首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Summary The effect of nicotine (1–10 M) and tacrine (9-amino-1,2,3,4-tetrahydroacridine; THA) on stimulation evoked release of [3H]acetylcholine from the rat brain slice preparation preincubated with [3H]choline was investigated.In these preparations, nicotine enhanced while tacrine inhibited evoked [3H]acetylcholine release. These effects were blocked by (+)tubocurarine (1 M) and atropine (0.1 M) respectively. In the presence of idazoxan (0.3 M) plus atropine (0.1 M), nicotine (3 M) continued to enhance evoked [3H]acetylcholine release while the inhibitory effect of tacrine (1 M) on evoked [3H]acetylcholine release was reversed to an enhancement. Under these circumstances the effects of both nicotine and tacrine were blocked by (+)tubocurarine (1 M).These findings demonstrate that tacrine can both inhibit or enhance [3H]acetylcholine release, most likely through its activity as a cholinesterase inhibitor. Under normal circumstances following tacrine the predominant effect of the elevated levels of acetylcholine will be activation of inhibitory presynaptic muscarine receptors on cholinergic nerves and an inhibition of evoked [3H]acetylcholine release. Under conditions where both presynaptic inhibitory muscarine and 2-adrenoceptors are blocked, the elevated levels of acetylcholine produced by tacrine will lead to the activation of facilitatory presynaptic nicotine cholinoceptors on cholinergic nerves and an enhancement of evoked [3H]acetylcholine release. Send offprint requests to R. Loiacono at the above address  相似文献   

2.
Summary Rat hippocampal synaptosomes preloaded with [3H]serotonin and maintained in a superfusion apparatus were exposed for 3 min to d-fenfluramine or fluoxetine. Both drugs evoked a tritium overflow which was reserpine-sensitive requiring the presence of intact synaptic vesicles. However the two drugs displayed different characteristics: 1) the overflow was immediate with dfenfluramine whereas the releasing activity of fluoxetine showed a delay of about 2 min; 2) d-fenfluramine-induced overflow was already apparent at 0.15 mol/l whereas the minimal effective concentration of fluoxetine was 2.5 mol/l. Their concentration-effect curves were differently shaped, the effect of d-fenfluramine being saturable at 5–20 mol/l (EC50 about 1 gmol/l) while no saturation was observed with fluoxetine up to 10 mol/l; 3) only 1907o of the tritium overflow evoked by fluoxetine (2.5–10 mol/l) consisted of true [3H]serotonin, compared with 7001o when 0.5 mol/l d-fenfluramine was used; 4) the releasing action of 0.5 mol/l d-fenfluramine was completely Ca++-dependent, while at higher dfenfluramine concentrations the Ca++-independent overflow became more important. The fluoxetine induced overflow was mainly. (70010) Ca++-independent; 5) the releasing acitvity of d-fenfluramine was mainly (80%) blocked by the serotonin uptake blockers indalpine, midalcipram and also fluoxetine whereas fluoxetine-induced overflow was insensitive to inhibition of the serotonin carrier.In conclusion, the releasing activity of d-fenfluramine is already present at a very low concentration (0.5 mol/l) and at this concentration its mechanism of action was Ca++-dependent, together with the requirement of a functional serotonin carrier. These data therefore do not support the hypothesis of a simple. displacement of 5-HT from its storage vesicles but suggest an exocytotic release possibly triggered by interaction of d-fenfluramine with intracellular receptors. A direct releasing activity is also shown for fluoxetine, very marked at 5–10 mol/l; such effect is different from that of d-fenfluramine and is probably due to the overflow of 5-hydroxyindoleacetic acid, formed in the synaptosomes after the fluoxetine-induced displacement of serotonin from its storage vesicles. The active concentrations of fluoxetine on serotonin release are compatible with those found in rat brain at doses inducing an anorectic activity. Send offprint requests to M. Gobbi at the above address  相似文献   

3.
We have compared the effect of treating rat striatal cell membranes with ionic hydrophilic sulfhydryl reagents on the specific bindings of [3H]cocaine and of [3H]GBR 12783 (1-[2-(diphenylmethoxy)ethyl]4-(3-phenyl-2-[1-3H]propenyl)-piperazine) to the neuronal transporter of dopamine. Treatment with 1 mmol/1 5,5-dithiobis(2-nitrobenzoic acid) (DTNB) resulted in similar time-and concentration-dependent reductions of the specific binding of both radioligands. None of the uptake blockers tested afforded any protection against 1 mmol/1 DTNB. Addition of (sub)millimolar concentrations of CaCl2 or MgCl2, or 250 mmol/1 KCl to a treatment medium containing 10 mmol/l Na + significantly increased the DTNB-induced reduction of the specific binding of both radioligands. Cations were likely to be responsible for this effect since ions in combination with DTNB induced similar reductions in binding when either 1 mmol/l CaCl2 or 50–250 mmol/l NaCl were added. Effects of cations on the DTNB-induced inhibition of binding were generally more marked on [3H]GBR 12783 than on [3H]cocaine binding. When added to a medium containing 10 mmol/1 Na+ 1 mmol/1 DTNB induced a reduction in the Bmax of the specific binding of both radioligands. Addition of 1 mmol/l Ca2+ maintained or increased this Bmax reduction and elicited a decrease in affinity which was significant for [3H]GBR 12783 binding.Treatment of membranes with the sodium salt of p-hydroxymercurybenzenesulfonate (pHMBS) induced time-and concentration-dependent decreases in [3H]GBR 12783 binding which were significantly greater than decreases in [3H]cocaine binding. However, 50mol/lpHMBS produced a similar decrease in the Bmax of the specific binding of both radioligands. The pHMBS-induced reduction of [3H]GBR 12783 binding was not reversed by drugs whose action is purely that of uptake inhibition or by substrates of the dopamine carrier. Some of these drugs (100 mol/l dopamine, 1 mol/l mazindol or 100 mol/l cocaine) protected the specific binding of [3H]cocaine against the effects of pHMBS, whereas 1 mmol/1 p-tyramine, 10 mol/l nomifensine and 10 nmol/l GBR 12783 were ineffective. Addition of 120 mmol/l Na+, 1 mmol/l Ca2+ or 10 mmol/l Mg2+ to a treatment medium containing 10 mmol/l Na+ significantly reduced the effects of pHMBS on the specific binding of both radioligands. When striatal cell membranes were treated in a medium containing 130 mmol/1 Na+, there was a general decrease in the effects of ions on the reductions of specific binding produced by DTNB or pHMBS. Cation concentrations which interfered with the actions of DTNB and pHMBS were approximately those which blocked the specific binding of [3H]GBR 12783 when they were present during association of the radioligand (K+, Ca 2+, Mg2+), or, in the case of Na+, which are effective in reducing this blockade (Bonnet et al. 1988).The present data are consistent with the existence of mutually exclusive binding sites for [3H]GBR and [3H]cocaine on the neuronal dopamine transporter. The hypothesis of a cation recognition site which could gate admission of uptake inhibitors or carrier substrates to their binding domain on the transporter is discussed.  相似文献   

4.
Summary The involvement of N- and L-type voltage-dependent Ca channels (VDCCs) in adrenergic neurotransmission under the superfusion with 0.25 mM Ca2+ + 20 mM tetraethylammonium (low Ca2+ + TEA) medium has been studied by examining the effects of -conotoxin GVIA (-CTX) and dihydropyridine antagonists and agonist on transmural nerve stimulation (TNS)-evoked 3H overflow from canine saphenous veins preloaded with [3H]-noradrenaline. Nisoldipine (10 and 30 M) and nifedipine (30 M) reduced significantly the TNS-evoked 3H overflow in low Ca2+ + TEA medium, while the two dihydropyridine antagonists failed to suppress it in normal Krebs medium. Bay K 8644 (30 and 100 nM) produced a significant and concentration-dependent enhancement of the TNS-evoked 3H overflow in low Ca2+ + TEA medium. The enhancing effects of Bay K 8644 were antagonized by both 3 M nisoldipine and 10 tM nifedipine. -CTX inhibited markedly the TNS-evoked 3H overflow in both normal Krebs and low Ca2+ + TEA media, the inhibition by -CTX being ten times more potent in low Ca2+ + TEA medium. Nisoldipine (30 M), when combined with 1 nM -CTX, produced a further significant inhibition of the TNS-evoked 3H overflow in low Ca2+ + TEA medium. However, no additional inhibition by 30 M nisoldipine was observed when -CTX concentration was raised to 2 nM. In the veins superfused with normal Krebs medium, nisoldipine (30 M) did not affect the inhibitory effect of 10 nM -CTX on the evoked 3H overflow. The low Ca2+ + TEA medium increased the spontaneous 3H overflow, which was not influenced by -CTX and dihydropyridines. These results suggest that in low Ca2+ + TEA medium but not normal Krebs one, Ca2+ entry via both N- and L-type VDCCs may be involved in adrenergic neurotransmission in the canine saphenous veins. Correspondence to Y. Takata at the above address  相似文献   

5.
Endplate preparations of the rat left hemidiaphragm were incubated with [3H]choline to label neuronal transmitter stores. Nerve evoked release of newly-synthesized [3H]acetylcholine was measured in the absence of cholinesterase inhibitors to investigate whether snake venom neurotoxins by blocking presynaptic nicotinic autoreceptors affect evoked transmitter release. Contractions of the indirectly stimulated hemidiaphragm were recorded to characterize the blocking effect of -neurotoxins at the postsynaptic nicotinic receptors.Neither the long chain neurotoxins -cobratoxin (1 g ml–1) and -bungarotoxin (5 g ml–1) nor the short chain neurotoxin erabutoxin-b (0.1, 1 and 10 gml–1) affected the nerve-evoked release of [3H]acetylcholine. -Bungarotoxin (1 and 5 g ml–1), a toxin preferentially blocking neuronal nicotinic receptors, did also not affect evoked [3H]acetylcholine release, whereas (+)-tubocurarine (1 M) under identical conditions reduced the release by about 50%. -Bungarotoxin, -cobratoxin and erabutoxin-b concentration-dependently (0.01–0.6 g ml–1)inhibited nerve-evoked contractions of the hemidiaphragm. All neurotoxins except erabutoxin-b enhanced the basal tritium efflux immediately when applied to the endplate preparation or to a non-innervated muscle strip labelled with [3H]choline. This effect was attributed to an enhanced efflux of [3H]phosphorylcholine, whereas the efflux of [3H]choline and [3H]acetylcholine was not affected.It is concluded that the -neurotoxins and -bungarotoxin do not block presynaptic nicotinic receptors of motor nerves. These nicotinic autoreceptors differ from nicotinic receptors localized at the muscle membrane and at autonomic ganglia.  相似文献   

6.
Summary Effects of ATP, adenosine and purinoceptor antagonists on field stimulation-evoked (3 Hz, 2 min) [3H]-noradrenaline overflow were investigated in the rat isolated iris.ATP and adenosine inhibited the evoked overflow of [3H]-noradrenaline. 1,3-Dipropyl-8-cyclopentylxanthine (DPCPX) shifted the concentration-response curve of ATP to the right in a concentration-dependent manner, but with a potency (–log KB = 7.88) much lower than expected for an A1 adenosine receptor. In the continuous presence of DPCPX, the ATP-induced prejunctional inhibition was unaffected by suramin (100 mol/l) and DIDS (4,4-diisothiocyanatostilbene-2,2-disulfonic acid, 50 mol/l) but was antagonized by the P2Y-receptor antagonist cibacron blue ( = reactive blue 2;30 and 100 mol/l, –log KB = 4.7)and ,-methylene-ATP (10 mol/l). Whereas the evoked [3H]-noradrenaline overflow was unaffected by suramin and DIDS, cibacron blue and ,-methylene-ATP caused a small and transient increase. Cibacron blue at 30 mol/l failed to antagonize the inhibition of evoked [3H]-noradrenaline overflow that adenosine produced in the absence of DPCPX. Basal [3H]-noradrenaline overflow was enhanced by cibacron blue, not changed by ,-methylene-ATP and DIDS, and decreased by suramin.The results show that exogenous ATP inhibits sympathetic neurotransmission in the rat iris via A1 and P2Y-like purinoceptors. The latter have a low apparent affinity for cibacron blue and probably are blocked by ,-methylene-ATP. Under the present conditions, endogenous purines exert a tonic inhibition not only via A1- but also via these P2Y-receptors. Correspondence to: H. Fuder at the above address  相似文献   

7.
Summary The objective of this study was to explore the role of 5-HT3 receptors in modulating potassium (K+)-evoked release of [3H]-acetylcholine ([3H]-ACh) from superfused slices of rat entorhinal cortex previously loaded with [3H]-choline. Rat entorhinal cortices were cross-chopped into 300 m slices, superfused with oxygenated Krebs buffer containing 2.5 mmol/1 Ca2+ and stimulated with two consecutive exposures of 20 mmol/l K+ for 4 min (S1 and S2, respectively). Compounds were added 20 min before S2 stimulation and remained in the superfusion buffer for the duration of the experiment. The S2/S1 ratio was then calculated.Stimulated release of [3H]-ACh was dependent on extracellular Ca2+ and K+ concentration. In Sprague Dawley rats, 2-methyl-5-HT (10-9–10-6 mol/l), in the presence of 1 mol/l ritanserin or 1 gmmol/l ondansetron, had no influence on K+-evoked release of [3H]-ACh. In slices prepared from Hooded Lister rats, 2 mol/l 5-HT but not 2-Me-5-HT significantly (P<0.05) inhibited K+-evoked [3H]-ACh release only 17% in the presence of 1 mol/l ritanserin. However, 2 mol/l 2-Me-5-HT plus 1 nmol/l ondansetron had no effect. High performance liquid chromatography coupled to electrochemical detection (HPLC-ECD) was used to monitor endogenous release of ACh in the above conditions to confirm data from the radiolabelled experiments. No significant inhibition or increase in K+-evoked ACh release was observed with either 5-HT3 receptor agonists or antagonists. 2-Me-5-HT (10–9 – 10–5 mol/l) or 1-(m-chlorophenyl)-biguanide (10–9 – 10–5 mol/l), when added simultaneously at the S2 stimulation, in the presence of 1 l/l methysergide, also showed no effect on [3H]ACh release.In entorhinal cortex slices from aged Wistar rats, neither 1-(m-chlorophenyl)-biguanide (2 or 10 ol/l) nor 2-Me-5-HT (2 mol/l) in combination with ritanserin (1 mol/l) or ondansetron (1 nmol/l) elicited any effect on K+-evoked [3H]-ACh release. However, release of [3H]-ACh was inhibited by carbachol (10 mol/l) and adenosine (10 mol/l). DuP 996 (3,3-bis(4- pyridinyl-methyl)-1-phenylindolin-2-one) (10–7 – 10–5 mol/l), a known releaser of ACh, markedly augmented K+-evoked [3H]-ACh release.These studies have failed to confirm the postulated role of 5-HT3 receptors in modulating cortical ACh release in rat entorhinal cortex slices and suggest that a critical reexamination of the interaction of 5-HT3 receptor and cortical cholinergic function needs to be addressed.Abbreviations 5-HT serotonin - ACh acetylcholine - HPLC-ECD high performance liquid chromatography - electrical chemical detection - EGTA ethylene glycol bis(-aminoethyl ether)-N,N-tetraacetic acid - 2-ME-5-HT 2-methyl-5-hydroxytryptamine - DuP 996 (3,3-bis(4pyrindinylmethyl)-1-phenylindolin-2-one) A preliminary report of this work was presented at the 1992 Federation of American Societies for Experimental Biology, April 6–9, Anaheim, California, USA (The FASEB J 6A1559) Correspondence to R. M. Johnson at the above address  相似文献   

8.
Summary Neuronal transmitter stores of the rat phrenic nerve were labelled by incubation with [3H]choline. Release of [3H]acetylcholine was elicited by electrical nerve stimulation (100 or 1500 pulses, 5 or 25 Hz) or by high potassium (27 mmol/l) and the effects of the muscarine receptor agonist oxotremorine and the antagonist scopolamine were investigated. Neither oxotremorine nor scopolamine affected the basal tritium efflux. A low concentration of oxotremorine (10 nmol/l) enhanced and a high concentration of oxotremorine (1 ol/l) reduced the electrically evoked [3H]acetylcholine release. Likewise, the high potassium-evoked [3H]acetylcholine release was reduced by a high concentration of oxotremorine. Both effects of oxotremorine, increase and decrease, were abolished by a pretreatment (30 min before the first stimulation period) with 0.1 mol/l scopolamine. Scopolamine (0.1 ol/l) alone, enhanced [3H]acetylcholine release evoked by 100 pulses (5 Hz) or by high potassium. Scopolamine, however, reduced [3H]acetylcholine release evoked by 1500 pulses (5 Hz or 25 Hz). The concentration-response curves obtained for scopolamine under these latter stimulation conditions were flat-running and biphasic which might indicate the involvement of two opposite effects (increase and decrease) of scopolamine under the present stimulation conditions. Both effects of scopolamine were reduced in the presence of 10 gmol/l neostigmine. It is concluded that muscarine receptors are present within the endplate region of motor nerves. Transmitter release from motor nerves appears to be regulated by two muscarinic feedback mechanisms. The negatively operating system is activated during short stimulation periods and the positively operating system becomes additionally apparent during long stimulation periods. Blockade of cholinesterase can hide presynaptic muscarinic mechanisms on motor nerves. Send offprint requests to I. Wessler at the above address  相似文献   

9.
Summary Intracerebroventricularly administered neurotensin and [Gln4]-neurotensin (50–200 g) increased the formation of Dopa in different brain regions of rats after inhibition of the aromatic l-amino acid decarboxylase. For both neuropeptides these increases were dose dependent (20–150%). In the corpus striatum [Gln4]-neurotensin was twice as active as neurotensin and it tended to be more active also in other brain regions. The brain tyrosine concentrations were also increased. [Gln4]-neurotensin (100–200 g) following inhibition of the aromatic l-amino acid decarboxylase, increased the accumulation of 5-hydroxytryptophan in all brain regions by 30–60%. In contrast, neurotensin was completely inactive. In both cases the brain tryptophan concentrations were increased. Both neurotensin and [Gln4]-neurotensin also accelerated the disappearance of dopamine, noradrenaline and 5-hydroxytryptamine after inhibition of monoamine synthesis. These results show an increased brain monoamine turnover induced by both neuropeptides.  相似文献   

10.
Summary The modulation of the depolarization induced release of [3H]-acetylcholine by agonists acting on -adrenoceptors was studied in superfused rat atrial slices. In this model, noradrenaline and methoxamine, but not UK 14304 reduced the potassium evoked release of [3H]-acetylcholine. The inhibitory action of these drugs was antagonized by the 1 selective adrenoceptor antagonist prazosin. Propranolol, idazoxan and sulpiride did not antagonize the inhibition by noradrenaline of the potassium-evoked release of [3H]-acetylcholine. Exposure to amphetamine, -phenylethylamine, m- or p-tyramine, increased in a concentration-dependent manner the spontaneous outflow of [3H]-noradrenaline from atrial slices. Yet, these concentrations of the indirectly acting sympathomimetic amines, tested in the presence of an inhibitor of monoamine oxidase (MAO), failed to modify the potassium evoked release of [3H]-acetylcholine. Desipramine 3 mol/l or cocaine 10 mol/l did not affect the release of [3H]-acetylcholine evoked by potassium stimulation. Under similar experimental conditions, -phenylethylamine facilitated the spontaneous outflow of [3H]-noradrenaline, and inhibited the electrically-evoked release of [3H]-serotonin from the hippocampus by activation of 2-adrenoceptors. It is concluded that the release of acetylcholine from atrial cholinergic neurons can be modulated through inhibitory 1-adrenoceptors, which are not activated when the release of noradrenaline is induced by indirectly acting sympathomimetic amines. In addition, amphetamine or structurally related amines do not activate directly recognition sites in the cholinergic postganglionic parasympathetic neuron to modify the release of [3H-acetylcholine.  相似文献   

11.
Summary Four groups of narcotic analgesic drugs have been assessed for their opiate activities by using three binding assays and three pharmacological bioassays. In the binding assays, their inhibition constants (K I, nM) were determined against the binding of the -ligand, [3H]-[d-Ala 2 ,MePhe 4 , Gly-ol5]enkephalin, of the -ligand, [3H]-[d-Ala 2 ,d-Leu 5]enkephalin and of the -ligand, [3H]-(±)-ethylketazocine after suppression of - and -binding by 100 nM of the unlabelled -ligand and 100 nM of the unlabelled -ligand. The pharmacological agonist or antagonist activities were assayed on the guinea-pig ileum, mouse vas deferens and rat vas deferens.The first group of compounds were pure agonists in all three pharmacological bioassays. The majority of the compounds showed preference to -binding but phenazocine and particularly etorphine had also high affinities to the - and -binding sites.The second group consisted of N-allyl and N-cyclopropylmethyl homologues of the morphine, 3-hydroxymorphinan and normetazocine series which had agonist and antagonist activities in the guinea-pig ileum and mouse vas deferens but were pure antagonists in the rat vas deferens. In the binding assays, -binding and -binding were prominent.The third group was made up by the ketazocine-like compounds which in the guinea-pig ileum and mouse vas deferens were pure agonists and in the rat vas deferens pure antagonists. The binding spectrum showed particularly high binding to the -binding site.The fourth group was the antagonists which were devoid of agonist activity with the exception of diprenorphine and Mr 2266 which had retained some agonism. The binding spectrum showed considerable variation, naloxone in low concentration being a selective -antagonist, Mr 2266 having high affinities to the - and -binding sites and diprenorphine having considerable affinities to the -, - and -binding sites.Since each of the four groups of compounds, whether pure agonists, agonist-antagonists, ketazocine-like drugs or pure antagonists, shows independent varittions in the affinities to the - and -binding sites, their different pharmacological behaviour cannot be solely due to difference in the binding spectra.  相似文献   

12.
Summary The effects of (±)N-allyl-normetazocine on the release of acetylcholine from different areas of guinea-pig and rat brain were investigated. 1. The drug did not modify the electrically (2 Hz) evoked tritium efflux from guinea-pig cerebral cortex, thalamus and caudate nucleus slices, preloaded with 3H-choline 0.1 mol/l and superfused with Krebs solution containing hemicholinium-3 10 mol/l. 2. (±)N-allyl-normetazocine 10 mol/l. enhanced the evoked 3H efflux from guinea-pig brain slices superfused with Krebs solution containing physostigmine 30 mol/l or oxotremorine 0.3 -1 gmol/l; the effect was naloxone-insensitive and was abolished by atropine 0.15 mol/l, but not by pirenzepine 1 mol/l. 3. (±)N-allyl-normetazocine 5 mol/l enhanced the electrically evoked release of endogenous acetylcholine as well, in a naloxone-insensitive way. 4. Both (±) and (+)N-allyl-normetazocine were without effect on 3H efflux from rat caudate nucleus slices electrically stimulated at 0.2 Hz frequency, after preloading with 3H-choline and during superfusion with hemicholinium-3. 5. The results are discussed in view of the antimuscarinic properties of the drug. Send offprint requests to A. Siniscalchi  相似文献   

13.
Summary In pontine slices of the rat brain, the frequency of spontaneous action potentials of locus coeruleus (LC) neurones was recorded extracellularly. Noradrenaline 0.1–100 mol/l, UK 14,304 0.01–100 nmol/l, [Met5]-enkephalin 1–10,000 nmol/l and [D-Ala2, D-Leu5]enkephalin 0.1–1,000 nmol/l, all depressed the firing rate. Rauwolscine 1 mol/l antagonized the effects of both noradrenaline and UK 14,304, but potentiated the effects of [Met']enkephalin and [D-Ala2, D-Leu5]enkephalin. Idazoxan 1 mol/l acted in a similar manner. Prazosin 1 mol/l did not change the effects of either noradrenaline or [Met5]enkephalin. Naloxone 0.1 mol/l antagonized both [Met']enkephalin and [D-Ala2, D-Leu5]enkephalin, but failed to alter the effects of either noradrenaline or UK 14,304. Rauwolscine, idazoxan and prazosin, all 1 mol/l, as well as naloxone 0.1 mol/l, did not influence the firing rate when given alone. Desipramine 1 mol/l inhibited the discharge of action potentials in a rauwolscine-antagonizable manner. Noradrenaline 10 mol/l produced the same depression of firing, both in the presence of noradrenaline 1 mol/l and [Met5]enkephalin 0.03 mol/l. Likewise, the effect of [Met5]enkephalin 0.3 mol/l was the same, irrespective of whether it was added to a medium containing [Met5]enkephalin 0.03 mol/l or noradrenaline 1 mol/l. The spontaneous activity of LC neurones is inhibited by somatic 2-adrenoceptors and opioid -receptors. We suggest that the two receptors interact with each other at a site located between themselves and not in the subsequent common signal transduction system.Send offprint requests to: P. Illes at the above address  相似文献   

14.
The action of the A2a-adenosine analogue, CGS 21680C, on electrically evoked [3H]acetylcholine ([3H]-ACh) release, and its interaction with forskolin (an activator of adenylate cyclase), MDL 12,330A (an irreversible inhibitor of adenylate cyclase), rolipram (an inhibitor of cyclic AMP specific phosphodiesterase), dibutyryl- (db-cAMP) and 8-bromo- (8-Br-cAMP) cyclic AMP analogues (substances that mimic intracellular actions of cyclic AMP), were investigated using rat phrenic nerve-hemidiaphragm preparations.CGS 21680C facilitated [3H]ACh release. Forskolin (but not 1,9-dideoxy forskolin), rolipram, db-cAMP and 8-Br-cAMP also increased evoked neurotransmitter release in a concentration-dependent manner. When the evoked [3H]-ACh release that is dependent on stimulation of the adenylate cyclase/cyclic AMP transduction system was supramaximally stimulated by these compounds, CGS 21680 C (3 mol/l) could not further increase [3H]-ACh release. Phosphodiesterase inhibition with low concentrations ( 30 mol/l) of rolipram significantly potentiated the augmenting effect of CGS 21680C (1 mol/l) on evoked [3H]ACh release. MDL 12,330A (an irreversible inhibitor of adenylate cyclase) decreased evoked [3H]-ACh release. The irreversible blocking action of MDL 12,330A on [3H]-ACh release was overcome by by-passing cyclase activation with db-cAMP and 8-Br-cAMP, but could not be overcome with FSK or CGS 21680 C. The inhibitory effect of MDL 12,330A on evoked [3H]-ACh release was not mimicked by nifedipine.It is concluded that the increase in [3H]-ACh release caused by CGS 21680C results from activation of an A2a-adenosine receptor positively linked to the adenylate cyclase/cyclic AMP system.  相似文献   

15.
Summary On the basis of saturation binding studies on rat cardiac microsomes, which contained a mixed population of -adrenoceptor subtypes, [3H]CGP-12177 is presumed to be a non-selective -adrenergic radioligand. However, saturation binding studies carried out in the presence of subtype-saturating concentrations of the 2-selective antagonist ICI 118,551 and the 1-selective antagonist ICI 89,406, respectively, revealed a K D for 1-adrenoceptors of 0.33 ± 0.02 nmol/l and a K D for 2-adrenoceptors of 0.90 ± 0.14 nmol/l. Competition experiments with the highly selective antagonists revealed greatly different competition binding curves in the presence of either [3H]CGP-12177 or (–)[125I]iodocyanopindolol (ICYP), a -adrenergic radioligand considered to be as non-selective as [3H]CGP-12177. The following results are further suggestive for a selectivity of [3H]CGP-12177 for 1-adrenoceptors: (1) Using non-linear regression analysis, a significantly lower selectivity (expressed as the ratio of the IC50 for 2-adrenoceptors to the IC50 for 1-adrenoceptors) as well as a larger proportion of 1-adrenoceptors were calculated by competition of the 1-selective antagonist ICI 89,406 with [3H]CGP-12177 binding than by competition of ICI 89,406 with ICYP binding; (2) reducing the [3H]CGP-12177 concentration from 2 to 0.4 nmol/l, competition experiments with ICI 89,406 led to an increase in the estimated selectivity of the competitor and in the estimated proportion of 1-adrenoceptors; (3) reverse findings were obtained with ICI 118,551, a 2-selective antagonist. Theoretical competition data assuming a varying selectivity of the radioligand were generated using an equation which describes inhibition of the binding of a selective radioligand by a selective competing ligand. Analysis of these data by the model which assumes that the radioligand is entirely non-selective revealed a logarithmic relationship between the distortion of the true selectivity of the competing ligand and the degree of selectivity of the radioligand. For instance, the selectivity of ICI 89,406, estimated against [3H]CGP-12177 binding, was 23% of its selectivity estimated against ICYP binding. Hence, non-linear fits of competition curves with subtype-selective unlabeled ligands will result in serious distortion in the estimates of affinity of the competing ligands and in the size of subtype populations if [3H]CGP-12177 is considered entirely non-selective.Abbreviations and code names CGP (–)4-(3-t-butylamino-2-hydroxypropoxy)-benzimidazol-2-one - ICYP (–)[125I]-iodocyano-pindolol - ICI erythro-DL-1-(7-methylindane-4-yloxy)-3- isopropylaminobutanol - ICI 1-(2-cyanophenoxy)-3-(3-phenylureido)-ethylamino-2-propanol - HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - Gpp(NH)p guanylyl imidodiphosphate Send offprint requests to C. Nanoff  相似文献   

16.
Summary Present evidence for distinction of 2 types of opiate receptor sites in rat brain homogenates originates from different relative affinities of morphine-like alkaloids and enkephalins to -or enkephalin and - or morphine-receptor sites. We now report that Ca2+ in a physiological dose range (0.5–3 mM) enhances the binding of 3H-enkephalin in hypotonically treated rat brain membranes, whereas specific binding of 3H-morphine-like alkaloids is not affected. Furthermore, the potency of [d-Ala2, d-Leu5]-enkephalin to inhibit [3H]-diprenorphine and [3H]-ethylketazocine binding increased in the presence of Ca2+, whereas an increase in potency of [d-Ala2, d-Leu5]-enkephalin to inhibit binding of -receptor ligands was not observed. Kinetic analysis revealed that Ca2+ decreased the rate of dissociation of [d-Ala2, d-Leu5]-enkephalin without affecting the rate of association, thereby increasing the affinity. However, in saturation binding studies, performed in diencephalic membranes, in which [d-Ala2, d-Leu5]-enkephalin binds predominantly to -receptors, Ca2+ also increased the binding affinity of [3H]-[d-Ala2, d-Leu5]-enkephalin. Double reciprocal analysis suggested a mixed competitive-noncompetitive type of inhibition of [d-Ala2, d-Leu5]-enkephalin binding by dihydromorphine. Thus, the interactions of - and -opiate ligands with -receptors may involve topographically different, but closely related binding sites, located on a single receptor molecule.Abbreviations DADL [d-Ala2, d-Leu5]-enkephalin - DHM dihydromorphine - met-enkephalin methionine-enkephalin - leu-enkephalin leucine-enkephaline - FK 33-824 [d-Ala2, MePhe4, Met(O)-ol]-enkephalin - EGTA ethyleneglycol-bis-(-aminoethylether) N, N'-tetraacetic acid - TRIS Tris (hydroxymethyl)-aminomethan  相似文献   

17.
Summary The present study aimed at relating the presynaptic 2-adrenoceptors, known to modulate noradrenaline and serotonin release, with the recently described 2A- and 2B-adrenoceptor subtypes. The effects of the agonist oxymetazoline (selective for 2A subtype) and of three adrenoceptor antagonists (idazoxan, 1-(2-pyrimidinyl)piperazine (PmP) and prazosin, the last one known to be 2B selective) were evaluated on [3H]noradrenaline and [H]serotonin release in superfused synaptosomes from rat brain cortex. These drugs were also tested in [3H]yohimbine binding to human platelet membranes (containing only 2A receptors) and to neonatal rat lung membranes (containing only 2B receptors).The affinity pattern of these compounds at 2A-adrenoceptors in binding studies was oxymetazoline > = idazoxan > PmP > prazosin; at 2B-adrenoceptors it was idazoxan > = prazosin > PmP = oxymetazoline. Oxymetazoline inhibited with high and similar potencies the K+-evoked [3H]noradrenaline and [3H]serotonin release, IC50 18 and 7 nM, respectively; in the same conditions, the IC50 values of noradrenaline were 42 and 168 nM, respectively. The antagonist affinity pattern (antagonism against noradrenaline) was idazoxan > PmP > prazosin, either on [3H]serotonin release.These results indicate that presynaptic 2 auto- or heteroreceptors do not belong to the 2B subtype and suggest that the modulation of noradrenaline and serotonin release may be mediated by the 2A-adrenoceptor subtype. Send offprint requests to M. Gobbi at the above address  相似文献   

18.
Summary Isolated segments of the guinea-pig small intestine were vascularly perfused and the release of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) into the portal venous effluent determined by high pressure liquid chromatography with electrochemical detection. Release of acetylcholine from isolated superfused intestinal segments was determined as outflow of [3H]radioactivity from preparations preincubated with [3H]choline. Cisplatin (3 M) increased the outflow of 5-HT and 5-HIAA by about 90%. At 30 and 100 M cisplatin decreased the outflow of 5-HT and its metabolite by 40%–50%. The stimulatory effect of cisplatin was consistently observed only when the bicarbonate-phosphate buffer of the Tyrode's solution was replaced by HEPES-buffer. The stimulatory effect of cisplatin was abolished in the absence of extracellular calcium or presence of tetrodotoxin (1 M). The stimulatory effect of cisplatin was also prevented by hexamethonium (100 M) or scopolamine (100 nM). The 5-HT3 receptor antagonists ondansetron and ICS 205-930 in concentrations as low as 1 pM also abolished the stimulatory effect of cisplatin. The 5-HT3 receptor antagonist MDL 72222 prevented the stimulatory effect of cisplatin only at a concentration of 1 M. None of the 5-HT3 receptor antagonists alone significantly altered the outflow of 5-HT and 5-HIAA.Cisplatin (3 M) enhanced the outflow of [3H]radioactivity from intestinal segments and caused longitudinal muscle contractions that were abolished by 100 nM scopolamine.In conclusion, cisplatin, at concentrations which occur during anti-cancer therapy in humans and induce emesis, increases the release of 5-HT from the enterochromaffin cells of the small intestine of the guinea-pig. This effect of cisplatin is mediated by a cascade of events which involves release of acetylcholine and stimulation of 5-HT3 receptors. Send offprint requests to H. Schwörer at his present address  相似文献   

19.
Summary The components of Dictamnus dasycarpus Turcz were tested for their vasorelaxing effect on the rat aorta, and fraxinellone and dictamine were shown to be effective vasorelaxants. In high K+ (60 mmol/l) medium, Ca2+ (0.03 to 3 mmol/l)-induced vasoconstriction was inhibited concentration-dependently by both agents. The IC50 for fraxinellone and dictamine were calculated to be about 25 mol/l and 15 mol/l (for Ca2+) concentration of (1 mmol/l), respectively. Cromakalim (0.2–10) mol/l relaxed aortic rings precontracted with 15 but not 60 mmol/l of K+. Fraxinellone and verapamil were more potent and effective in producing relaxation in 60 mmol/l than in 15 mmol/l K+-induced contraction. However, dictamine was more potent in producing relaxation in 5 mmol/l K+-induced contraction. Nifedipine (1 mol/l), dictamine (100 mol/l) and fraxinellone (100 mol/l) relaxed the aortic contraction caused by KCl or Bay K 8644. The tonic contraction elicited by nor adrenaline (NA, 3 mol/l) was also relaxed by dictamine (500 mol/l), but not by fraxinellone (500 mol/l) in the nifedipine (1 mol/l)-treated aorta. This relaxing effect of dictamine persisted in endothelium-denuded aorta. Glibenclamide (10 mol/l) shifted the concentration-relaxation curve of cromakalim, but not that of dictamine, to the right in rat aortic rings precontracted with NA. Dictamine (500 mol/l) did not affect tonic contraction of NA which are reduced by H-7 (1 mol/l) in Ca2+ depleted medium. In conclusion, fraxinellone is a selective blocker of voltage-dependent Ca2+ channel, while dictamine relaxed the rat aorta by suppressing the Ca2+ influx through both voltage-dependent and receptor-operated Ca2+ channels.This work was supported by a research grant from the Nationat Science Council of the Republic of China (NSC80-0420-B002-18) Send offprint requests to C. M. Teng, Pharmacological Institute, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, Sect. 1, Taipei, 10018, Taiwan  相似文献   

20.
Summary To see whether the Na/H antiporter plays a role in digitalis cardiotoxicity, we investigated the influence of modulators of Na/H exchange on the toxic effects of ouabain in isolated, paced (0.4 Hz) rat left atria. Ouabain (1 mmol/l) caused a transient positive inotropic effect followed by toxic events, including a complete loss of developed force and a gradual increase in resting force. In the presence of hexamethyleneamiloride (3 and 10 mo1/l), an inhibitor of Na/H exchange, ouabain (1 mmol/l) caused a sustained positive inotropic effect without toxicity. By contrast, phenylephrine (100 mol/ 1) an -adrenoceptor agonist reported to stimulate the antiporter, hastened the development of ouabain's toxicity. Neither ouabain, at a subtoxic concentration (650 ol/l), nor phenylephrine (100 mol/l) affected diastolic force, but in their combined presence, a substantial contracture developed and twitch contractions disappeared. Phenylephrine (30 or 100 mol/l) or adrenaline (30 mol/l), in the presence of a -adrenoceptor antagonist, increased the intracellular pH by up to 0.15 pH unit, as measured using ion-selective microelectrodes in quiescent preparations. This effect on pH1 was prevented by hexamethyleneamiloride (10 mol/l). Consistent with phenylephrine's ability to stimulate Na+ influx via the Na/H antiporter, phenylephrine (100 mol/l) increased intracellular Na+ activity by about 3 mmol/l in ouabain (650 mol/l)-treated atria. These findings indicate that modulators of Na/H exchange affect the cardiotoxicity of digitalis glycosides and imply that the stimulation of myocardial -adrenoceptors may aggravate digitalis toxicity.This work was conducted in part under the auspices of the Association for US/French Biomedical Cooperation Send offprint requests to S. M. Vogel at the above address  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号