首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
组织工程用聚合物多孔支架的制备技术   总被引:6,自引:0,他引:6  
组织工程用多孔支架不仅要有普通生物材料具有的性能,而且对其孔径、孔隙率、比表面积等物理性能也有一定的要求,而这些物理性能与多孔支架的制备工艺密切相关。本文对组织工程用聚合物多孔支架的制备方法进行了较为全面的回顾,包括纤维粘结法、粒子致孔法、熔融成型法、气体发泡法、相分离法、烧结微球法和快速成型等方法。每种方法各有其优缺点,将多种方法结合,制备出同时具有复杂外形和规则的相连孔结构是组织工程多孔支架制备技术研发的方向。  相似文献   

2.
背景:软骨组织工程支架作为软骨细胞外基质的替代物,其外形和孔结构对实现其作用和功能具有非常重要的意义。 目的:回顾目前若干种常用软骨组织工程中三维多孔支架的制备方法。 方法:由第一作者检索2000至2013年PubMed数据库,ELSEVIER SCIENCEDIRECT、万方数据库、中国知网数据库。英文检索词为“Cartilage tissue engineering;scaffolds;fabrication”,中文检索词为“软骨组织工程;制备方法;支架材料;多孔支架”。 结果与结论:制备软骨组织工程支架的方法有相分离/冷冻干燥法、水凝胶技术、快速成型技术、静电纺丝法、溶剂浇铸/粒子沥滤法及气体发泡法等。目前研究发现,支架中孔径的大小对组织的重建有着直接的影响,孔径为100-250 μm的孔有益于骨及软骨组织的再生。通过溶液浇铸/粒子沥滤法、气体发泡法所制备的支架孔径大小在这一范围内,因此比较适合用于骨、软骨组织工程支架的构建。研究人员通常将多种方法结合起来,以期能制备出生物和力学性能方面更加仿生的组织工程多孔支架。中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程全文链接:  相似文献   

3.
支架是组织工程的关键要素之一。在肌肉组织工程中,多孔支架具备独特的优势,包括利于细胞的存活、成肌分化及血管长入等,应用潜力巨大。多孔支架的性能与材料的性质密切相关,此外支架的孔径大小及孔隙率等直接影响细胞黏附、增殖与分化。本文就肌肉组织工程中常用多孔支架的种类、应用及优势等作一综述。  相似文献   

4.
背景:低温快速成型技术具有支架成型可控性、保持材料生物学活性和易于实现支架材料的三维多孔立体结构等优势,被迅速用于骨组织工程支架的制备。 目的:采用低温快速成型制备聚乙二醇改性聚乳酸-乙醇酸/纳米羟基磷灰石复合支架,并检测其性能。 方法:采用低温快速成型设备分别制备聚乙二醇改性聚乳酸-乙醇酸/纳米羟基磷灰石与聚乳酸-乙醇酸/纳米羟基磷灰石复合支架,通过电镜观察支架超微结构,以介质(乙醇)浸泡法测定支架孔隙率,采用电子试验机检测支架力学性能;将两种支架材料分别与大鼠成骨细胞共培养,培养12 h采用沉淀法检测细胞黏附率,培养1,3,5,7,9,12 d采用CCK-8法检测细胞增殖。 结果与结论:两组支架孔径均在理想范围内并具有较高孔隙率,但聚乙二醇改性聚乳酸-乙醇酸/纳米羟基磷灰石支架的孔径波动范围大,孔径均值较聚乳酸-乙醇酸/纳米羟基磷灰石支架小且部分有闭塞现象。聚乙二醇改性聚乳酸-乙醇酸/纳米羟基磷灰石支架的细胞黏附率及表面细胞增殖活性高于聚乳酸-乙醇酸/纳米羟基磷灰石支架(P < 0.05),力学性能低于聚乳酸-乙醇酸/纳米羟基磷灰石支架(P < 0.05)。表明聚乙二醇改性聚乳酸-乙醇酸/纳米羟基磷灰石复合支架具有良好的细胞相容性。中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程全文链接:  相似文献   

5.
背景:以明胶为基体制备的组织工程支架材料具有良好的生物相容性和生物降解性能,但存在力学性能低,降解速率难以控制的缺陷。 目的:制备一种软骨组织工程支架材料多孔聚乙烯醇/明胶复合物,并检测其理化性能和生物相容性。 方法:采用乳化发泡法制备聚乙烯醇/明胶多孔支架,并通过电镜分析、力学测试、皮下植入实验,检测材料孔径和孔隙率、IR光谱、力学性能和生物相容性。 结果与结论:多孔材料内部呈三维网状多孔结构,孔径均匀,有相似的孔隙率61.8%,含水率44.6%,抗拉强度为(5.01±0.03) MPa,抗压强度为(1.47±0.36) MPa,有较好的力学性能,IR光谱分析表明材料内部结构均匀。皮下植入后,炎症反应逐渐减轻,囊壁逐渐变薄,并趋于稳定,提示多孔聚乙烯醇/明胶支架材料具有较好的生物相容性和力学性能。  相似文献   

6.
背景:制备具有细胞识别信号的细胞外基质替代材料及仿生支架是目前组织工程支架材料研究的重点和热点。 目的:制备并筛选出能够满足构建骨-软骨复合组织要求的多孔三维支架,并评价其生物学性能。 方法:制备胶原-壳聚糖、明胶-硫酸软骨素-透明质酸钠、胶原-陶瓷化骨、明胶-陶瓷化骨支架材料,以新鲜关节为对照组。 结果与结论:胶原-壳聚糖支架孔径50-200 μm,孔隙率(90.5±2.1)%;明胶-硫酸软骨素-透明质酸钠支架孔径100- 150 μm,孔隙率(78.0±1.1)%;胶原-陶瓷化骨支架孔径400-500 μm,孔隙率(67.5±2.1)%;明胶-陶瓷化骨支架孔径300-400 μm,孔隙率(65.9±1.2)%。明胶-硫酸软骨素-透明质酸钠与明胶-陶瓷化骨支架基本符合实验要求,其结构与生物化学成分近似于自然细胞外基质,能够模拟细胞外微环境。说明明胶-硫酸软骨素-透明质酸钠与明胶-陶瓷化骨支架可作为复合组织的支架。  相似文献   

7.
目的 考察振荡流动以及三维支架孔径和孔隙率对生物反应器内流速和剪切力分布的影响,并根据理论计算结果为脱细胞骨三维支架和灌注式生物反应器制备提出优化方法。方法 针对实验室前期制备的骨组织工程用脱细胞骨三维支架和灌注式生物反应器,将脱细胞骨三维支架简化为各向同性的多孔介质,对生物反应器内的流速和剪切力分布进行理论建模。结果 振荡流作用时,多孔支架材料内速度和达西剪切力呈现一致的变化规律,不同半径处流速和达西剪切力差异减小,有利于在骨组织工程中对种子细胞进行均匀三维培养。提高入口灌流速度可提高平均达西剪切力;增加多孔支架孔径或孔隙率对支架内流速峰值影响不大,但会显著降低平均达西剪切力;提高入口振荡流动振荡频率可降低支架内流速最大峰值,显著减小不同半径处流速的差异。结论 适宜的振荡流易产生利于骨组织工程干细胞所需剪切力,研究结果有望为优化骨组织工程中种子细胞的三维培养方法提供理论指导。  相似文献   

8.
快速成形技术在骨组织工程领域的应用进展   总被引:4,自引:0,他引:4  
在骨组织工程中 ,具有高孔隙率的人工细胞外基质或支架是骨组织细胞 (成骨细胞、破骨细胞和骨细胞 )黏附、增殖、分化和骨组织的形成必不可少的条件 ,传统的支架材料由于缺乏应有的机械强度、相互连通的孔道和可控的孔隙率或通道尺度而缺乏实际应用价值 ,因此寻找理想的支架材料是目前骨组织工程研究的热点之一 ,本文对目前正在不断发展的快速成形技术在骨组织丁程中的应用现状进行了综述。  相似文献   

9.
背景:已有很多实验证明,单独高分子材料或生物性材料制备的组织工程支架无法满足组织工程研究。 目的:评价羟基丁酸-羟基辛酸聚合物/胶原组织工程支架的生物学特性及细胞亲和性。 方法:以羟基丁酸-羟基辛酸聚合物作为主体材料,按质量分数复合不同比例(2%,4%,6%,8%,10%)的胶原,采用溶剂浇铸-颗粒沥滤法制备组织工程支架。通过扫描电镜观察材料内部结构及孔径大小,液体位移法测定材料孔隙率。将羟基丁酸-羟基辛酸聚合物/胶原支架、羟基丁酸-羟基辛酸聚合物支架分别与兔软骨细胞复合培养,MTT法测定细胞的生长曲线,扫描电镜观察细胞在材料上的生长黏附情况。 结果与结论:羟基丁酸-羟基辛酸聚合物/胶原复合软骨组织工程支架孔径大小200 μm左右,孔隙率为(85±2)%,细胞亲水性随加入胶原比例的增加而升高。与羟基丁酸-羟基辛酸聚合物支架比较,不同比例的羟基丁酸-羟基辛酸聚合物/胶原支架可明显促进软骨细胞的黏附、增殖。证实羟基丁酸-羟基辛酸聚合物/胶原复合支架具备更好的细胞亲和性。中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程全文链接:  相似文献   

10.
背景:通过适当的工艺混合、加工来制备复合支架材料,可以弥补单一材料的不足,最大限度地满足组织工程的需要。 目的:制备壳聚糖/磷酸三钙复合支架,探讨其作为牙髓组织工程支架材料的可行性。 方法:壳聚糖粉末溶于微量冰醋酸溶液中,搅拌均匀,静置脱泡,预冷冻,交联,再次冷冻制成海绵状多孔壳聚糖/磷酸三钙支架。 结果与结论:冻干法制备的壳聚糖/磷酸三钙多孔支架平均孔隙率达85.78%,最高孔隙率达90%以上,孔径在100~300 μm,复合后的支架材料具有良好的韧性,当轴向压缩变形量超过5 mm时,材料仍然没有发生破坏。材料浸提液与牙髓细胞复合培养后,细胞毒性均为0级,由此可见壳聚糖/磷酸三钙复合材料具有良好的生物相容性、细胞亲和性和一定的力学性能,满足生物材料基本要求。  相似文献   

11.
Current strategies of tissue engineering are focused on the reconstruction and regeneration of damaged or deformed tissues by grafting of cells with scaffolds and biomolecules. Recently, much interest is given to scaffolds which are based on mimic the extracellular matrix that have induced the formation of new tissues. To return functionality of the organ, the presence of a scaffold is essential as a matrix for cell colonization, migration, growth, differentiation and extracellular matrix deposition, until the tissues are totally restored or regenerated. A wide variety of approaches has been developed either in scaffold materials and production procedures or cell sources and cultivation techniques to regenerate the tissues/organs in tissue engineering applications. This study has been conducted to present an overview of the different scaffold fabrication techniques such as solvent casting and particulate leaching, electrospinning, emulsion freeze-drying, thermally induced phase separation, melt molding and rapid prototyping with their properties, limitations, theoretical principles and their prospective in tailoring appropriate micro-nanostructures for tissue regeneration applications. This review also includes discussion on recent works done in the field of tissue engineering.  相似文献   

12.
Integrating novel technologies to fabricate smart scaffolds   总被引:1,自引:0,他引:1  
Tissue engineering aims at restoring or regenerating a damaged tissue by combining cells, derived from a patient biopsy, with a 3D porous matrix functioning as a scaffold. After isolation and eventual in vitro expansion, cells are seeded on the 3D scaffolds and implanted directly or at a later stage in the patient's body. 3D scaffolds need to satisfy a number of requirements: (i) biocompatibility, (ii) biodegradability and/or bioresorbability, (iii) suitable mechanical properties, (iv) adequate physicochemical properties to direct cell-material interactions matching the tissue to be replaced and (v) ease in regaining the original shape of the damaged tissue and the integration with the surrounding environment. Still, it appears to be a challenge to satisfy all the aforementioned requisites with the biomaterials and the scaffold fabrication technologies nowadays available. 3D scaffolds can be fabricated with various techniques, among which rapid prototyping and electrospinning seem to be the most promising. Rapid prototyping technologies allow manufacturing scaffolds with a controlled, completely accessible pore network--determinant for nutrient supply and diffusion--in a CAD/CAM fashion. Electrospinning (ESP) allows mimicking the extracellular matrix (ECM) environment of the cells and can provide fibrous scaffolds with instructive surface properties to direct cell faith into the proper lineage. Yet, these fabrication methods have some disadvantages if considered alone. This review aims at summarizing conventional and novel scaffold fabrication techniques and the biomaterials used for tissue engineering and drug-delivery applications. A new trend seems to emerge in the field of scaffold design where different scaffolds fabrication technologies and different biomaterials are combined to provide cells with mechanical, physicochemical and biological cues at the macro-, micro- and nano-scale. If merged together, these integrated technologies may lead to the generation of a new set of 3D scaffolds that satisfies all of the scaffolds' requirements for tissue-engineering applications and may contribute to their success in a long-term scenario.  相似文献   

13.
At present there is a strong need for suitable scaffolds that meet the requirements for bone tissue engineering applications. The objective of this study was to investigate the suitability of porous scaffolds based on a hydroxyl functionalized polymer, poly(hydroxymethylglycolide-co-ε-caprolactone) (pHMGCL), for tissue engineering. In a recent study this polymer was shown to be a promising material for bone regeneration. The scaffolds consisting of pHMGCL or poly(ε-caprolactone) (PCL) were produced by means of a rapid prototyping technique (three-dimensional plotting) and were shown to have a high porosity and an interconnected pore structure. The thermal and mechanical properties of both scaffolds were investigated and human mesenchymal stem cells were seeded onto the scaffolds to evaluate the cell attachment properties, as well as cell viability and differentiation. It was shown that the cells filled the pores of the pHMGCL scaffold within 7 days and displayed increased metabolic activity when compared with cells cultured in PCL scaffolds. Importantly, pHMGCL scaffolds supported osteogenic differentiation. Therefore, scaffolds based on pHMGCL are promising templates for bone tissue engineering applications.  相似文献   

14.
Vozzi G  Flaim C  Ahluwalia A  Bhatia S 《Biomaterials》2003,24(14):2533-2540
Construction of biodegradable, three-dimensional scaffolds for tissue engineering has been previously described using a variety of molding and rapid prototyping techniques. In this study, we report and compare two methods for fabricating poly(DL-lactide-co-glycolide) (PLGA) scaffolds with feature sizes of approximately 10-30 microm. The first technique, the pressure assisted microsyringe, is based on the use of a microsyringe that utilizes a computer-controlled, three-axis micropositioner, which allows the control of motor speeds and position. A PLGA solution is deposited from the needle of a syringe by the application of a constant pressure of 20-300 mm Hg, resulting in a controlled polymer deposition. The second technique is based on 'soft lithographic' approaches that utilize a poly(dimethylsiloxane) mold. Three variations of the second technique are presented: polymer casting, microfluidic perfusion, and spin coating. Polymer concentration, solvent composition, and mold dimensions influenced the resulting scaffolds as evaluated by light and electron microscopy. As a proof-of-concept for scaffold utility in tissue engineering applications, multilayer structures were formed by thermal lamination, and scaffolds were rendered porous by particulate leaching. These simple methods for forming PLGA scaffolds with microscale features may serve as useful tools to explore structure/function relationships in tissue engineering.  相似文献   

15.
背景:快速成型是基于材料堆积法,结合计算机、数控、激光和材料技术于一体的高新制造技术。 目的:综述快速成型技术在组织工程支架制备中的应用。 方法:由第一作者检索万方数据库、中国知网数据库和Elsevier Science Direct Online有关支架材料的生物力学性能、支架材料发展前景及快速成型技术在支架材料制备领域中应用研究等方面的文献。 结果与结论:快速成型技术应用于组织工程支架的制备已经越来越成熟,快速成型技术不但克服了传统制造方法中存在的支架复杂外形制造困难和内部微结构无法控制的缺陷,而且还可以通过有限元分析预先对支架的结构进行优化,以实现改善支架机械强度等某些特殊的要求。但是,由于组织器官的特殊性和排外性及细胞的黏附条件,不但要从结构上改善支架,而且需要快速成型技术与具有组织相容性及可降解的材料相结合,使支架植入生物体后,细胞能更好地增殖和分化,促进组织再生,修复缺损组织。  相似文献   

16.
Kim SS  Sun Park M  Jeon O  Yong Choi C  Kim BS 《Biomaterials》2006,27(8):1399-1409
Biodegradable polymer/bioceramic composite scaffolds can overcome the limitations of conventional ceramic bone substitutes such as brittleness and difficulty in shaping. However, conventional methods for fabricating polymer/bioceramic composite scaffolds often use organic solvents (e.g., the solvent casting and particulate leaching (SC/PL) method), which might be harmful to cells or tissues. Furthermore, the polymer solutions may coat the ceramics and hinder their exposure to the scaffold surface, which may decrease the likelihood that the seeded osteogenic cells will make contact with the bioactive ceramics. In this study, a novel method for fabricating a polymer/nano-bioceramic composite scaffold with high exposure of the bioceramics to the scaffold surface was developed for efficient bone tissue engineering. Poly(D,L-lactic-co-glycolic acid)/nano-hydroxyapatite (PLGA/HA) composite scaffolds were fabricated by the gas forming and particulate leaching (GF/PL) method without the use of organic solvents. The GF/PL method exposed HA nanoparticles at the scaffold surface significantly more than the conventional SC/PL method does. The GF/PL scaffolds showed interconnected porous structures without a skin layer and exhibited superior enhanced mechanical properties to those of scaffolds fabricated by the SC/PL method. Both types of scaffolds were seeded with rat calvarial osteoblasts and cultured in vitro or were subcutaneously implanted into athymic mice for eight weeks. The GF/PL scaffolds exhibited significantly higher cell growth, alkaline phosphatase activity, and mineralization compared to the SC/PL scaffolds in vitro. Histological analyses and calcium content quantification of the regenerated tissues five and eight weeks after implantation showed that bone formation was more extensive on the GF/PL scaffolds than on the SC/PL scaffolds. Compared to the SC/PL scaffolds, the enhanced bone formation on the GF/PL scaffolds may have resulted from the higher exposure of HA nanoparticles at the scaffold surface, which allowed for direct contact with the transplanted cells and stimulated the cell proliferation and osteogenic differentiation. These results show that the biodegradable polymer/bioceramic composite scaffolds fabricated by the novel GF/PL method enhance bone regeneration compared with those fabricated by the conventional SC/PL method.  相似文献   

17.
Despite their indisputable clinical value, current tissue engineering strategies face major challenges in recapitulating the natural nano-structural and morphological features of native bone. The aim of this study is to take a step forward by developing a porous scaffold with appropriate mechanical strength and controllable surface roughness for bone repair. This was accomplished by homogenous dispersion of carbon nanotubes (CNTs) in a poly(lactide-co-glycolide) (PLGA) solution followed by a solvent casting/particulate leaching scaffold fabrication. Our results demonstrated that CNT/PLGA composite scaffolds possessed a significantly higher mechanical strength as compared to PLGA scaffolds. The incorporation of CNTs led to an enhanced surface roughness and resulted in an increase in the attachment and proliferation of MC3T3-E1 osteoblasts. Most interestingly, the in vitro osteogenesis studies demonstrated a significantly higher rate of differentiation on CNT/PLGA scaffolds compared to the control PLGA group. These results all together demonstrate the potential of CNT/PLGA scaffolds for bone tissue engineering as they possess the combined effects of mechanical strength and osteogenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号