首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential of the novel insulin-like growth factor receptor (IGF-IR) inhibitor NVP-AEW541 as an antiproliferative agent in human neuroblastoma was investigated. Proliferation of a panel of neuroblastoma cell lines was inhibited by NVP-AEW541 with IC(50) values ranging from 0.15 to 5 microM. Experiments using an IGF-IR neutralizing antibody confirmed that the IGF-IR was essential to support growth of neuroblastoma cell lines. The expression levels of the IGF-IR in individual neuroblastoma cell lines did not correlate with the sensitivities to NVP-AEW541, while coexpression of the IGF-IR and the insulin receptor (IR) correlated with lower sensitivity to the inhibitor in some cell lines. Intriguingly, high levels of activation of Akt/protein kinase B (PKB) and phosphorylation of the ribosomal S6 protein were observed in neuroblastoma cell lines with decreased sensitivities to NVP-AEW541. Inhibition of Akt/PKB activity restored the sensitivity of neuroblastoma cells to the IGF-IR inhibitor. Transfection of neuroblastoma cells with activated Akt or ribosomal protein S6 kinase (S6K) decreased the sensitivity of the cells to NVP-AEW541. IGF-I-stimulated proliferation of neuroblastoma cell lines was completely blocked by NVP-AEW541, or by a combination of an inhibitor of phosphoinositide 3-kinase and rapamycin. In addition to its antiproliferative effects, NVP-AEW541 sensitized neuroblastoma cells to cisplatin-induced apoptosis. Together, our data demonstrate that NVP-AEW541 in combination with Akt/PKB inhibitors or chemotherapeutic agents may represent a novel approach to target human neuroblastoma cell proliferation.  相似文献   

2.
PURPOSE: Small-molecule insulin-like growth factor-I receptor (IGF-IR)-specific tyrosine kinase inhibitors have been recently proposed as clinically viable approaches to impair IGF-IR functions. NVP-AEW541 seems one of the most promising agents. In this article, we point out its effects against migration, metastasis, vasculogenicity, and angiogenesis of Ewing's sarcoma cells. EXPERIMENTAL DESIGN: In vivo NVP-AEW541 effectiveness was analyzed against TC-71 Ewing's sarcoma growth and bone metastasis after cell inoculation in athymic mice. Activity of the compound against angiogenesis as well as vasculogenesis properties was also considered both in vitro and in xenografts. Serum glucose, urea, transaminase levels, as well as other signs of distress were checked in mice treated with the IGF-IR inhibitor. RESULTS: Significant inhibition of migration, metastasis, vasculogenicity, and angiogenesis was recorded after treatment of Ewing's sarcoma cells with NVP-AEW541. In view of its application and the similarity of insulin receptor and IGF-IR, diabetogenic side effects were considered. We observed a significant decrease of glucose blood serum due to increased glucose uptake at cellular level and an increase in urea concentration. Moreover, an initial weight loss was observed in mice bearing tumors. All these side effects were similarly detected in mice treated with vincristine. After the first days of treatment, all the animals started to grow again. CONCLUSIONS: Our results globally reinforce the idea that IGF-IR inhibitor NVP-AEW541 could have a role in future combined therapies and suggest to pursue a thorough molecular analysis of the metabolic activity of IGF-IR to avoid possible side effects of these inhibitors.  相似文献   

3.
Identification of new drugs is strongly needed for sarcomas. Insulin-like growth factor-I receptor (IGF-IR) was found to provide a major contribution to the malignant behavior of these tumors, therefore representing a very promising therapeutic target. In this study, we analyzed the therapeutic potential of a novel kinase inhibitor of IGF-IR, NVP-AEW541, in Ewing's sarcoma, osteosarcoma, and rhabdomyosarcoma, the three most frequent solid tumors in children and adolescents. NVP-AEW541 inhibits IGF-I-mediated receptor activation and downstream signaling. Ewing's sarcoma cells were generally found to be more sensitive to the effects of this drug compared with rhabdomyosarcoma and osteosarcoma, in agreement with the high dependency of this neoplasm to IGF-IR signaling. NVP-AEW541 induced a G1 cell cycle block in all cells tested, whereas apoptosis was observed only in those cells that show a high level of sensitivity. Concurrent exposure of cells to NVP-AEW541 and other chemotherapeutic agents resulted in positive interactions with vincristine, actinomycin D, and ifosfamide and subadditive effects with doxorubicin and cisplatin. Accordingly, combined treatment with NVP-AEW541 and vincristine significantly inhibited tumor growth of Ewing's sarcoma xenografts in nude mice. Therefore, results encourage inclusion of this drug especially in the treatment of patients with Ewing's sarcoma. For the broadest applicability and best efficacy in sarcomas, NVP-AEW541 may be combined with vincristine, actinomycin D, and ifosfamide, three major drugs in the treatment of sarcomas.  相似文献   

4.
IGF-IR-mediated signaling promotes survival, anchorage-independent growth, and oncogenic transformation, as well as tumor growth and metastasis formation in vivo. NVP-AEW541 is a pyrrolo[2,3-d]pyrimidine derivative small molecular weight kinase inhibitor of the IGF-IR, capable of distinguishing between the IGF-IR (IC50 = 0.086 microM) and the closely related InsR (IC50 = 2.3 microM) in cells. As expected for a specific IGF-IR kinase inhibitor, NVP-AEW541 abrogates IGF-I-mediated survival and colony formation in soft agar at concentrations that are consistent with inhibition of IGF-IR autophosphorylation. In vivo, this orally bioavailable compound inhibits IGF-IR signaling in tumor xenografts and significantly reduces the growth of IGF-IR-driven fibrosarcomas. Thus, NVP-AEW541 represents a class of selective, small molecule IGF-IR kinase inhibitors with proven in vivo antitumor activity and potential therapeutic application.  相似文献   

5.
The insulin-like growth factor-I receptor (IGF-IR) is frequently overexpressed and constitutively activated in pancreatic cancer, thus representing a promising target for therapy. We investigated the impact of a novel inhibitor of IGF-IR (NVP-AEW541) on signalling and growth of pancreatic cancer. Human pancreatic cancer cells and endothelial cells were employed, and effects of NVP-AEW541 on signalling pathways investigated by Western blotting. NVP-AEW541 diminished the activation of IGF-IR, IRS-1, Erk, Akt and STAT3. Furthermore, NVP-AEW541 reduced cancer cell proliferation and abrogated migratory effects of IGF-I. NVP-AEW541 elicited a direct effect on endothelial cells in terms of reducing endothelial cell migration. In vivo, treatment of mice with NVP-AEW541 significantly reduced orthotopic pancreatic tumour growth, vascularisation, and VEGF expression. Interestingly, NVP-AEW541 lowered serum levels of IGF-binding-protein-3 (IGFBP-3). In conclusion, the IGF-IR inhibitor NVP-AEW541 effectively disrupts IGF-I signalling and reduces pancreatic tumour growth. Hence, blocking IGF-IR could prove valuable for targeted therapy of pancreatic cancer.  相似文献   

6.
《Annals of oncology》2008,19(11):1860-1869
BackgroundReceptor tyrosine kinases play an important role in breast cancer. One of them, the type I insulin-like growth factor, has been linked to resistance to trastuzumab (Herceptin), an agent that targets human epidermal growth factor receptor 2. Here, we show that the insulin-like growth factor-I receptor (IGF-IR) antagonist NVP-AEW541 inhibits proliferation of breast cancer cells and synergizes with trastuzumab.Patients and methodsPatient samples and breast cancer cell lines were evaluated for IGF-IR expression or activation by western blotting. 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) uptake assays and Annexin V staining were used for the analyses of cell proliferation/apoptosis. Biochemical and genomic studies were carried out to gain insights into the mechanism of action of NVP-AEW541.ResultsThe IGF-IR was expressed above normal levels in a number of breast cancer samples. Activation of this receptor was inhibited by NVP-AEW541 that also decreased cell proliferation and increased apoptosis. NVP-AEW541 decreased the amount of pAkt and increased the level of p27. Combination studies with several drugs used in the breast cancer clinic showed that NVP-AEW541 synergistically increased the action of trastuzumab.ConclusionsOur results show the anti-breast cancer action of NVP-AEW541 and support the clinical development of anti-IGF-IR agents, especially in combination with trastuzumab.  相似文献   

7.
The aberrant expression of the epidermal growth factor receptor (EGFR) has been reported in a wide range of epithelial tumours. In some studies, co-expression of insulin-like growth factor receptor-I (IGF-IR) have been associated with resistance to the EGFR inhibitors. Here, we investigated the sensitivity of a panel of human colorectal tumour cell lines, including two newly established lines Colo2 and Colo13, to treatment with anti-EGFR mAb ICR62 and IGF-IR tyrosine kinase inhibitor NVP-AEW541 alone and in combination. We also determined the association between the expression levels of EGFR and IGF-IR with their responses to ICR62 and/or NVP-AEW541. In contrast to DiFi cells, which contained high levels of EGFR but lower level of IGF-IR, the remaining 11 colorectal tumour cells expressed low levels of both EGFR and IGF-IR and such cells were relatively resistant to ICR62 or NVP-AEW-541 when used alone. Interestingly, compared to the results with the single agent, the effect of combination of NVP-AEW541 and ICR62 was found to be additive on inhibiting the growth of Colo13, CCL235, CCL244 cells but antagonistic in other (CCL218) cells. While overexpression of the EGFR seems to be associated with response to ICR62, no clear correlation was found between the expression levels of EGFR and IGF-IR, or the levels of phosphorylated EGFR and response to treatment with NVP-AEW541, in single or combination setting with ICR62. Our results suggest that combining EGFR and IGF-IR inhibitors may enhance antitumour response in a fraction of colorectal cancer cells and warrants further study in colorectal cancer.  相似文献   

8.
Insulin-like growth factor-I (IGF-I) and its receptor (IGF-IR) have been implicated in the pathophysiology of many human cancers, including those of hematopoietic lineage. We investigated the therapeutic potential of the novel IGF-IR tyrosine kinase activity inhibitor, NVP-AEW541, on human acute myeloid leukemia (AML) cells. NVP-AEW541 was tested on a HL60 cell subclone, which is dependent on autocrine secretion of IGF-I for survival and drug resistance, as well as primary drug resistant leukemia cells. NVP-AEW541 treatment (24 h) induced dephosphorylation of IGF-IR. NVP-AEW541 also caused Akt dephosphorylation and changes in the expression of key regulatory proteins of the cell cycle. At longer incubation times (48 h), NVP-AEW541-induced apoptotic cell death, as demonstrated by caspase-3 cleavage. Apoptosis was accompanied by decreased expression of anti-apoptotic proteins. NVP-AEW541 enhanced sensitivity of HL60 cells to either cytarabine or etoposide. Moreover, NVP-AEW541 reduced the clonogenic capacity of AML CD34(+) cells cultured in the presence of IGF-I. Chemoresistant AML blasts displayed enhanced IGF-I secretion, and were sensitized to etoposide-induced apoptosis by NVP-AEW541. Our findings indicate that NVP-AEW541 might be a promising therapeutic agent for the treatment of those AML cases characterized by IGF-I autocrine secretion.  相似文献   

9.
We have previously reported that insulin-like growth factor-I (IGF-I) supports growth and survival of mouse and human medulloblastoma cell lines, and that IGF-I receptor (IGF-IR) is constitutively phosphorylated in human medulloblastoma clinical samples. Here, we demonstrate that a specific inhibitor of insulin-like growth factor-I receptor (IGF-IR), NVP-AEW541, attenuated growth and survival of mouse (BsB8) and human (D384, Daoy) medulloblastoma cell lines. Cell cycle analysis demonstrated that G1 arrest and apoptosis contributed to the action of NVP-AEW54. Interestingly, very aggressive BsB8 cells, which derive from cerebellar tumors of transgenic mice expressing viral oncoprotein (large T-antigen from human polyomavirus JC) became much more sensitive to NVP-AEW541 when exposed to anchorage-independent culture conditions. This high sensitivity to NVP-AEW54 in suspension was accompanied by the loss of GSK-3beta constitutive phosphorylation and was independent from T-antigen-mediated cellular events (Supplementary Materials). BsB8 cells were partially rescued from NVP-AEW541 by GSK3beta inhibitor, lithium chloride and were sensitized by GSK3beta activator, sodium nitroprusside (SNP). Importantly, human medulloblastoma cells, D384, which demonstrated partial resistance to NVP-AEW541 in suspension cultures, become much more sensitive following SNP-mediated GSK3beta dephosphorylation (activation). Our results indicate that hypersensitivity of medulloblastoma cells in anchorage-independence is linked to GSK-3beta activity and suggest that pharmacological intervention against IGF-IR with simultaneous activation of GSK3beta could be highly effective against medulloblastomas, which have intrinsic ability of disseminating the CNS via cerebrospinal fluid.  相似文献   

10.
Purpose and Experimental Design: Insulin-like growth factors (IGFs) I and II and their principle receptor, IGF-I receptor (IGF-IR), are frequently expressed in human colon cancers and play a role in preventing apoptosis, enhancing cell proliferation, and inducing expression of vascular endothelial growth factor (VEGF). To elucidate the in vitro and in vivo effects of IGF-IR in human colon cancer growth and angiogenesis, HT29 cells were transfected with a truncated dominant-negative (DN) form of IGF-IR or vector alone. RESULTS: IGF-I increased VEGF expression in parental and vector-transfected cells, whereas IGF-I induction of VEGF mRNA and protein was abrogated in IGF-IR DN cells. The IGF-IR DN cells demonstrated inhibited growth in both monolayer culture and soft agar (P < 0.05). s.c. injections of IGF-IR DN cells in nude mice led to significantly decreased tumor growth (P < 0.05). Immunohistochemical analyses revealed that IGF-I DN tumors demonstrated decreased tumor cell proliferation, VEGF expression, and vessel count and increased tumor cell apoptosis (P < 0.05 for all parameters compared with controls). Furthermore, IGF-IR DN-transfected cells yielded significantly decreased tumorigenicity and growth in the liver. CONCLUSIONS: These studies demonstrate that the IGF ligand-receptor system plays an important role in multiple mechanisms that mediate human colon cancer growth including regulation of VEGF and angiogenesis.  相似文献   

11.
K T Doepfner  O Spertini  A Arcaro 《Leukemia》2007,21(9):1921-1930
Insulin-like growth factor (IGF) signaling plays an important role in various human cancers. Therefore, the role of insulin-like growth factor I (IGF-I) signaling in growth and survival of acute myeloid leukemia (AML) cells was investigated. Expression of the IGF-I receptor (IGF-IR) and its ligand IGF-I were detected in a panel of human AML blasts and cell lines. IGF-I and insulin promoted the growth of human AML blasts in vitro and activated the phosphoinositide 3-kinase (PI3K)/Akt and the extracellular signal-regulated kinase (Erk) pathways. IGF-I-stimulated growth of AML blasts was blocked by an inhibitor of the PI3K/Akt pathway. Moreover, downregulation of the class Ia PI3K isoforms p110beta and p110delta by RNA interference impaired IGF-I-stimulated Akt activation, cell growth and survival in AML cells. Proliferation of a panel of AML cell lines and blasts isolated from patients with AML was inhibited by the IGF-IR kinase inhibitor NVP-AEW541 or by an IGF-IR neutralizing antibody. In addition to its antiproliferative effects, NVP-AEW541 sensitized primary AML blasts and cell lines to etoposide-induced apoptosis. Together, our data describe a novel role for autocrine IGF-I signaling in the growth and survival of primary AML cells. IGF-IR inhibitors in combination with chemotherapeutic agents may represent a novel approach to target human AML.  相似文献   

12.
Ren Y  Chan HM  Fan J  Xie Y  Chen YX  Li W  Jiang GP  Liu Q  Meinhardt A  Tam PK 《Oncogene》2006,25(25):3501-3508
Macrophage migration inhibitory factor (MIF) has been defined as a novel oncogene. Our previous results have shown that MIF may contribute to the progression of neuroblastoma by (a) inducing N-Myc expression and (b) upregulating the expression of angiogenic factors. The aim of this study was to test whether tumor growth could be inhibited by reduction of endogenous MIF expression in neuroblastoma and clarify the molecular mechanisms underlying MIF reduction on the control of neuroblastoma growth. We established human neuroblastoma cell lines stably expressing antisense MIF (AS-MIF) cDNA. These stable transfectants were characterized by cell proliferation, gene expression profile, tumorigenicity and metastasis in vitro and in vivo. Decreased MIF expression was observed after transfection with AS-MIF in neuroblastoma cells and downregulation of MIF expression significantly correlated with decreased expression of N-Myc, Ras, c-Met and TrkB at protein level. Affymetrix microarray analysis revealed that expression of IL-8 and c-met was inhibited and neuroblastoma-favorable genes such as EPHB6 and BLU were upregulated in MIF reduced cells. Neuroblastoma cell growth exhibited a nearly 80% reduction in AS-MIF transfectants in vitro. Furthermore, mice in which tumors formed after subcutaneous injection of AS-MIF transfectants showed a 90% reduction in tumor growth compared to control. Metastasis in mice was also suppressed dramatically. Our data demonstrate that targeting MIF expression is a promising therapeutic strategy in human neuroblastoma therapy, and also identifies the MIF target genes for further study.  相似文献   

13.
The present study addresses the effect of targeting type I insulin-like growth factor receptor (IGF-IR) with antisense strategies in in vivo growth of breast cancer cells. Our research was carried out on C4HD tumors from an experimental model of hormonal carcinogenesis in which the synthetic progestin medroxyprogesterone acetate (MPA) induced mammary adenocarcinomas in Balb/c mice. We employed two different experimental strategies. With the first one we demonstrated that direct intratumor injection of phosphorothioate antisense oligodeoxynucleotides (AS[S]ODNs) to IGF-IR mRNA resulted in a significant inhibition of C4HD tumor growth. In the second experimental strategy, we assessed the effect of intravenous (i.v.) injection of AS [S]ODN on C4HD tumor growth. This systemic treatment also resulted in significant reduction in tumor growth. The antitumor effect of IGF-IR AS[S]ODNs in both experimental protocols was due to a specific antisense mechanism, since growth inhibition was dose-dependent and no abrogation of tumor proliferation was observed in mice treated with phosphorothioate sense ODNs (S[S]ODNs). In addition, IGF-IR expression was inhibited in tumors from mice receiving AS[S]ODNs, as compared to tumors from control groups. We then investigated signal transduction pathways modulated in vivo by AS[S]ODNs treatment. Tumors from AS[S]ODN-treated mice of both intratumoral and intravenous protocols showed a significant decrease in the degree of insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation. Activation of two of the main IGF-IR signaling pathways, phosphatidylinositol 3-kinase (PI-3K)/Akt and p42/p44 mitogen-activated protein kinases (MAPK) was abolished in tumors growing in AS[S]ODN-treated animals. Moreover, ErbB-2 tyrosine phosphorylation was blocked by in vivo administration of AS[S]ODNs. On the other hand, we found no regulation of either progesterone receptor expression or activity by in vivo AS[S]ODNs administration. Our results for the first time demonstrated that breast cancer growth can be inhibited by direct in vivo administration of IGF-IR AS[S]ODNs.  相似文献   

14.
Neuroblastoma is a pediatric tumor that preferentially metastasizes to bone. Patients with bone metastases have a mortality rate >93%, indicating a need for novel treatment targets. Our laboratory has shown that type I insulin-like growth factor receptor (IGF-IR) expression and activation regulate neuroblastoma cell proliferation, motility, invasion, and survival, and that expression of the IGF-IR correlates with neuroblastoma tumorigenicity. Bone expresses large amounts of IGF ligands, and the IGF system is required for normal bone physiology. The current study addresses the role of the IGF system in neuroblastoma metastasis to bone. Upon reaching the bone marrow through the circulation, neuroblastoma cells must dock at the bone marrow endothelium, extravasate into the bone microenvironment, and destroy bone tissue to allow for tumor growth. This report examines the effects of high IGF-IR expression on neuroblastoma cell interaction with bone. The current data show that neuroblastoma cells with high IGF-IR expression, either endogenously or through transfection, adhere to human bone marrow endothelial cells and subsequently migrate toward both IGF-I and human bone stromal cells. High IGF-IR-expressing neuroblastoma cells adhere tightly to bone stromal cells, flatten, and extend processes. When neuroblastoma cells are injected directly into the tibiae of mice, those cells with increased IGF-IR form both osteolytic lesions within the tibiae and secondary tumors within other sites. These results support the hypothesis that IGF-IR expression in neuroblastoma cells increases tumor cell interaction with the bone microenvironment, resulting in greater formation of metastases.  相似文献   

15.
Prostaglandin (PG) E(2), a cyclooxygenase (COX) product, and angiotensin II are endogenous and have physiological roles in the body. On the other hand, an inducible isoform of COX (COX-2), insulin-like growth factor (IGF) II, and IGF-I receptor (IGF-IR) are up-regulated in colon carcinoma and might have crucial roles in tumor growth and invasion. The aim of the present study was to investigate the effects of COX-2 inhibitor and drugs blocking the biological activities of angiotensin II [angiotensin-converting enzyme (ACE) inhibitors or angiotensin II receptor blockers (ARBs)] on IGF-IR expression and tumor growth in vivo. We also investigated the effects of PGE(2), a major COX-2 product, in cancer cells and the effects of angiotensin II on IGF-IR expression and the underlying mechanism of action. In in vivo studies, tumor growth and IGF-IR expression were investigated in Colon 26 cells inoculated into BALB/c mice. In in vitro studies, the effects of nonsteroidal anti-inflammatory drugs (NSAIDs) on IGF-IR expression were analyzed in three colon cancer cell lines (Colon 26, HCA-7, and LS174T). IGF-II-induced cell growth and invasion were analyzed in Colon 26 cells in the presence and absence of NSAIDs (indomethacin and celecoxib) and angiotensin II. Celecoxib at the lowest effective dose for suppression of PG production (3 mg/kg) or an ACE inhibitor/ARB alone did not have a significant effect as compared with controls, although a high dose of celecoxib (>20 mg/kg) suppressed tumor growth. On the other hand, combination therapy with these two categories of drugs significantly reduced tumor growth in vivo. Treatment with both celecoxib and an ACE inhibitor/ARB decreased IGF-IR expression levels in inoculated tumor cells. In in vitro studies, NSAIDs reduced IGF-IR expression in a dose-dependent manner in all three cell lines. NSAIDs also inhibited IGF-II-stimulated growth and invasion in a dose-dependent manner. PGE(2) or angiotensin II treatment reversed the NSAID-induced down-regulation of IGF-IR expression, growth, and invasion. PGE(2) and angiotensin II induced Akt phosphorylation, and LY294002 or wortmannin inhibited PGE(2)- or angiotensin II-induced IGF-IR expression, indicating that PGE(2) and angiotensin II both regulate IGF-IR expression by the same Akt/phosphatidylinositol-3 pathway. Thus, combination therapy with NSAIDs and ACE inhibitors targeting IGF-IR might be a novel and potentially promising strategy for the chemoprevention of colon cancer.  相似文献   

16.
Our recent in vitro findings for suppression of thrombospondin-1 (TSP1; an antiangiogenic factor) expression by wild-type (wt) p53 in a p53-null thyroid carcinoma cell line, FRO, prompted us to investigate the in vivo effect of exogenous wt-p53 and TSP1 expression on tumor growth and angiogenesis of FRO xenografts in nude mice. Overexpression of TSP1, which did not affect the in vitro cell growth, significantly inhibited the in vivo tumor growth and neovascularization but not tumorigenesis; all the mice inoculated with FRO cells expressing TSP1 developed tumors, which were smaller and less vascularized than those derived from FRO cells. In contrast, restoration of wt-p53 expression, which reduced the in vitro cell growth rate, inhibited tumorigenesis and induced a state of "dormancy". Thus, approximately 40% of mice inoculated with FRO cells expressing wt-p53 (FRO-p53) were tumor free and the remaining mice developed hypovascular tumors which remained small (< or = 5 mm in size) for up to 60 days. Of interest, the phenotype of FRO-p53 tumors reverted to a well vascularized, progressively expanding tumor by exogenous expression of vascular endothelial growth factor (a proangiogenic factor). Our data demonstrated wt-p53 inhibition of tumorigenesis and induction of dormancy by suppression of neovascularization in FRO cells. The results suggest that p53 gene therapy for thyroid carcinoma harboring p53 mutation may be more efficacious than we had expected from previous in vitro data.  相似文献   

17.
PURPOSE: We assessed the relevance of Slug (SNAI2) for apoptosis resistance and invasion potential of neuroblastoma cells in vitro and in vivo. EXPERIMENTAL DESIGN: We evaluated the effect of imatinib mesylate on invasion and analyzed the genes modulated by imatinib mesylate treatment in neuroblastoma cells. Slug expression, inhibited by imatinib mesylate treatment, was knocked down in neuroblastoma cells by RNA interference, and the effects on invasion and apoptosis were evaluated in vitro. A pseudometastatic model of neuroblastoma in severe combined immunodeficient mice was used to assess the effects of Slug silencing alone or in combination with imatinib mesylate treatment on metastasis development. RESULTS: Microarray analysis revealed that several genes, including Slug, were down-regulated by imatinib mesylate. Slug expression was detectable in 8 of 10 human neuroblastoma cell lines. Two Slug-expressing cell lines were infected with a vector encoding a microRNA to Slug mRNA. Infected cells with reduced levels of Slug were tested for the expression of apoptosis-related genes (p53, Bax, and Bcl-2) identified previously as Slug targets. Bcl-2 was down-regulated in Slug-interfered cells. Slug down-regulation increased sensitivity to apoptosis induced by imatinib mesylate, etoposide, or doxorubicin. Invasion of Slug-silenced cells was reduced in vitro. Animals injected with Slug-silenced cells had fewer tumors than controls and the inhibition of tumor growth was even higher in animals treated with imatinib mesylate. CONCLUSIONS: Slug down-regulation facilitates apoptosis induced by proapoptotic drugs in neuroblastoma cells and decreases their invasion capability in vitro and in vivo. Slug inhibition, possibly combined with imatinib mesylate, may represent a novel strategy for treatment of metastatic neuroblastoma.  相似文献   

18.
Overexpression and hyperactivation of the type I insulin-like growth factor receptor (IGF-IR) has been observed in human breast tumor biopsies. In addition, in vitro studies indicate that overexpression of IGF-IR is sufficient to transform cells such as mouse embryo fibroblasts and this receptor promotes proliferation and survival in breast cancer cell lines. To fully understand the function of the IGF-IR in tumor initiation and progression, transgenic mice containing human IGF-IR under a doxycycline-inducible MMTV promoter system were generated. Administration of 2 mg/ml doxycycline in the animals' water supply beginning at 21 days of age resulted in elevated levels of IGF-IR in mammary epithelial cells as detected by Western blotting and immunohistochemistry. Whole mount analysis of 55-day-old mouse mammary glands revealed that IGF-IR overexpression significantly impaired ductal elongation. Moreover, histological analyses revealed multiple hyperplasic lesions in the mammary glands of these 55-day-old mice. The formation of palpable mammary tumors was evident at approximately 2 months of age and was associated with increased levels of IGF-IR signaling molecules including phosphorylated Akt, Erk1/Erk2 and STAT3. Therefore, these transgenic mice provide evidence that IGF-IR overexpression is sufficient to induce mammary epithelial hyperplasia and tumor formation in vivo and provide a model to further understand the function of IGF-IR in mammary epithelial transformation.  相似文献   

19.
The insulin-like growth factor I receptor (IGF-IR) is overexpressed in many diverse tumor types and is a critical signaling molecule for tumor cell proliferation and survival. Therapeutic strategies targeting the IGF-IR may therefore be effective broad-spectrum anticancer agents. Through screening of a Fab phage display library, we have generated a fully human antibody (A12) that binds to the IGF-IR with high affinity (4.11 x 10(-11) M) and inhibits ligand binding with an IC(50) of 0.6-1 nM. Antibody-mediated blockade of ligand binding to the IGF-IR inhibited downstream signaling of the two major insulin-like growth factor (IGF) pathways, mitogen-activated protein kinase and phosphatidylinositol 3'-kinase/Akt, in MCF7 human breast cancer cells. As a result, the mitogenic and proliferative potential of IGF-I and IGF-II were significantly reduced. A12 did not block insulin binding to the insulin receptor but could block binding to atypical IGF-IR in MCF7 cells. In addition, A12 was shown to induce IGF-IR internalization and degradation on specific binding to tumor cells, resulting in a significant reduction in cell surface receptor density. In xenograft tumor models in vivo, IGF-IR blockade by A12 was shown to occur rapidly, resulting in significant growth inhibition of breast, renal, and pancreatic tumors. Histological analysis of tumor sections demonstrated a marked increase in apoptotic tumor cells in antibody-treated animals. These results demonstrate that A12 possesses strong antitumor activity in vitro and in vivo and may therefore be an effective therapeutic candidate for the treatment of cancers that are dependent on IGF-IR signaling for growth and survival.  相似文献   

20.
PURPOSE: The type I insulin-like growth factor receptor (IGF-IR) and its ligands have been shown to play a critical role in prostate carcinoma development, growth, and metastasis. Targeting the IGF-IR may be a potential treatment for prostate cancer. A fully human monoclonal antibody, A12, specific to IGF-IR, has shown potent antitumor effects in breast, colon, and pancreatic cancers in vitro and in vivo. In this study, we tested the in vivo effects of A12 on androgen-dependent and androgen-independent prostate tumor growth. EXPERIMENTAL DESIGN: Androgen-dependent LuCaP 35 and androgen-independent LuCaP 35V prostate tumors were implanted s.c. into intact and castrated severe combined immunodeficient mice, respectively. When tumor volume reached about 150 to 200 mm(3), A12 was injected at 40 mg/kg body weight thrice a week for up to 5 weeks. RESULTS: We find that A12 significantly inhibits growth of androgen-dependent LuCaP 35 and androgen-independent LuCaP 35V prostate xenografts, however, by different mechanisms. In LuCaP 35 xenografts, A12 treatment induces tumor cell apoptosis or G(1) cycle arrest. In LuCaP 35V xenografts, A12 treatment induces tumor cell G(2)-M cycle arrest. Moreover, we find that blocking the function of IGF-IR down-regulates androgen-regulated gene expression in androgen-independent LuCaP 35V tumor cells. CONCLUSIONS: Our findings suggest that A12 is a therapeutic candidate for both androgen-dependent and androgen-independent prostate cancer. Our findings also suggest an IGF-IR-dependent activity of the androgen receptor in androgen-independent prostate cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号