首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neurite-promoting activity in feeding medium conditioned by rat astrocytes and Schwann cells in culture was examined. The conditioned medium (CM) from both types of glial cultures stimulated extensive neurite outgrowth from embryonic chick dorsal root ganglia (DRG) as well as pheochromocytoma (PC12) cells. Both the DRG and PC12 cells also produce neurite outgrowth in the presence of nerve growth factor (NGF). With the DRG, the neurite growth rates observed with the glial cell CM were identical to growth rates seen with NGF. Although anti-NGF antibody did not inhibit the neurite outgrowth produced by either of the glial CM, a nerve growth factor radioreceptor assay did detect an NGF-like molecule in both CM. Since the extensive neurite outgrowth stimulated by the glial CM was not mimicked by pure laminin alone, we conclude that the glial neurite promoting factors are distinct from laminin.  相似文献   

2.
Fifteen-day embryonic rat dorsal root ganglion (DRG) neurons were exposed to 1 to 200 ng/ml nerve growth factor (NFG). Maximal neurite outgrowth was obtained with 10 to 20 ng/ml. Neurite outgrowth was reduced to 89% of maximal by increasing NGF to 50 ng/ml, to 66% by 100 ng/ml, and to 18% by 200 ng/ml NGF. Identical effects were seen with mouse 2.5S NGF and recombinant human NGF. Neuron cell counts demonstrated that significant cell death did not occur. In time course experiments, significant inhibition, compared with control, began within 1 hour of adding 200 ng/ml and 3 hours of adding 50 ng/ml NGF. The inhibitory effect of NGF on neurite outgrowth was reversed within 3 hours when DRG were incubated with 5 ng/ml NGF after treatment with 50 or 200 ng/ml NGF medium for 12 hours. The inhibition demonstrated for neurons did not occur in PC12 cells; axonal growth was not inhibited by up to 1,000 ng/ml NGF. Excess brain-derived neurotrophic factor or neurotrophin-3 did not inhibit neurite outgrowth. We conclude that high concentrations of NGF produces specific and reversible arrest of neurite outgrowth from sensory neurons. This observation has important clinical implications, because these inhibitory concentrations have been exceeded when NGF has been administered into the central nervous system of humans and animals.  相似文献   

3.
Neuronal tissue transplantation is a potential way to replace degenerated spiral ganglion neurons (SGNs) since these cells cannot regenerate in adult mammals. To investigate whether nerve growth factor (NGF) can stimulate neurite outgrowth from implanted neurons, mouse embryonic dorsal root ganglion (DRG) cells expressing enhanced green fluorescent protein (EGFP) were transplanted into the scala tympani of adult rats with a supplement of NGF or artificial perilymph. DRG neurons were observed in the cochlea for up to 6 weeks postoperatively. A significant difference was identified in the number of DRG neurons between the NGF and non-NGF groups. In the NGF group, extensive neurite projections from DRGs were found penetrating the osseous modiolus towards the spiral ganglion. These results suggest the possibility that embryonic neuronal implants may become integrated within the adult auditory nervous system. In combination with a cochlear prosthesis, a neuronal implantation strategy may provide a possibility for further treatment of profoundly deaf patients.  相似文献   

4.
目的探讨神经生长因子(nerve growth factor,NGF)促进鸡胚背根神经节(dorsal root ganglion,DRG)神经突起生长的作用机制。方法实验采用9 d的鸡胚分离背根神经节,原代培养法,观察鸡胚DRG的体外生长情况。通过半定量PCR检测诱导型一氧化氮合酶(iNOS)mRNA表达,采用NO检测试剂盒检测NO释放水平。结果 NGF能明显促进鸡胚背根神经节神经突起生长,同时可见NGF抑制iNOS mRNA表达,NO检测结果显示,添加NGF培养的背根神经节上清NO分泌水平明显降低,与阴性对照组比较差异显著(P0.05)。结论 NGF可促进鸡胚背根神经节神经突起生长,其作用与其下调iNOS mRNA表达及抑制神经损伤因子NO释放有关。  相似文献   

5.
Neurotrophins have been known to play a pivotal role in axonal guidance. Recent research has implicated the role of extracelluar matrix molecules in co-ordinating axonal movement. In this study, we examined the influence of neurotrophins (nerve growth factor (NGF) and neurotrophin-3 (NT-3)) and extracellular matrix molecules (laminin, fibronectin, and poly-l-lysin) on sensory neurite outgrowth in thoracic dorsal root ganglia (DRG) dissected from rats at embryonic day 13. Adjacent DRG were embedded in a collagen gel matrix and supplemented with NGF or NT-3. Under NT-3 conditions, DRG axons extended towards each other and intermingled, while neurites from NGF-treated DRG demonstrated a strong repellent effect, resulting in turning responses and growth cone collapse. This effect was not observed on a collagen culture surface. Interestingly, the composition of the extracellular matrix strongly influenced the observed repellent effect. Sensory neurites from NGF-stimulated DRG again demonstrated a repellent effect when plated on a laminin surface, but showed intermingling behavior when plated on poly-l-lysin or fibronectin. This observation suggests that a factor secreted by NGF-treated DRG axons interacts with laminin, enabling repulsion. This factor and its interaction with the extracellular matrix play an important role in the mechanism of sensory axonal pathfinding.  相似文献   

6.
Nerve growth factor in medium conditioned by embryonic chicken heart cells   总被引:1,自引:0,他引:1  
The present report demonstrates that embryonic chicken heart cells in culture release different nerve growth promoting factors to their culture medium, one which is biologically and immunologically similar to mouse gland beta NGF. Serum-free heart cell conditioned medium thus promoted neurite outgrowth from sympathetic and ciliary ganglia and supported survival of dissociated ciliary neurons. The addition of affinity purified antibodies against mouse beta NGF does substantially but not completely inhibit the fibre outgrowth from sympathetic ganglia, but does not to any extent diminish the effects on the parasympathetic neurons. The chicken NGF recovered from polyacrylamide gels after electrophoresis greatly enhanced sympathetic fibre outgrowth, an activity completely suppressive by anti-beta NGF antibodies. We conclude that a chicken NGF is being produced by the embryonic heart cells in culture, and that this factor may be produced also in the embryo to fulfill a role in heart innervation.  相似文献   

7.
We studied the effects of nerve growth factor (NGF) to determine whether neuroblastoma (NB) cells share the pattern of altered response to growth regulatory factors shown by various malignant transformed cells. NGF induces neurite outgrowth, arrests growth, and enhances survival in normal neurons and in the rat pheochromocytoma, a tumor cell closely related to NB. With respect to neurite outgrowth, lines SK-N-SH, SH-SY5Y, LA-N-5, and CHP-126 were sensitive, IMR-32 was resistant, and SH-EP1, SK-N-MC, MC-IXC, CHP-100, and CHP-134 were unresponsive. Conditioned media from unresponsive cells did not inhibit response in sensitive cells. Unexpectedly, NGF neither reduced the growth rate nor enhanced survival in any NB cell line. Conditioned medium from all NB cell lines enhanced 125I-NGF binding in embryonic sensory cells. Regulation of growth rate and neurite outgrowth, then, are separable. A fundamental defect in NB may be the acquisition of a capacity for growth and survival independent of NGF. 125I-NGF was bound to both Fast and Slow receptors in MC-IXC cells, but only to Slow receptors in NGF-responsive SH-SY5Y and LA-N-5 cells, showing Fast receptors are not required for neurite outgrowth. Independence from NGF-regulated growth and survival is unexplainable by an absence of NGF receptors.  相似文献   

8.
Bilsland JG  Harper SJ 《Neuroreport》2003,14(7):995-999
CEP-1347 inhibits the signalling pathway of c-jun-N-terminal kinase, and is neuroprotective in vivo and in vitro. Embryonic chick dorsal root ganglion neurones are dependent on NGF for survival and neurite outgrowth; NGF withdrawal results in apoptotic cell death. We examined the neuroprotective and neurite outgrowth promoting activity of CEP-1347 in dissociated DRG neurones and in primary DRG explants. CEP-1347 was as effective as NGF in promoting survival of dissociated DRG neurones, but caused only limited neurite outgrowth from DRG explants. When NGF was subsequently added to CEP-1347 treated explants, the outgrowth increased to a similar level to explants which had received NGF throughout. CEP-1347 may be a useful tool to maintain viable DRG explants to allow evaluation of neurite outgrowth promoting compounds and dissection of survival and neurite outgrowth signalling pathways.  相似文献   

9.
The administration of nerve growth factor (NGF) into the brain of a fornix-fimbria lesioned rat can rescue many cholinergic, septal-basal forebrain (SBF) neurons from imminent cell death. Unfortunately, it is unclear if NGF can stimulate regenerative growth from axotomized, SBF neurons. In the present study, we used an in vitro model system to determine if NGF could affect neurite outgrowth from nonaxotomized and/or axotomized, embryonic SBF neurons. Axotomized neurons were obtained by severing the neuritic fields surrounding embryonic day (E) 15 SBF explants maintained in primary culture. Acetylcholinesterase (AChE) histochemistry was used to assess the effects of NGF on cholinergic neurites. We report that 1) neurite outgrowth on type I collagen from E15 SBF neurons in primary culture (nonaxotomized neurons) was not affected by NGF. 2) NGF enhanced the outgrowth (regeneration) of axotomized, SBF neurons on a collagen substratum; however, neurons had to be treated with NGF both before and after axotomy to stimulate regeneration effectively. Application of NGF either before or after axotomy did not enhance regenerative neurite outgrowth. 3) SBF neurons had to be axotomized for NGF to facilitate neurite outgrowth. This is supported by the observation that SBF explants, initially maintained in NGF-supplemented medium in suspension culture, did not demonstrate enhanced neurite outgrowth in the presence of NGF when plated onto a substratum. 4) The regenerative growth of AChE-negative, as well as AChE-positive, neurites was facilitated by NGF treatment. In addition to data concerning neurite outgrowth, we also found that the NGF receptor, as recognized by the antibody 192-IgG, expands its distribution as time in culture progresses; i.e., staining, originally confined to cell bodies and proximal processes within the explant, later included neurites that emanated from the explant. Thus, our results demonstrate that NGF can stimulate regenerative growth from axotomized, but not nonaxotomized, embryonic SBF neurons. We hypothesize that, given the appropriate substratum for axon elongation in vivo, NGF can stimulate the regeneration of SBF neurons in the injured adult brain.  相似文献   

10.
Organotypic cultures of the embryonic retina were used to study the influence of extracellular matrix molecules on neurite elongation during development of the central nervous system. Microexplants from the chick retina (embryonic day 6) were grown in medium containing appropriate trophic support on purified matrix molecules adsorbed to plastic at various concentrations. The maximum neurite length obtained on each type of substratum was measured on day 4 of culture. No fiber outgrowth occurred on substrata of vitronectin or a hyaluronate-binding chondroitin sulfate proteoglycan. In contrast, neurite elongation was strongly promoted on laminin in a dose-dependent manner. Fibronectin elicited a neurite outgrowth corresponding to about one-third the length of the outgrowth on laminin. A 31,000-dalton fibronectin fragment representing the heparin-binding domain elicited neurite elongation comparable to that promoted by the intact fibronectin molecule. Other isolated domains of fibronectin, including the 105,000-dalton "cell-binding" domain, did not allow neurite outgrowth. Furthermore, preincubation of fibronectin substratum with antibodies to the heparin-binding fibronectin fragment entirely prevented outgrowth. Fiber outgrowth was also evoked on substrata of platelet factor 4, a protein binding heparan sulfate. Adding increasing concentrations of heparin progressively inhibited the neurite extension on laminin, whereas similar addition of soluble chondroitin sulfate proteoglycan had no effect. The results indicate that growing retinal neurites show strong preference for laminin versus fibronectin. Moreover, the outgrowth-promoting activity of both cell adhesion proteins seems to be localized to their heparin-binding regions. It is suggested that during development of the visual system, elongating retinal neurites can actively discriminate between different extracellular molecules by a mechanism that may involve participation of cell surface heparan sulfate proteoglycans.  相似文献   

11.
Chromaffin precursor cells from embryonic rat adrenal glands were isolated at 16.3 and 20.3 days of gestation and purified by centrifugation on density gradients. Approximately 50% of the cells of both age groups that had attached to the culture substratum by 12 hr survived during a 4-day culture period in the absence of exogenous trophic factors. Nerve growth factor (NGF) and a C6 glioma-cell-conditioned medium (C6-CM) had no or a very moderate promoting effect on survival. The glucocorticoid dexamethasone (DEX) supported the survival of 70-80% of the cells that otherwise would have died. Spontaneous neuritic growth of the sympathoadrenal precursor cells was significantly more pronounced with cells isolated at embryonic day (E) 16.3 than at E20.3. NGF had a significantly smaller promoting effect on neurite ougrowth at E16.3 than at E20.3. C6-CM induced neurite outgrowth from 25% (E16.3) and 35% (E20.3) of the surviving cells. DEX (10(-6) M) completely abolished spontaneous neuritic growth and partially suppressed C6-CM-mediated fiber outgrowth. These data underscore the importance of glucocorticoids for the maintenance and development of an endocrine morphologic phenotype of sympathoadrenal precursors. They suggest that the cells may be initially driven by growth factors other than NGF into a neuronal direction and that they lack NGF-responsiveness and -dependence during the early stages of their development.  相似文献   

12.
S D Skaper  S Varon 《Brain research》1986,389(1-2):39-46
Chick embryo dorsal root ganglion (DRG) neurons can be supported in vitro by nerve growth factor (NGF) and ciliary neuronotrophic factor (CNTF). Pyruvate is also required for survival of neurons from embryonic day 8 (E8) chick ciliary ganglia and from several chick and rat embryonic central nervous system sources. Here we have examined the survival requirements of chick DRG neurons between E6.5 and E15. These DRG neurons, initially dependent only on NGF, become dependent also on CNTF and later on increasingly independent from both factors. Pyruvate nearly doubles neuronal survival at all ages under all conditions. The pyruvate concentration permitting this additional survival was reduced two-fold with serine present. In the presence of polyornithine-bound laminins, nearly all seeded neurons were rescued by pyruvate plus NGF (E8 on), or pyruvate plus CNTF (E10 on), or pyruvate without trophic factors (E15). The same maximal survival was achieved without pyruvate by supplying E10 or older neurons with both NGF and CNTF. Unmodified polyornithine substrata yielded about one-half this number of surviving neurons.  相似文献   

13.
Schwann cells synthesize several neurite outgrowth-promoting molecules and localize them in either the extracellular matrix (ECM; e.g., laminin) or on the plasma membrane (e.g., L1/NgCAM and N-cadherin). Neurite outgrowth by embryonic chick ciliary ganglion (CG) neurons in response to these Schwann cell molecules largely depends on several specific neuronal cell surface receptors: integrin beta 1-class ECM receptors, L1/NgCAM, and N-cadherin (Bixby et al.: Journal of Cell Biology 107:353-361 1988). To address whether neuronal ECM receptors are regulated independently of cell surface adhesion molecules, we studied the ability of dissociated CG neurons from different developmental ages to extend neurites rapidly on 1) substrates coated with the ECM glycoprotein laminin (either from Schwann cell-conditioned medium or purified from the Engelbreth-Holm-Swarm sarcoma) or 2) the surfaces of Schwann cells or Schwannoma (RN22) cells. CG neurons gradually lost the ability between embryonic day 8 (E8) and E14 to attach to and extend neurites in an integrin-dependent fashion on purified laminin or Schwann cell-derived laminin. The inability of E14 CG neurons to respond to laminin was partially reversed after explantation for 2.5 days in vitro, which increased the percentage of responsive neurons approximately ten-fold. E14 neurons remained capable of extending neurites rapidly on the surfaces of Schwann and Schwannoma cells. Thus, the inability of E14 neurons to respond to laminin reflects a specific loss of laminin receptor function, while other receptors, most likely N-cadherin and L1/NgCAM, remain capable of promoting neurite outgrowth on Schwann cell surfaces. Since integrin beta 1-class heterodimers have been shown to function directly as receptors mediating neuronal attachment and process outgrowth on laminin, our results imply that the expression or function of laminin-binding integrin heterodimers is regulated during the development of CG neurons. The apparent loss of integrin receptor function occurs during the period when the axons of CG neurons innervate their targets. Substantial integrin receptor function is recovered when target contact is disrupted by explantation. Thus, the functions of integrin-class receptors in CG neurons may be regulated by target contact.  相似文献   

14.
The addition of chondroitin sulphate proteoglycans (CSPGs), purified from the rat brain, to the culture medium of PC12D cells inhibited their proliferation and neurite outgrowth. Therefore, we investigated the effects of several extracellular components on the inhibitory actions of CSPGs on PC12D cells, as well as their immunocytochemical distribution in the rat embryo to determine whether the findings in vitro could be reproduced in vivo. Coating of the substratum with polylysine was necessary for the appearance of the inhibitory effects of brain CSPGs on PC12D cells. The additional pretreatment of polylysine-coated dishes with laminin or fibronectin promoted the outgrowth of neurites from PC12D cells. Laminin and fibronectin, but not collagen (types I and IV) and CELL-TAK (cell adhesion molecules), prevented the inhibitory effects of brain CSPGs in a concentration-dependent manner. Doses producing 50% reduction by laminin (or fibronectin) of the CSPG effects were 1.5 (or 25) μg/ml for neurite outgrowth and 2.2 (or 28) μg/ml for proliferation. The ratio of dish-attached CSPGs to laminin necessary for 50% reduction was about ∼50:l (wt/wt). Laminin from any source had the same effect. Brain CSPGs also obviously impeded the growth of fibres from dorsal root ganglion explants and primary cultured dorsal root ganglion neurons. Neurocan (a major CSPG in the brain)-like immunoreactivity was detected in the boundary caps and roof plate in the rat embryo at 13.5 days of gestation, when DRG neurons were extending their axons to the neural tube. The distributions of laminin and tenascin appeared, respectively, to be slightly and considerably different from that of neurocan. These results suggest that brain CSPGs can generate barriers to the growth of axons from the dorsal root ganglion and that the ratio of CSPGs to laminin may be important in regulating such growth.  相似文献   

15.
Responses of rat embryonic septal cells to reconstituted basement membrane, laminin, and laminin A chain-derived synthetic peptides were studied in culture. Dissociated fetal E16/17 septal cells were grown for three days on differently coated plastic substrata. Reconstituted basement membrane (Matrigel), laminin, and a 19-amino acid synthetic peptide CSRARKQAASIKVAVSADR-NH2 (PA22-2) from the laminin A chain sequence mediated cell-substratum adhesion and promoted neurite outgrowth. In contrast, cells did not attach to or form processes on uncoated plastic or on plastic substrata coated with synthetic, laminin-derived control peptides. Polyethylenimine (PEI) supported the adhesion and survival of fetal septal cells; however, when laminin was added to the medium during cell plating or 18 hr afterward, a dose-dependent increase was observed in neurite outgrowth of cells attached to this substratum. Cells grown for 6 days on PEI in the presence of laminin showed a determined increase in the number of cholinergic neurons as marked by acetylcholinesterase staining. These data suggest that the subpopulation of cholinergic septal neurons present in the septal cells studied here were also responding to laminin. The results of this in vitro study suggest potential uses for basement membrane, laminin, or synthetic peptides, such as PA22-2, in fetal septal grafts to enhance regeneration in the damaged septo-hippocampal system.  相似文献   

16.

Background

Schwann cells (SCs) have been supposed to play prominent roles in axonal regeneration under various diseases. Here, to evaluate the direct interaction between SCs and dorsal root ganglion (DRG) neurons under a diabetic condition, the effects of Schwann cell-conditioned media on neurite outgrowth of DRG neurons were investigated.

Methods

Immortalized mouse Schwann cells (IMS) were cultured under 5.5 mM glucose (NG) or 30 mM glucose (HG) conditions for 4 days. IMS-conditioned media (IMS-media) were added to the culture media of neurons isolated from 8-week-old DDY mice. Neurons were cultured for 48 h with or without mouse recombinant NGF (mrNGF) or nerve growth factor (NGF) neutralizing antibody. The concentrations of NGF in IMS-media by ELISA and neurite outgrowth by a computed image analysis system were evaluated.

Results

Neurite outgrowth was significantly enhanced by IMS-media (IMS-media (–): 177 ± 177 µm, IMS-media (+): 1648 ± 726). The neurite outgrowth cultured with IMS-media obtained under the HG condition was significantly reduced compared with that under the NG condition (NG: 1474 ± 652, HG: 734 ± 331). The NGF concentrations were significantly lower in IMS-media under the HG condition than in those under the NG condition. The accelerated neurite outgrowth by IMS-media was inhibited by NGF neutralizing antibody.

Conclusions

These results suggest that SCs play important roles in neurite outgrowth of DRG neurons, and that the decreased NGF secretion by SCs under the diabetic condition would cause a defect of axonal regeneration, resulting in the development of diabetic neuropathy.  相似文献   

17.
We have investigated the effects of two neurite promoting factors (NPFs)--laminin and the semipurified polyornithine-binding neurite promoting factor (PNPF-1) from RN 22 Schwannoma cells--on neurite regeneration from dissociated newborn and adult rat dorsal root ganglion (DRG) neurons during 24 and 48 h culture periods in the absence of exogenous neuronotrophic factors. Both laminin and PNPF, when used to pretreat the polyornithine substratum, significantly enhanced neurite recruitment from surviving newborn and adult DRG neurons as compared to an untreated polyornithine substratum. However, the responses of newborn neurons at saturating concentrations of laminin and PNPF were consistently greater (46% neurite-bearing cells at 24 h, 81% at 48 h) than those of adult neurons (14 and 45%, respectively). The responsive neurons of both newborn and adult DRG displayed extensive neuritic networks at 48 h. The ED50 of laminin, or PNPF was 0.15-0.2 micrograms/ml for both newborn and adult neurons. The similarities in the responses of newborn and adult DRG neurons to NPFs validate the use of neurons from embryonic and newborn animals for the in vitro assays of NPFs that can be collected from injured and regenerating adult peripheral nervous tissues.  相似文献   

18.
In the present study, we have examined the growth characteristics of CNS neurons on type I collagen, detergent-treated collagen (dColl), Schwann cell-derived basal lamina (SC-BL), and purified laminin substrata. Neurons from the cerebral cortex, septal basal forebrain, and lumbosacral spinal cord were obtained from embryonic age (E) 15 and E18 rats and grown in vitro as explants on the test substrata. Neurons from either embryonic age displayed radial neurite outgrowth on collagen and dColl substrata. However, pretreatment of collagen with detergents slightly diminished its ability to support neurite outgrowth, as evidence by the 20-40% decrease in the rate of neurite growth on dColl versus the rate calculated for neurons on collagen. In contrast to the similar growth characteristics of E15 and E18 neurons on collagen and dColl, the pattern of neurite outgrowth for CNS neurons on SC-BL and laminin substrata was age dependent. Most E15 neurons grown on SC-BL extended neurites that grew identically to those observed on dColl; these 'non-orienting' neurites maintained a radial orientation to their outgrowth despite encountering interposing channels of SC-BL and grew at rates equal to that calculated for neurons on dColl. E15 neurons placed on laminin substrata showed similar growth patterns and rates equal to that calculated for neurons on dColl. E15 neurons placed on laminin substrata showed similar growth patterns and rates to neurons on collagen. In contrast, neurons from E18 rats exhibited neurites that preferentially grew in intimate association with SC-BL channels once contact with the channels was established. These 'orienting' neurites faithfully elongated within the SC-BL and demonstrated a 1.4- to 2.0-fold increase in growth rate compared with the sister cultures of neurons grown on dColl. Furthermore, E18 neurons exhibited a 1.4-fold increase in growth on laminin compared with E18 neurons grown on collagen. A minor population of neurites exhibiting similar characteristics to orienting neurites was also observed in E15 cultures. It is hypothesized that orienting and non-orienting neurites reflect the outgrowth of 'regenerating' and 'developing' neurons, respectively, and may indicate an inherent difference in the ability of regenerating and developing neurons to recognize and respond to the same guidance signals.  相似文献   

19.
Insulin and the insulin-like growth factors (IGFs) may directly affect the development of the nervous system. NGF, IGF-II, and insulin's effects on neurite formation and neuronal survival were studied in peripheral ganglion cell cultures from chick embryos. Neurite outgrowth was enhanced in a dose-dependent manner by insulin and IGF-II in sympathetic cell cultures. The half-maximally effective concentration, ED50, was about 0.4-0.6 nM for both polypeptides, and concentrations as low as 10 pM were active. However, in sensory neurons the ED50 for neurite outgrowth was about 30 nM for insulin and 0.1 nM for IGF-II, suggesting that these factors may have selective effects in different neuronal tissues. Neither serum nor the presence of non-neuronal cells was required for the response in sympathetic neurons. The specific anti-NGF antiserum inhibited the neurite outgrowth response to NGF but not to insulin nor IGF-II. Insulin and IGF-II additionally supported survival of sensory and sympathetic neurons; however, insulin was not as efficacious as NGF. The combination of high concentrations of NGF and insulin was no better than NGF alone in supporting sympathetic cell survival, or neurite outgrowth. This indicates that insulin acts on the same, or a subpopulation, of NGF-responsive neurons. These results support the hypothesis that insulin and its homologs belong to a broad family of neuritogenic polypeptides.  相似文献   

20.
Adult dorsal root ganglion (DRG) cells are capable of neurite outgrowth in vivo and in vitro after axotomy. We have investigated, in cultured adult rat DRG cells, the relative influence of nerve growth factor (NGF) or a prior peripheral nerve lesion on the capacity of these neurons to produce neurites. Since there is evidence suggesting that the growth-associated protein GAP-43 may play a crucial role in axon elongation during development and regeneration, we have also compared the effect of these treatments on GAP-43 mRNA expression. NGF increased the early neurite outgrowth in a subpopulation of DRG cells. This effect was substantially less, however, than that resulting from preaxotomy, which initiated an early and profuse neurite outgrowth in almost all cells. No difference in the expression of GAP-43 mRNA was found between neurons grown in the presence or absence of NGF over 1 week of culture, in spite of the increased growth produced by NGF. In contrast, cultures of neurons that had been preaxotomized showed substantial increase in GAP-43 mRNA and NGF had, as expected, a significant effect on substance P mRNA levels. Two forms of growth may be present in adult DRG neurons: an NGF-independent, peripheral nerve injury-provoked growth associated with substantial GAP-43 upregulation, and an NGF-dependent growth that may underlie branching or sprouting of NGF-sensitive neurons, but which is not associated with increased levels of GAP-43 mRNA. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号