首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modifications by atherosclerosis of endothelium-dependent and -independent relaxations were evaluated in carotid arteries isolated from Watanabe heritable hyperlipidemic (WHHL; age 20-29 months) and age-matched Japanese white (JW) rabbits. Marked, patchy atherosclerotic lesions were observed in all WHHL rabbit arteries. Endothelium-dependent relaxations induced by acetylcholine, partly depressed by N(G)-nitro-L-arginine (L-NA), were significantly inhibited in the WHHL rabbit arteries with atherosclerosis, compared with those in the arteries without atherosclerotic lesions from JW and WHHL rabbits. No difference was observed in the relaxation caused by superoxide dismutase in these arteries. Conversely, endothelium-dependent relaxations by substance P were greater in the arteries with and without atherosclerosis from WHHL rabbits than in the arteries from JW rabbits. Endothelium-independent relaxations elicited by sodium nitroprusside and 2,2-(hydroxynitrosohydrazino)bis-ethanamine (NOC18) did not differ in the arteries from JW and WHHL rabbits. The responses to acetylcholine and substance P of JW rabbit arteries with the endothelium were not attenuated by treatment with pertussis toxin. L-NA-resistant, endothelium-dependent relaxations by substance P were almost abolished by charybdotoxin, and atherosclerosis did not alter the response. It is concluded that endothelial functions, evaluated by substance P, in rabbit carotid arteries are not impaired by atherosclerosis and by long exposure to hyperlipidemia in vivo. Dysfunction of muscarinic receptors may be involved in the depressed response to acetylcholine. As far as the arteries used in the present study are concerned, responses mediated possibly by endothelium-derived hyperpolarizing factor (EDHF) are unlikely to be modulated by atherosclerosis.  相似文献   

2.
The isolated rat mesenteric vasculature was perfused at constant pressures of 40, 80 or 120 mm Hg and the change in flow rate was measured. In the presence of phenylephrine, treatment with 3-[(3-cholamidopropyl) dimethylammonio]-1-propane sulfonate (CHAPS) or N(G)-nitro-L-arginine (L-NA) significantly inhibited the pressure-dependent flow rate increase, but treatment with indomethacin or charybdotoxin plus apamin did not. Acetylcholine, bradykinin and ADP increased the flow rate, which had been markedly suppressed by CHAPS. At 80 mm Hg, the flow rate increase induced by these agonists was not affected by indomethacin plus L-NA, but was suppressed by subsequent treatment with charybdotoxin plus apamin. Changes in the perfusion pressure did not significantly affect the flow rate increases induced by the agonists. In conclusion, the opening of charybdotoxin plus apamin-sensitive Ca(2+)-dependent K(+) channels may be mainly involved in the endothelium-dependent flow rate increase induced by the agonists, whereas nitric oxide (NO) may be responsible for the endothelium-dependent, pressure-induced flow rate increase.  相似文献   

3.
Acetylcholine caused an endothelium-dependent relaxation in isolated rabbit mesenteric small artery in the presence of nitro L-arginine and indomethacin. The acetylcholine-induced relaxation was attenuated by high K(+) solution, suggesting that the response is mediated by a membrane potential-sensitive mechanism, presumably an endothelium-derived hyperpolarizing factor. The acetylcholine-induced relaxation was also inhibited with tetraethylammonium, 4-aminopyridine and charybdotoxin, but not with Ba(2+), apamin, iberiotoxin nor glibenclamide. The relaxation was abolished by a combination of apamin and charybdotoxin, but iberiotoxin could not replace charybdotoxin in this combination. The responses to charybdotoxin and 4-aminopyridine were synergistic but neither apamin nor iberiotoxin increased the effect of 4-aminopyridine. Clotrimazole and proadifen inhibited the acetylcholine-induced relaxation, but these drugs also inhibited the cromakalim-induced relaxation, while protoporphyrin IX inhibited the acetylcholine- but not cromakalim-induced relaxation. 17-Octadecynoic acid and 1-aminobenzotriazole did not affect the response to acetylcholine. Four regioisomers of epoxyeicosatrienoic acids did not relax endothelium-denuded artery. A gap junction inhibitor 18alpha-glycyrrhetinic acid attenuated the relaxation to acetylcholine. It is suggested that in rabbit mesenteric artery, the acetylcholine-induced, nitric oxide- and prostacyclin-independent relaxation is mainly mediated by 4-aminopyridine- and charybdotoxin-sensitive K(+) channels and that the relaxation is not mediated through cytochrome P450 enzyme metabolites. The contribution of heterocellular gap junctional communication to the relaxation is discussed.  相似文献   

4.
(1) Gamma radiation impairs vascular function, leading to the depression of endothelium-dependent vasodilatation. Loss of the nitric oxide (NO) pathway has been implicated, but little is known about radiation effects on other endothelial mediators. (2) This study investigated the mechanisms of endothelial dysfunction in rabbits subjected to whole-body irradiation from a cobalt(60) source. (3) The endothelium-dependent relaxation of rabbit aorta evoked by acetylcholine (ACh) or A23187 was impaired in a dose-dependent manner by irradiation at 2 Gy or above. Inhibition was evident 9 days post-irradiation and persisted over the 30 day experimental period. (4) Endothelium-independent responses to glyceryl trinitrate (GTN), sodium nitroprusside (SNP) and 3-morpholino-sydnonimine (SIN-1) were suppressed over a similar dose range at 7-9 days post-irradiation, but recovered fully by 30 days post-irradiation. (5) In healthy vessels, ACh-induced relaxation was inhibited by L-N(omega)-nitroarginine (L-NA; 3 x 10(-4) M) and charybdotoxin (10(-8) M) plus apamin (10(-6) M) but resistant to indomethacin, indicating the involvement of NO and endothelium-derived hyperpolarizing factor (EDHF). Supporting this, ACh caused smooth muscle hyperpolarization that was reduced by L-NA and charybdotoxin plus apamin. (6) In irradiated vessels, responses to ACh were insensitive to L-NA but abolished by charybdotoxin plus apamin, indicating selective loss of NO-mediated relaxation. (7) In animals treated shortly after irradiation with the antioxidant, alpha-tocopherol acetate, the NO-dependent relaxation was restored without effect on the EDHF-dependent component. (8) The results imply that radiation selectively impairs the NO pathway as a consequence of oxidative stress, while EDHF is able to maintain endothelium-dependent relaxation at a reduced level.  相似文献   

5.
BACKGROUND AND PURPOSE: In the setting of nitrate tolerance, endothelium-dependent relaxation is reduced in several types of peripheral vessels. However, it is unknown whether chronic in vivo administration of nitroglycerine modulates such relaxation in cerebral arteries. EXPERIMENTAL APPROACH: Isometric force and smooth muscle cell membrane potential were measured in endothelium-intact strips from rabbit middle cerebral artery (MCA) and posterior cerebral artery (PCA). KEY RESULTS: ACh (0.1-10 microM) concentration-dependently induced endothelium-dependent relaxation during the contraction induced by histamine in both MCA and PCA. Chronic (10 days) in vivo administration of nitroglycerine reduced the ACh-induced relaxation in PCA but not in MCA, in the presence of the cyclooxygenase inhibitor diclofenac (3 microM). In the presence of the NO-synthase inhibitor N (omega)-nitro-L-arginine (L-NNA, 0.1 mM) plus diclofenac, in MCA from both nitroglycerine-untreated control and -treated rabbits, ACh (0.1-10 microM) induced a smooth muscle cell hyperpolarization and relaxation, and these were blocked by the small-conductance Ca(2+)-activated K(+)-channel inhibitor apamin (0.1 microM), but not by the large- and intermediate-conductance Ca(2+)-activated K(+)-channel inhibitor charybdotoxin (0.1 microM). In contrast, in PCA, ACh (<3 microM) induced neither hyperpolarization nor relaxation under these conditions, suggesting that the endothelium-derived relaxing factor is NO in PCA, whereas endothelium-derived hyperpolarizing factor (EDHF) plays a significant role in MCA. CONCLUSIONS AND IMPLICATIONS: It is suggested that in rabbit cerebral arteries, the function of the endothelium-derived relaxing factor NO and that of EDHF may be modulated differently by chronic in vivo administration of nitroglycerine.  相似文献   

6.
We compared mechanical responses to uridine-5′triphosphate (UTP) and 2-(methylthio)adenosine-5′diphosphate (2MeSADP) of cerebral arteries isolated from dogs and monkeys. In the dog, UTP induced endothelium-independent contraction, whereas 2MeSADP induced endothelium-dependent relaxation that was abolished by NG-nitro-l-arginine (l-NA). In the monkey, both UTP and 2MeSADP induced endothelium-dependent relaxation.l-NA largely inhibited the UTP-induced relaxation whereas it partially inhibited the 2MeSADP-induced relaxation, and both remaining relaxations were abolished by charybdotoxin plus apamin. In conclusion, dog and monkey cerebral arteries respond differentially to UTP and similarly to 2MeSADP; however, involvement of endothelium-derived relaxing factor in the endothelium-dependent relaxation by 2MeSADP is quite different between the two species.  相似文献   

7.
BACKGROUND AND PURPOSE: C-type natriuretic peptide (CNP) has been proposed to make a fundamental contribution in arterial endothelium-dependent hyperpolarization to acetylcholine. The present study was designed to address this hypothesis in the guinea-pig carotid artery. EXPERIMENTAL APPROACH: The membrane potential of vascular smooth muscle cells was recorded in isolated arteries with intracellular microelectrodes. KEY RESULTS: Acetylcholine induced endothelium-dependent hyperpolarizations in the presence or absence of N (G)-nitro-L-arginine, indomethacin and/or thiorphan, inhibitors of NO-synthases, cyclooxygenases or neutral endopeptidase, respectively. Acetycholine hyperpolarized smooth muscle cells in resting arteries and produced repolarizations in phenylephrine-stimulated arteries. CNP produced hyperpolarizations with variable amplitude. They were observed only in the presence of inhibitors of NO-synthases and cyclooxygenases and were endothelium-independent, maintained in phenylephrine-depolarized carotid arteries, and not affected by the additional presence of thiorphan. In arteries with endothelium, the hyperpolarizations produced by CNP were always significantly smaller than those induced by acetylcholine. Upon repeated administration, a significant tachyphylaxis of the hyperpolarizing effect of CNP was observed, while consecutive administration of acetycholine produced sustained responses. The hyperpolarizations evoked by acetylcholine were abolished by the combination of apamin plus charybdotoxin, but unaffected by glibenclamide or tertiapin. In contrast, CNP-induced hyperpolarizations were abolished by glibenclamide and unaffected by the combination of apamin plus charybdotoxin. CONCLUSIONS AND IMPLICATIONS: In the isolated carotid artery of the guinea-pig, CNP activates K(ATP) and is a weak hyperpolarizing agent. In this artery, the contribution of CNP to EDHF-mediated responses is unlikely.  相似文献   

8.
1. Experiments were performed to identify the potassium channels involved in the acetylcholine-induced endothelium-dependent hyperpolarization of the guinea-pig internal carotid artery. Smooth muscle and endothelial cell membrane potentials were recorded in isolated arteries with intracellular microelectrodes. Potassium currents were recorded in freshly-dissociated smooth muscle cells using patch clamp techniques. 2. In single myocytes, iberiotoxin (0.1 microM)-, charybdotoxin (0.1 microM)-, apamin (0.5 microM)- and 4-aminopyridine (5 mM)-sensitive potassium currents were identified indicating the presence of large- and small-conductance calcium-sensitive potassium channels (BK(Ca) and SK(Ca)) as well as voltage-dependent potassium channels (K(V)). Charybdotoxin and iberiotoxin inhibited the same population of BK(Ca) but a conductance specifically sensitive to the combination of charybdotoxin plus apamin could not be detected. 4-aminopyridine (0. 1 - 25 mM) induced a concentration-dependent inhibition of K(V) without affecting the iberiotoxin- or the apamin-sensitive currents. 3. In isolated arteries, both the endothelium-dependent hyperpolarization of smooth muscle and the hyperpolarization of endothelial cells induced by acetylcholine or by substance P were inhibited by 5 mM 4-aminopyridine. 4. These results indicate that in the vascular smooth muscle cells of the guinea-pig carotid artery, a conductance specifically sensitive to the combination of charybdotoxin plus apamin could not be detected, comforting the hypothesis that the combination of these two toxins should act on the endothelial cells. Furthermore, the inhibition by 4-aminopyridine of both smooth muscle and endothelial hyperpolarizations, suggests that in order to observe an endothelium-dependent hyperpolarization of the vascular smooth muscle cells, the activation of endothelial potassium channels is likely to be required.  相似文献   

9.
1. In the presence of indomethacin (IM, 10 microM) and N omega-nitro-L- arginine (L-NOARG, 0.3 mM), acetylcholine (ACh) induces an endothelium-dependent smooth muscle hyperpolarization and relaxation in the rat isolated hepatic artery. The potassium (K) channel inhibitors, tetrabutylammonium (TBA, 1 mM) and to a lesser extent 4-aminopyridine (4-AP, 1 mM) inhibited the L-NOARG/IM-resistant relaxation induced by ACh, whereas apamin (0.1-0.3 microM), charybdotoxin (0.1-0.3 microM), iberiotoxin (0.1 microM) and dendrotoxin (0.1 microM) each had no effect. TBA also inhibited the relaxation induced by the receptor-independent endothelial cell activator, A23187. 2. When combined, apamin (0.1 microM) + charybdotoxin (0.1 microM), but not apamin (0.1 microM) + iberiotoxin (0.1 microM) or a triple combination of 4-AP (1 mM) + apamin (0.1 microM) + iberiotoxin (0.1 microM), inhibited the L-NOARG/IM-resistant relaxation induced by ACh. At a concentration of 0.3 microM, apamin + charybdotoxin completely inhibited the relaxation. This toxin combination also abolished the L-NOARG/ IM-resistant relaxation induced by A23187. 3. In the absence of L-NOARG, TBA (1 mM) inhibited the ACh-induced relaxation, whereas charybdotoxin (0.3 microM) + apamin (0.3 microM) had no effect, indicating that the toxin combination did not interfere with the L-arginine/NO pathway. 4. The gap junction inhibitors halothane (2 mM) and 1-heptanol (2 mM), or replacement of NaCl with sodium propionate did not affect the L-NOARG/IM-resistant relaxation induced by ACh. 5. Inhibition of Na+/K(+)-ATPase by ouabain (1 mM) had no effect on the L-NOARG/IM-resistant relaxation induced by ACh. Exposure to a K(+)-free Krebs solution, however, reduced the maximal relaxation by 13% without affecting the sensitivity to ACh. 6. The results suggest that the L-NOARG/IM-resistant relaxation induced by ACh in the rat hepatic artery is mediated by activation of K-channels sensitive to TBA and a combination of apamin + charybdotoxin. Chloride channels, Na+/K(+)-ATPase and gap junctions are probably not involved in the response. It is proposed that endothelial cell activation induces secretion of an endothelium-derived hyperpolarizing factor(s) (EDHF), distinct from NO and cyclo-oxygenase products, which activates more than one type of K-channel on the smooth muscle cells. Alternatively, a single type of K-channel, to which both apamin and charybdotoxin must bind for inhibition to occur, may be the target for EDHF.  相似文献   

10.
The mechanisms of K(+)-induced relaxation and of acetylcholine (ACh)-stimulated, endothelium-dependent relaxation were assessed in rat femoral arteries mounted in a myograph. ACh-stimulated (1 nM-1 microM) relaxation of arteries precontracted with 1 microM noradrenaline was mostly resistant to the combination of indomethacin (INDO; 10 microM) and N(omega)-nitro-L-arginine (L-NNA, 100 microM). The remaining relaxation was abolished by 30 mM K(+) or ouabain (1 mM) and significantly reduced by 30 microM Ba(2+) or charybdotoxin (ChTx; 100 nM) plus apamin (100 nM). K(+)-induced relaxation effected by raising [K(+)](o) by 0.5-4 mM was endothelium-independent and inhibited by ouabain and Ba(2+). These results indicate that ACh-stimulated relaxations are effected mainly by a non-prostanoid, non-nitric oxide mechanism, presumably an endothelium-derived hyperpolarising factor (EDHF). Relaxations stimulated by EDHF and K(+) are both mediated by Na(+)-K(+) ATPase and inward rectifier potassium channels (K(IR)). This study provides further functional evidence that EDHF is K(+) derived from endothelial cells that relaxes arterial smooth muscle subsequent to activation of Na(+)-K(+) ATPase and K(IR).  相似文献   

11.
1. We investigated whether K(+) can act as an endothelium-derived hyperpolarizing factor (EDHF) in isolated small renal arteries of Wistar-Kyoto rats. 2. Acetylcholine (0.001 - 3 microM) caused relaxations that were abolished by removal of the endothelium. However, acetylcholine-induced relaxations were not affected by the nitric oxide (NO) synthase inhibitor N:(omega)-nitro-L-arginine methyl ester (L-NAME, 100 microM), by L-NAME plus the soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, 1 microM) or by L-NAME plus the cyclo-oxygenase inhibitor indomethacin (10 microM). In rings precontracted with high-K(+)(60 mM) physiological salt solution in the presence of L-NAME, acetylcholine-induced relaxations were abolished. 3. L-NAME-resistant relaxations were abolished by the large-conductance Ca(2+)-activated K(+) channel inhibitor charybdotoxin plus the small-conductance Ca(2+)-activated K(+) channel inhibitor apamin, while the inward rectifier K(+) channel inhibitor Ba(2+) or the gap junction inhibitor 18alpha-glycyrrhetinic acid had no effect. Acetylcholine-induced relaxation was unchanged by ouabain (10 microM) but was partially inhibited by a higher concentration (100 microM). 4. In half of the tissues tested, K(+)(10 mM) itself produced L-NAME-resistant relaxations that were blocked by ouabain (10 microM) and partially reduced by charybdotoxin plus apamin, but not affected by 18alpha-glycyrrhetinic acid or Ba(2+). However, K(+) did not induce relaxations in endothelium-denuded tissues. 5. In conclusion, acetylcholine-induced relaxations in this tissue are largely dependent upon hyperpolarization mechanisms that are initiated in the endothelium but do not depend upon NO release. K(+) release cannot account for endothelium-dependent relaxation and cannot be an EDHF in this artery. However, K(+) itself can initiate endothelium-dependent relaxations via a different pathway from acetylcholine, but the mechanisms of K(+)-induced relaxations remain to be clarified.  相似文献   

12.
1. In rat isolated renal artery segments contracted with 0.1 microM phenylephrine and in the presence of the NO synthase inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME), carbachol and acetylcholine produced endothelium-dependent relaxations. The mechanisms underlying these relaxations were studied. 2. These relaxations were not affected by ODQ (1H-[1,2,4]oxadiazolo[4,3, -a]quinoxalin-1-one) or indomethacin. In arteries contracted with 20 - 30 mM K(+), L-NAME-resistant relaxations induced by carbachol and acetylcholine were virtually absent. 3. The Na(+)-K(+) ATPase inhibitor ouabain reduced these relaxations in a concentration-dependent manner. 4. In K(+)-free media, addition of K(+) (5 mM) produced 90. 5+/-3.9% (n=3) relaxation of phenylephrine-induced tone. This relaxation was endothelium-independent and ouabain-sensitive. 5. Tetraethylammonium (TEA), charybdotoxin (ChTX) and iberiotoxin (IbTX) reduced the sensitivity of carbachol-induced relaxations, but did not change the maximal response. These relaxations were not altered by 4-aminopyridine (4-AP), glibenclamide or apamin. Acetylcholine (1 microM)-induced relaxation was reduced by ChTX, but not by TEA or IbTX. 6. The cytochrome P450 inhibitor miconazole, but not 17-octadecynoic acid, reduced the sensitivity of carbachol-induced relaxations, without changing the maximal response. 7. In conclusion, in rat isolated renal arteries, acetylcholine and carbachol produced a non-NO/non-PGI(2) relaxation which is mediated by an endothelium-derived hyperpolarizing factor (EDHF). This factor does not appear to be a cytochrome P450 metabolite. The inhibition by ouabain of these relaxations suggests the possible involvement of Na(+)-K(+) ATPase activation in EDHF responses, although other mechanisms cannot be totally ruled out.  相似文献   

13.
Longitudinal conduction of endothelium-dependent vasodilatation is mediated by intercellular spread of hyperpolarization via gap junctions along the endothelium. If similar electrical signals from the endothelium conduct around the circumference of arteries via smooth muscle cells, then, both longitudinal and circumferential spread of such signals would make it possible for a wide annulus of a large blood vessel like an epicardial coronary artery to dilate to local stimuli. To examine this in vitro, we developed a dual-chambered organ bath in which both membrane potential and force are independently determined in endothelium-intact and -denuded regions of a single annulus of artery. Hyperpolarizations and relaxations to endothelium-dependent vasodilators like bradykinin (BK) and substance P in smooth muscle cells immediately beneath the local endothelium-intact region (local responses) are conducted via smooth muscle cells around the circumference of the artery. The local relaxation was partially inhibited by the nitric oxide synthase inhibitor, N(G)-nitro-L-arginine (L-NOARG), and subsequently abolished by further treatment with a combination of two characteristic inhibitors of endothelium-dependent hyperpolarization-the Ca2+ -activated potassium channel (KCa) channel inhibitors, apamin and charybdotoxin. The conducted hyperpolarizations and relaxations to BK were unaffected by L-NOARG, but were abolished by apamin and charybdotoxin. In conclusion, these studies demonstrate for the first time that NO acts only as a local vasodilator, whereas endothelium-dependent hyperpolarization (EDH) causes local and remote vasodilatation in large coronary arteries. We propose that such a remote EDH-dependent signalling mechanism compensates for the loss of the local NO-dependent vasodilatation in diseased arteries.  相似文献   

14.
1 We have evaluated the participation of endothelium-derived hyperpolarizing factor (EDHF) in the endothelium-dependent relaxation of isolated human penile resistance arteries (HPRA) and human corpus cavernosum (HCC) strips. In addition, the effect of the angioprotective agent, calcium dobesilate (DOBE), on the endothelium-dependent relaxation of these tissues was investigated. 2 Combined inhibition of nitric oxide synthase (NOS) and cyclooxygenase (COX) nearly abolished the endothelium-dependent relaxation to acetylcholine (ACh) in HCC, while 60% relaxation of HPRA was observed under these conditions. Endothelium-dependent relaxation of HPRA resistant to NOS and COX inhibition was prevented by raising the extracellular concentration of K(+) (35 mM) or by blocking Ca(2)(+)-activated K(+) channels, with apamin (APA; 100 nM) and charybdotoxin (CTX; 100 nM), suggesting the involvement of EDHF in these responses. 3 Endothelium-dependent relaxation to ACh was markedly enhanced by DOBE (10 micro M) in HPRA but not in HCC. The potentiating effects of DOBE on ACh-induced responses in HPRA, remained after NOS and COX inhibition, were reduced by inhibition of cytochrome P450 oxygenase with miconazole (0.3 mM) and were abolished by high K(+) or a combination of APA and CTX. 4 In vivo, DOBE (10 mg kg(-1) i.v.) significantly potentiated the erectile responses to cavernosal nerve stimulation in male rats. 5 EDHF plays an important role in the endothelium-dependent relaxation of HPRA but not in HCC. DOBE significantly improves endothelium-dependent relaxation of HPRA mediated by EDHF and potentiates erectile responses in vivo. Thus, EDHF becomes a new therapeutic target for the treatment of erectile dysfunction (ED) and DOBE could be considered a candidate for oral therapy for ED.  相似文献   

15.
The nature of the potassium channels involved in determining endothelium-derived hyperpolarizing factor-mediated relaxation was investigated in first-order small mesenteric arteries from male endothelial nitric oxide synthase (eNOS-/-)-knockout and control (+/+) mice. Acetylcholine-induced endothelium-dependent relaxation of small mesenteric arteries of eNOS-/- was resistant to N-nitro-L-arginine and indomethacin and the guanylyl cyclase inhibitor, 1H-(1,2,4) oxadiazolo (4,3-a) quinoxalin-1-one. Apamin and the combination of apamin and iberiotoxin or apamin and charybdotoxin induced a transient endothelium-dependent contraction of small mesenteric arteries from both eNOS-/- and +/+ mice. Acetylcholine-induced relaxation in eNOS-/- mice was unaffected by charybdotoxin or apamin alone but significantly inhibited by the combination of these agents. However, the combination of scyllatoxin and iberiotoxin did not mimic the inhibitory effect of the apamin/charybdotoxin combination. Tubocurarine alone completely blocked acetylcholine-induced relaxation in eNOS-/- mice. Single channel analysis of myocytes from small mesenteric arterioles revealed a large conductance calcium-activated potassium channel that was sensitive to iberiotoxin, charybdotoxin, and tetraethylammonium. Tubocurarine blocked this channel from the cytosolic side but not when applied extracellularly. Solutions of nitric oxide (NO) gas also relaxed small mesenteric arteries that had been contracted with cirazoline in a concentration-dependent manner, and the sensitivity to NO was reduced by iberiotoxin and the combination of apamin, scyllatoxin, or tubocurarine with charybdotoxin but not by apamin, charybdotoxin, scyllatoxin, or tubocurarine alone. These data indicate that acetylcholine-induced endothelium-derived hyperpolarizing factor-mediated relaxation in small mesenteric arteries from eNOS-/- involved the activation of tubocurarine and apamin-/charybdotoxin-sensitive K-channels. In eNOS+/+ mice, the acetylcholine-induced response was primarily mediated by NO and was sensitive to iberiotoxin and the combination of apamin and charybdotoxin.  相似文献   

16.
This study was designed to determine whether putative openers of calcium-activated potassium channels of small and/or intermediate conductance (SKCa and IKCa) induce vascular smooth muscle hyperpolarizations and to identify the underlying mechanisms. The membrane potential of guinea pig carotid artery smooth muscle cells was recorded with intracellular microelectrodes in the presence of N ω-nitro-l-arginine and indomethacin. Acetylcholine and NS-309 produced endothelium-dependent hyperpolarizations. The effects of acetylcholine were partially and significantly inhibited by apamin. The combinations of charybdotoxin plus apamin and TRAM-34 plus apamin markedly and significantly reduced these hyperpolarizations. 1-ethyl-2-benzimidazolinone (1-EBIO) induced hyperpolarizations that were unaffected by TRAM-34 but partially inhibited by charybdotoxin, apamin, TRAM-34 plus apamin, and charybdotoxin plus apamin. Riluzole produced only marginal hyperpolarizations. Therefore, in the guinea pig carotid artery, endothelium-dependent hyperpolarization to acetylcholine involves the activation of both SKCa and IKCa, with a predominant role for the former channel. 1-EBIO is a non-selective and weak opener of SKCa, while riluzole is virtually ineffective. By contrast, NS-309 is a reasonably potent and selective opener of both SKCa and IKCa, and this compound mimics the endothelium-dependent hyperpolarizations to acetylcholine.  相似文献   

17.
It is widely established that in rat mesenteric arteries, endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxation evoked by acetylcholine is abolished by a combination of charybdotoxin plus apamin. 4-Aminopyridine, an inhibitor of voltage-gated (Kv) K(+)-channels, in combination with apamin had moderate effects on the EDHF-mediated relaxation. Maurotoxin (MTX), an inhibitor of Kv and intermediate-conductance Ca(2+)-activated K(+)-channels (IK), had no effect on EDHF-mediated relaxation. However, MTX in combination with apamin completely abolished EDHF-mediated relaxation and endothelial cell hyperpolarization. The selective IK inhibitor 2-(2-chlorophenyl)-2,2-diphenyl acetonitrile (TRAM-39) had no significant effect on EDHF-mediated relaxation. EDHF-mediated vasorelaxation and hyperpolarization was abolished by a combination of TRAM-39 and apamin. These data demonstrate two new combinations of K(+)-channel inhibitors for the investigation of EDHF. Furthermore, by using TRAM-39, a potent selective inhibitor of IK channels, we provide the first direct evidence that abolition of EDHF requires the simultaneous presence of intermediate- and small-conductance Ca(2+)-activated K(+)-channel inhibitors.  相似文献   

18.
1 In cultured porcine coronary artery endothelial cells, we have recently shown that substance P and bradykinin stimulated different types of Ca(2+)-dependent K(+) (K(Ca)) current. A large part of this current was insensitive to iberiotoxin and apamin. The aim of the present study was to characterize the K(Ca) channel responsible for this current. 2 In cell-attached configuration and asymmetrical K(+) concentration, 100 nM bradykinin or substance P activated a 10 pS K(+) channel. In inside-out configuration, the channel was half-maximally activated by 795 nM free Ca(2+). 3 Apamin (1 micro M) added to the pipette solution failed to inhibit the channel activity while charybdotoxin (50 nM), completely blocked it. Perfusion at the intracellular face of the cell, of an opener of intermediate conductance K(Ca) channel, 500 micro M 1-ethyl-benzimidazolinone (1-EBIO) increased the channel activity by about 4.5 fold. 4 In whole-cell mode, bradykinin and substance P stimulated an outward K(+) current of similar amplitude. Charybdotoxin inhibited by 75% the bradykinin-induced current and by 80% the substance P-induced current. Charybdotoxin plus iberiotoxin (50 nM each) inhibited by 97% the bradykinin-response. Charybdotoxin plus apamin did not increase the inhibition of the substance P-response obtained in the presence of charybdotoxin alone. 5 1-EBIO activated a transient outward K(+) current and hyperpolarized the membrane potential by about 13 mV. Charybdotoxin reduced the hyperpolarization to about 3 mV. 6 Taken together these results show that bradykinin and substance P activate a 10 pS K(Ca) channel, which largely contributes to the total K(+) current activated by these agonists. Despite its small conductance, this channel shares pharmacological characteristics with intermediate conductance K(Ca) channels.  相似文献   

19.
Experiments were designed to investigate the mechanisms underlying the diabetes-related impairment of the vasodilatations of the perfused mesenteric arterial bed induced by acetylcholine (ACh) and K(+). In streptozotocin (STZ)-diabetic rats, the ACh-induced endothelium-dependent vasodilatation was attenuated. The dose-response curves for ACh in control and diabetic rats were each shifted to the right by N(G)-nitro-L-arginine (L-NOARG) and by isotonic high K(+) (60 mM). The ACh dose-response curves under isotonic high K(+) were not different between control and diabetic rats. We also examined the vasodilatation induced by K(+), which is a putative endothelium-derived hyperpolarizing factor (EDHF). The mesenteric vasodilatation induced by a single administration of K(+) was greatly impaired in STZ-induced diabetic rats. Treatment with charybdotoxin plus apamin abolished the ACh-induced vasodilatation but enhanced the K(+)-induced response in controls and diabetic rats. After pretreatment with ouabain plus BaCl(2), the ACh-induced vasodilatation was significantly impaired and the K(+)-induced relaxation was abolished in both control and diabetic rats. The impairment of the endothelium-dependent vasodilatation of the mesenteric arterial bed seen in STZ-induced diabetic rats may be largely due to a defective vascular response to EDHF. It is further suggested that K(+) is one of the endothelium-derived hyperpolarizing factors and that the vasodilatation response to K(+) is impaired in the mesenteric arterial bed from diabetic rats.  相似文献   

20.
1. To investigate the mechanism underlying the trypsin-induced endothelium-dependent relaxation, cytosolic Ca(2+) concentration ([Ca(2+)](i)) and tension development of smooth muscle were simultaneously monitored in the porcine coronary artery, and [Ca(2+)](i) of in situ endothelial cells were monitored in the porcine aortic valvular strips, using fura-2 fluorometry. 2. During the contraction induced by 30 nM U46619, a thromboxane A(2) analogue, 100 nM trypsin induced a rapid transient significant decrease in both [Ca(2+)](i) (from 67.9+/-5.1 to 15.7+/-4.4%) and tension (from 97.5+/-9.2 to 16.8+/-3.5%) of smooth muscle only in the presence of endothelium (100% level was assigned to the level obtained with the 118 mM K(+)-induced contraction). [Ca(2+)](i) and the tension thus returned to the levels prior to the application of trypsin by 5 and 10 min, respectively. 3. The initial phase of this relaxation was partly inhibited by 100 microM N(omega)-nitro-L-arginine (L-NOARG), and was completely inhibited by L-NOARG plus 40 mM K(+) or L-NOARG plus 100 nM charybdotoxin and 100 nM apamin, while the late phase of the relaxation was inhibited by L-NOARG alone. 4. Trypsin induced a transient [Ca(2+)](i) elevation in the endothelial cells mainly due to the Ca(2+) release from the intracellular stores, at the concentrations (1 - 100 nM) similar to those required to induce relaxation. 5. In conclusion, trypsin induced an elevation in [Ca(2+)](i) mainly due to Ca(2+) release in endothelial cells, and thereby caused endothelium-dependent relaxation. The early phase of relaxation was due to nitric oxide and hyperpolarizing factors, while the late phase was mainly due to nitric oxide in the porcine coronary artery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号