immunotherapy.  相似文献   

16.
Natural killer (NK) cells are lymphocytes of the innate immune system that participate in the elimination of tumor cells. In humans, the activating natural cytotoxicity receptors (NCRs) NKp30, NKp44, and NKp46 play a major role in NK cell-mediated tumor cell lysis. NKp30 recognizes B7-H6, a member of the B7 family which is expressed on tumor, but not healthy, cells. To understand the basis for tumor surveillance by NCRs, we determined the structure of NKp30, a member of the CD28 family which includes CTLA-4 and PD-1, in complex with B7-H6. The overall organization of the NKp30-B7-H6-activating complex differs considerably from those of the CTLA-4-B7 and PD-1-PD-L T cell inhibitory complexes. Whereas CTLA-4 and PD-1 use only the front β-sheet of their Ig-like domain to bind ligands, NKp30 uses both front and back β-sheets, resulting in engagement of B7-H6 via the side, as well as face, of the β-sandwich. Moreover, B7-H6 contacts NKp30 through the complementarity-determining region (CDR)-like loops of its V-like domain in an antibody-like interaction that is not observed for B7 or PD-L. This first structure of an NCR bound to ligand provides a template for designing molecules to stimulate NKp30-mediated cytolytic activity for tumor immunotherapy.  相似文献   

17.
NK cells are a major component of the antitumor immune response and are involved in controlling tumor progression and metastases in animal models. Here, we show that dysfunction of these cells accompanies human breast tumor progression. We characterized human peripheral blood NK (p-NK) cells and malignant mammary tumor-infiltrating NK (Ti-NK) cells from patients with noninvasive and invasive breast cancers. NK cells isolated from the peripheral blood of healthy donors and normal breast tissue were used as controls. With disease progression, we found that expression of activating NK cell receptors (such as NKp30, NKG2D, DNAM-1, and CD16) decreased while expression of inhibitory receptors (such as NKG2A) increased and that this correlated with decreased NK cell function, most notably cytotoxicity. Importantly, Ti-NK cells had more pronounced impairment of their cytotoxic potential than p-NK cells. We also identified several stroma-derived factors, including TGF-β1, involved in tumor-induced reduction of normal NK cell function. Our data therefore show that breast tumor progression involves NK cell dysfunction and that breast tumors model their environment to evade NK cell antitumor immunity. This highlights the importance of developing future therapies able to restore NK cell cytotoxicity to limit/prevent tumor escape from antitumor immunity.  相似文献   

18.
19.
Natural killer (NK) cells are named based on their natural cytotoxic activity against a variety of target cells. However, the mechanisms by which sensitive targets activate killing have been difficult to study due to the lack of a prototypic NK cell triggering receptor. Pharmacologic evidence has implicated protein tyrosine kinases (PTKs) in natural killing; however, Lck-deficient, Fyn-deficient, and ZAP-70–deficient mice do not exhibit defects in natural killing despite demonstrable defects in T cell function. This discrepancy implies the involvement of other tyrosine kinases. Here, using combined biochemical, pharmacologic, and genetic approaches, we demonstrate a central role for the PTK Syk in natural cytotoxicity. Biochemical analyses indicate that Syk is tyrosine phosphorylated after stimulation with a panel of NK-sensitive target cells. Pharmacologic exposure to piceatannol, a known Syk family kinase inhibitor, inhibits natural cytotoxicity. In addition, gene transfer of dominant-negative forms of Syk to NK cells inhibits natural cytotoxicity. Furthermore, sensitive targets that are rendered NK-resistant by major histocompatibility complex (MHC) class I transfection no longer activate Syk. These data suggest that Syk activation is an early and requisite signaling event in the development of natural cytotoxicity directed against a variety of cellular targets.The NK cell is a type of lymphocyte that is able to mediate natural cytotoxicity against a variety of tumor cells, virus-infected cells, and hematopoietic targets (1). However, little is known regarding the mechanisms by which these targets trigger natural cytotoxicity. In addition to natural cytotoxicity, the NK cell can mediate antibody-dependent cell-mediated cytotoxicity (ADCC)1 through its FcR for IgG, FcγRIII. In contrast to natural cytotoxicity, ADCC is well defined with respect to the receptor–ligand interaction as well as intracellular second messenger involvement (for review see reference 2). In spite of this contrast between the well-defined FcR-dependent and the poorly defined natural cytotoxic mechanisms, both killing mechanisms can be inhibited by MHC-recognizing killer cell inhibitory receptors (KIR). Since KIR inhibition seems to target signaling pathways initiated by immunoreceptor tyrosine-based activation motif (ITAM)–containing receptor complexes (e.g., FcγRIII, TCR, and FcεRI; references 39), the ability of both FcR-dependent and natural cytotoxicity to be inhibited by KIR suggests that there may be shared signaling elements in the pathways used during the two alternative routes of initiating NK cell–mediated cytotoxicity.Evidence using the PTK inhibitors herbimycin A and genistein demonstrates that PTK activation is necessary for both FcR-mediated and natural cytotoxicity (1014). However, the available genetic evidence from Lck- and Fyn-deficient mice suggests that neither of these specific Src family tyrosine kinases is necessary for NK cell–mediated cytotoxicity (15, 16). This raises the possibility that another Src family PTK (e.g., Lyn) could subserve this role. Alternatively, the receptors initiating NK cell–mediated killing could use a different kind of PTK that might function in a Src family kinase-independent manner. The Syk family member ZAP-70, which is expressed in NK cells, is unlikely to be this PTK because ZAP-70 appears to require activation by a Src family PTK (1720); and because NK cells from humans and mice lacking ZAP-70 can mediate normal natural cytotoxicity and ADCC (2123). In contrast, Syk itself could perform this role. Syk is expressed in NK cells (24) and evidence suggests that Syk is able to function in the absence of Src family kinases (1820, 25). Although chimeric receptors containing the intracellular portion of ZAP-70 require cross-linking with Src family kinases such as Lck or Fyn to mediate cytotoxicity, chimeric receptors containing Syk can initiate killing in the absence of Src family PTK costimulation (18). In addition, Syk, but not ZAP-70, can induce the tyrosine phosphorylation of ITAM-containing receptor subunits in an Src family PTK-independent manner (19, 20, 25).To test the hypothesis that the Syk tyrosine kinase is functionally involved in natural cytotoxicity, we first stimulated NK cells with a panel of sensitive targets and then characterized their intracellular signaling events. Although stimulation of NK cells with sensitive targets is known to induce increases in intracellular free Ca2+ and inositol phosphate release (2630), more proximal specific signaling events have not been elucidated. In this study, we describe a rapid and reversible increase in the tyrosine phosphorylation of NK cell–derived Syk after target cell stimulation. In addition, either pharmacologic inhibition of Syk kinase activity or expression of dominant-negative, kinase-inactive Syk in NK cells inhibits natural killing. Finally, tumor cells that are made resistant to NK cell–mediated cytotoxicity by MHC class I transfection no longer activate Syk. Together these data emphasize the central contribution of the Syk tyrosine kinase to generation of natural cytotoxicity.  相似文献   

20.
ABSTRACT

Introduction: Natural killer (NK) cells are an important component of the innate immune system that play a key role in host immunity against cancer. NK cell recognition and activation is based on cell surface receptors recognizing specific ligands that are expressed on many types of tumor cells. Some of these receptors are capable of activating NK cell function while other receptors inhibit NK cell function. Therapeutic approaches to treat cancer have been developed based on preventing NK cell inhibition or using NK cell receptors and their ligands to activate NK cells or T cells to destroy tumor cells.

Areas covered: This article describes the various strategies for targeting NK cell receptors and NK cell receptor ligands using multivalent proteins to activate immunity against cancer.

Expert opinion: NK cell receptors work in synergy to activate NK cell effector responses. Effective anti-cancer strategies will need to not only kill tumor cells but must also lead to the destruction of the tumor microenvironment. Immunotherapy based on NK cells and their receptors has the capacity to accomplish this through triggering lymphocyte cytotoxicity and cytokine production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号