首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.

Study purpose

With increasing usage within challenging biomechanical constructs, failures of C2 posterior cervical pedicle screws (C2-pCPSs) will occur. The purpose of the study was therefore to investigate the biomechanical characteristics of two revision techniques after the failure of C2-pCPSs.

Materials and methods

Twelve human C2 vertebrae were tested in vitro in a biomechanical study to compare two strategies for revision screws after failure of C2-pCPSs. C2 pedicles were instrumented using unicortical 3.5-mm CPS bilaterally (Synapse/Synthes, Switzerland). Insertion accuracy was verified by fluoroscopy. C2 vertebrae were potted and fixed in an electromechanical testing machine with the screw axis coaxial to the pullout direction. Pullout testing was conducted with load and displacement data taken continuously. The peak load to failure was measured in newtons (N) and is reported as the pullout resistance (POR). After pullout, two revision strategies were tested in each vertebra. In Group-1, revision was performed with 4.0-mm C2-pCPSs. In Group-2, revision was performed with C2-pedicle bone-plastic combined with the use of a 4-mm C2-pCPSs. For the statistical analysis, the POR between screws was compared using absolute values (N) and the POR of the revision techniques normalized to that of the primary procedures (%).

Results

The POR of primary 3.5-mm CPSs was 1,140.5 ± 539.6 N for Group-1 and 1,007.7 ± 362.5 N for Group-2; the difference was not significant. In the revision setting, the POR in Group-1 was 705.8 ± 449.1 N, representing a reduction of 38.1 ± 32.9 % compared with that of primary screw fixation. For Group-2, the POR was 875.3 ± 367.9 N, representing a reduction of 13.1 ± 23.4 %. A statistical analysis showed a significantly higher POR for Group-2 compared with Group-1 (p = 0.02). Although the statistics showed a significantly reduced POR for both revision strategies compared with primary fixation (p < 0.001/p = 0.001), the loss of POR (in %) in Group-1 was significantly higher compared with the loss in Group-2 (p = 0.04).

Conclusions

Using a larger-diameter screw combined with the application of a pedicle bone-plastic, the POR can be significantly increased compared with the use of only an increased screw diameter.  相似文献   

3.

Purpose

To review our experience with robotic guided S2-alar iliac (S2AI) screw placement.

Methods

We retrospectively reviewed patients who underwent S2AI fixation with robotic guidance. Screw placement and deviation from the preoperative plan were assessed by fusing preoperative CT (with the planned S2AI screws) to postoperative CT. The software’s measurement tool was used to compare the planned vs. actual screw placements in axial and lateral views, at entry point to the S2 pedicle and at a 30 mm depth at the screws’ mid-shaft, in a resolution of 0.1 mm. Medical charts were reviewed for technical issues and intra-operative complications.

Results

35 S2AI screws were reviewed in 18 patients. The patients’ mean age was 60 years. No intra-operative complications that related to the placement of S2AI screws were reported and robotic guidance was successful in all 35 screws. Post-operative CT scans showed that all trajectories were accurate. No violations of the iliac cortex or breaches of the anterior sacrum were noted. At the entry point, the screw deviated from the pre-operative plan by 3.0 ± 2.2 mm in the axial plane and 1.8 ± 1.6 mm in the lateral plane. At 30 mm depth, the screw deviated from the pre-operative plan by 2.1 ± 1.3 mm in the axial plane and 1.2 ± 1.1 mm in the lateral plane.

Conclusions

Robotic guided S2AI screw placement is feasible and accurate. No screw malpositions or complications that related to the placement of S2AI screws occurred in this series. Larger studies are needed to assess the long-term clinical outcomes of robotic guided sacral-pelvic fixation.
  相似文献   

4.

Purpose

Cranio-vertebral junction fixation is challenging due to the complex topographical anatomy and the presence of important anatomical structures. There are several limitations to the traditional occipital squama fixation methods. The purpose of this work is to assess the safety and feasibility of a new optimum trajectory of occipital condyle (OC) screws for occipitocervical fixation via a free-hand technique.

Methods

Eight different parameters of OC morphology were studied in fifty adult skulls. Free-hand placement of OC screws was performed in five cadavers using 3.5-mm titanium polyaxial screws and a 3-mm rod construct (C0–C1–C2). Postoperative computed tomography was performed to determine the success of the screw placement and their angulation, length and effect on hypoglossal canal volume.

Results

The average length, width and height of the OC were 24.2 ± 3.6, 14.2 ± 1.9, and 10.7 ± 2 mm, respectively. The average medio-lateral, hypoglossal canal and atlanto-occipital joint angles were 38.8° medially ±5°, 7.4° rostrally ±1.9° and 23.4° caudally ±3.5°, respectively. The ten screws were successfully inserted using a free-hand technique with bicortical purchase. There was no vertebral artery injury or breach of the hypoglossal canal in any specimen. The average screw length was 22.2 ± 3.9 mm. The average medio-lateral angle was 30° medially ±6.7°. The average cranio-caudal angle was 4° caudally ±6.2°.

Conclusions

The free-hand technique of OC screw placement is a safe and viable option for occipitocervical fixation and may be a preferred alternative in selected cases. However, further studies are needed to compare its safety and reliability to other more established methods.  相似文献   

5.

Purpose

Transfacet screws have been used as an alternative posterior fixation in the cervical spine. There is lack of spinal stability of the transfacet screws either as stand-along constructs or combined with anterior plate. This study was designed to evaluate spinal stability of transfacet screws following posterior ligamentous injury and combined with anterior plate, respectively, and compare transfacet screws to lateral mass screw-rod constructs.

Methods

Flexibility tests were conducted on eight cadaveric specimens in an intact and injury, and instrumented with the transfacet screw fixation and lateral mass screw-rod construct at C5–C7 levels either after section of the posterior ligamentous complex or combined with an anterior plate and a mesh cage for C6 corpectomy reconstruction. A pure moment of ±2.0 Nm was applied to the specimen in flexion–extension, lateral bending, and axial rotation. Ranges of motion (ROM) were calculated for the C5–C7 segment.

Results

ROM with the transfacet screws was 22 % of intact in flexion–extension, 9 % in lateral bending and 11 % in axial rotation, while ROM with the lateral mass screw-rod construct was 9 % in flexion–extension, 8 % in lateral bending and 22 % in axial rotation. The only significant difference between two constructs was seen in flexion–extension (5.8 ± 4.2° vs. 2.4 ± 1.2°, P = 0.002). When combined with an anterior plate and mesh cage, the transfacet screw fixation reduced ROM to 3.0° in flexion–extension, 1.2° in lateral bending, and 1.1° in axial rotation, which was similar to the lateral mass screw-rod construct.

Conclusions

This study identified the transfacet screw fixation, as stand-alone posterior fixation, was equivalent to the lateral mass screw-rod constructs in axial rotation and lateral bending except in flexion–extension. When combined with an anterior plate, the transfacet screw fixation was similar to the lateral mass screw-rod construct in motion constraint. The results suggested the transfacet screw fixation a biomechanically effective way as supplementation of anterior fixation.
  相似文献   

6.

Study design

Retrospective case series.

Objectives

To identify the variation of C2 vertebral artery groove (VAG) based on the thin-slice computed tomography (CT) scan and choose an individual screw placement method to decrease risk of malposition.

Background

C2 pedicle screws can be successful anchors for a variety of cervical disorders. However, variations of VAG may cause malposition and breach when C2 transpedicle screw was inserted. Recognizing the variations of vertebrae artery groove (VAG) in C2 and choosing an individual screw placement method (transpedicle or translaminar) may be helpful for avoiding violation and decreasing the operation risk in upper cervical surgery.

Methods

From January 2009 to December 2010, a total 45 patients with upper cervical disorders underwent 1–mm-thin-slice CT scans along the C2 pedicle direction to obtain the consecutive spectrum of C2 VAG were included in this study. The C2 VAG (types I, II, III, and IV) was subgrouped based on parameter e (the vertical distance from the apex of VAG to the upper facet joint surface) and parameter a (horizontal distance from the entrance of VAG to the vertebrae canal). Subsequently, individual strategy was used to avoid the VAG violation.

Results

The variations of C2 VAG in these 45 patients include the following: type I 53 (58.9 %), type II 16 (17.8 %) type III 13 (14.4 %), and type IV 8 (8.9 %). Transpedicle screws of C2 were used in types I, III, and IV VAGs (n = 74); translaminar screws were inserted in type II subgroup (n = 16). Postoperative CT scans showed that there were two pedicle screws violated into the artery groove, and no translaminar screw breached into the vertebrae canal. All the other screws were in right position. None of the 45 patients had severe complications such as spinal cord injury, dura tear, and infection.

Conclusion

Thin-slice CT scan along the C2 pedicle direction to analysis the variations of C2 VAG can help choose an individual screw placement method (transpedicle or translaminar) with minimal complication for C2 screw fixation.  相似文献   

7.

Purpose

The purpose of the present study was to evaluate the anatomic features of the cervical spine using computed tomography (CT) to select safer screw insertion techniques, particularly emphasizing the location of the transverse foramen.

Methods

Fifty patients who underwent multiplanar CT reconstruction were evaluated. There were 34 males and 16 females with an average age of 67 years. The parameters included the following measurements: foramen width (the size of the transverse foramen FW), foramen height (the size of the transverse foramen FH), pedicle width (PW), foramen angle (FA the position of the transverse foramen), pedicle transverse angle (PTA) and lateral mass angle (LMA).

Results

The mean FW ranged from 6.2 to 6.3 mm (n.s). The mean FH ranged from 5.0 to 5.7 mm, with significant differences between each vertebra, except for the FH between C4 and C5 and the FH between C5 and C6. The mean PW ranged from 5.4 to 6.1 mm. There were significant differences between each vertebra, except for the PW between C3 and C4 and the PW between C3 and C5. The mean FA ranged from 18.8° to 20.5°. There were significant differences between each vertebra, except for the FA between C3 and C6 and the FA between C4 and C5. The mean PTA ranged from 37.1° to 45.4°. There were significant differences between each vertebra, except for the PTA between C3 and C5. The mean LMA ranged from 1.0° to 5.3°. There were significant differences between each vertebra, except for the LMA between C4 and C5. The FW and FH exhibited no correlations with PW, PTA or LMA. FA was found to be positively correlated with both PTA and LMA. There was also a positive correlation between PTA and LMA.

Conclusions

We suggest that in cases in which pedicle screw insertion is difficult, lateral mass screws (LMS) can be inserted safely and longer sizes can be selected. In contrast, in cases in which LMS insertion is difficult, the insertion of pedicle screws can be performed relatively easy.  相似文献   

8.

Purpose

The percutaneous insertion technique requires surgical skill and experience. However, there have been few clinical reports evaluating the accuracy of minimally invasive pedicle screw placement using the conventional fluoroscopy method. The purpose of this study was to evaluate the accuracy of percutaneous pedicle screw placement in the treatment of thoracic and lumbar spine fractures using two-plane conventional fluoroscopy.

Methods

A prospective clinical trial was performed. A total of 502 percutaneous pedicle screws in 111 patients, all inserted with the assistance of conventional fluoroscopy, were evaluated. The safety and accuracy of pedicle screw placement were based on the evaluation of postoperative axial 3-mm slice computed tomography scans using the scoring system described by Zdichavsky et al. [Eur J Trauma 30:234–240, 2004; Eur J Trauma 30:241–247, 2004].

Results

427/502 pedicle screws (85 %) were classified as good and excellent concerning the best possible screw length and 494/502 (98 %) were found to have good or excellent position. One screw had to be revised due to medial position with a neurological deficit.

Conclusions

This study demonstrates the feasibility of placing percutaneous posterior thoracolumbar pedicle screws with the assistance of conventional fluoroscopy. Minimally invasive transpedicular instrumentation is an accurate, reliable and safe method to treat a variety of spinal disorders, including thoracic and lumbar spine fractures.  相似文献   

9.

Introduction

In today’s aging population, diminished bone quality often affects the outcome of surgical treatment. This occurs especially when surgical implants must be fixed to bone, as it occurs when lumbar fusion is performed with pedicle screws. Besides Polymethylmethacrylate (PMMA) injection, several techniques have been developed to augment pedicle screws. The aim of the current study was to evaluate the primary stability of an innovative system (IlluminOss?) for the augmentation of pedicle screws in an experimental cadaveric setup. IlluminOss? is an innovative technology featuring cement with similar biochemical characteristics to aluminum-free glass-polyalkenoate cement (GPC).

Materials and methods

IlluminOss? was inserted transpedicularly via a balloon/catheter system in 40 human cadaveric lumbar vertebrae. For comparability, each vertebra was treated bilaterally with pedicle screws, augmented and non-augmented. The maximum failure load during pull out test was documented by a universal material testing machine.

Results

The results showed significantly higher failure loads for the augmented pedicle screws (Median 555.0 ± 261.0 N, Min. 220.0 N, Max. 1,500.0 N), compared to the native screws (Median 325.0 ± 312.1 N, Min. 29.0 N, Max. 1,400.0 N).

Conclusions

Based on these data, we conclude the IlluminOss? system can be used to augment primary screw stability regarding axial traction, compared to native screws. The IlluminOss? monomer offers ease of control for use in biological tissues. In contrast to PMMA, no relevant heat is generated during the hardening process and there is no risk of embolism. Further studies are necessary to evaluate the usefulness of the IlluminOss? system in the in vivo augmentation of pedicle screws in the future.  相似文献   

10.

Introduction

Posterior-only approach using pedicle screws’ fixation has emerged as the preferred surgical technique for Scheuermann kyphosis (SK) correction. Insertion of multiple pedicle screws while increasing stability increases also the risk of complications related to screw malpositioning and surgical cost. The optimal screw density required in surgical correction of SK remains unclear. This study compares the safety and efficacy of low screw density (LSD) versus high screw density (HSD) technique used in posterior-only correction of SK.

Methods

Twenty-one patients underwent surgical correction of SK between 2007 and 2011 and were reviewed after a mean of 29 months. HSD technique (i.e., 100 % of available pedicles, averaged 25.2 ± 4 screws) was used in 10 cases and LSD technique (i.e., 54–69 % of available pedicles in a pre-determined pattern, averaged 16.8 ± 1.3 screws; p < 0.001) was used in 11 cases. Kyphosis correction was assessed by comparing thoracic kyphosis, lumbar lordosis and sagittal balance on preoperative and postoperative radiographs. Cost saving analysis was performed for each group.

Results

Preoperative thoracic kyphosis, lumbar lordosis and sagittal balance were similar for both groups. The average postoperative kyphosis correction was similar in both HSD and LSD groups (29° ± 9° vs. 34° ± 6°, respectively; p = 0.14). Complication occurred in four patients (19 %) in the HSD group and in two patients (9 %) in the LSD group (p = 0.56). Three patients required re-operation. Compared to HSD using LSD saves 4,200£ per patient in hardware and 88,200£ for the entire cohort.

Conclusion

LSD technique is as safe and effective as HSD technique in posterior-only correction of SK. Implant-related cost could be reduced by 32 %.  相似文献   

11.

Purpose

Single center evaluation of the placement accuracy of thoracolumbar pedicle screws implanted either with fluoroscopy or under CT-navigation using 3D-reconstruction and intraoperative computed tomography control of the screw position. There is in fact a huge variation in the reported placement accuracy of pedicle screws, especially concerning the screw placement under conventional fluoroscopy most notably due to the lack of the definition of screw misplacement, combined with a potpourri of postinstrumentation evaluation methods.

Methods

The operation data of 1,006 patients operated on in our clinic between 1995 and 2005 is analyzed retrospectively. There were 2,422 screws placed with the help of CT-navigation compared to 2,002 screws placed under fluoroscopy. The postoperative computed tomography images were reviewed by a radiologist and an independent spine surgeon.

Results

In the lumbar spine, the placement accuracy was 96.4 % for CT-navigated screws and 93.9 % for pedicle screws placed under fluoroscopy, respectively. This difference in accuracy was statistically significant (Fishers Exact Test, p = 0.001). The difference in accuracy became more impressing in the thoracic spine, with a placement accuracy of 95.5 % in the CT-navigation group, compared to 79.0 % accuracy in the fluoroscopy group (p < 0.001).

Conclusion

This study underlines the relevance of CT-navigation-guided pedicle screw placement, especially when instrumentation of the middle and upper thoracic spine is carried out.  相似文献   

12.

Background:

Biomechanical studies have shown C2 pedicle screw to be the most robust in insertional torque and pullout strength. However, C2 pedicle screw placement is still technically challenging. Smaller C2 pedicles or medial localization of the vertebral artery may preclude safe C2 pedicle screw placement in some patients. The purpose of this study was to compare the pullout strength of spinous process screws with pedicle screws in the C2.

Materials and Methods:

Eight fresh human cadaveric cervical spine specimens (C2) were harvested and subsequently frozen to −20°C. After being thawed to room temperature, each specimen was debrided of remaining soft tissue and labeled. A customs jig as used to clamp each specimen for screw insertion firmly. Screws were inserted into the vertebral body pairs on each side using one of two methods. The pedicle screws were inserted in usual manner as in previous biomechanical studies. The starting point for spinous process screw insertion was located at the junction of the lamina and the spinous process and the direction of the screw was about 0° caudally in the sagittal plane and about 0° medially in the axial plane. Each vertebrae was held in a customs jig, which was attached to material testing machine (Material Testing System Inc., Changchun, China). A coupling device that fit around the head of the screw was used to pull out each screw at a loading rate of 2 mm/min. The uniaxial load to failure was recorded in Newton''st dependent test (for paired samples) was used to test for significance.

Results:

The mean load to failure was 387 N for the special protection scheme and 465 N for the protection scheme without significant difference (t = −0.862, P = 0.403). In all but three instances (38%), the spinous process pullout values exceeded the values for the pedicle screws. The working distances for the spinous process screws was little shorter than pedicle screws in each C2 specimen.

Conclusion:

Spinous process screws provide comparable pullout strength to pedicle screws of the C2. Spinous process screws may provide an alternative to pedicle screws fixation, especially with unusual anatomy or stripped screws.  相似文献   

13.

Background

While convergent placement of pedicle screws in the axial plane is known to be more advantageous biomechanically, surgeons intuitively aim toward a parallel placement of screws in the sagittal plane. It is however not clear whether parallel placement of screws in the sagittal plane is biomechanically superior to a non-parallel construct. The hypothesis of this study is that sagittal non-parallel pedicle screws do not have an inferior initial pull-out strength compared to parallel placed screws.

Methods

The established lumbar calf spine model was used for determination of pull-out strength in parallel and non-parallel intersegmental pedicle screw constructs. Each of six lumbar calf spines (L1-L6) was divided into three levels: L1/L2, L3/L4 and L5/L6. Each segment was randomly instrumented with pedicle screws (6/45 mm) with either the standard technique of sagittal parallel or non-parallel screw placement, respectively, under fluoroscopic control. CT was used to verify the intrapedicular positioning of all screws. The maximum pull-out forces and type of failure were registered and compared between the groups.

Results

The pull-out forces were 5,394 N (range 4,221 N to 8,342 N) for the sagittal non-parallel screws and 5,263 N (range 3,589 N to 7,554 N) for the sagittal-parallel screws (p?=?0.838). Interlevel comparisons also showed no statistically significant differences between the groups with no relevant difference in failure mode.

Conclusion

Non-parallel pedicle screws in the sagittal plane have at least equal initial fixation strength compared to parallel pedicle screws in the setting of the here performed cadaveric calf spine experiments.  相似文献   

14.

Purpose

To establish reference data on the dimensions of C2 lamina to guide the use of translaminar screws with Wright’s technique and a modified technique for pediatric patients in different age groups.

Methods

113 pediatric patients were divided into six age groups, and their cervical vertebrae were studied on CT scans. Laminar height, width, length and screw angle were measured. Statistical analysis was performed using Student t tests, Pearson’s correlation and linear regression analysis.

Results

Mean laminar height was 10.95 ± 2.81 mm, and mean width was 6.01 ± 0.90 mm. For Wright’s technique, mean laminar length was 30.65 ± 3 mm, and the screw angle was 56.02° ± 3.62°. For the modified technique, mean laminar length was 22.07 ± 2.38 mm, and the screw angle was 67.40° ± 3.39°. 95.6 % (108/113) of the children could insert a screw into the lamina (laminar width ≥4.5 mm), 72.6 % (82/113) could accept bilateral translaminar screws (laminar width ≥4.5 mm and laminar height ≥9 mm).

Conclusion

Our investigation provides insight into the anatomy of C2 lamina in six pediatric age groups. Compared to adults, the benefits of C2 translaminar screws fixation are more obvious in the pediatric spine which has a large C2 lamina. Compared to Wright’s technique, the modified technique should insert a screw with bigger insert angle and shorter screw length.  相似文献   

15.
Yu Y  Xie N  Ni B  Liu K  Guo Q  Yang J  Zhu Z  Luo J 《European spine journal》2012,21(6):1186-1191

Introduction

Although pedicle screw fixation has been increasingly used in the upper thoracic spine in recent years, controversies exist about the safety and complications such as nerve or vascular intrusion associated with the technique. In this study, an alternative method of transarticular screw fixation was validated.

Materials and methods

Morphometric analysis was performed on computed tomography (CT) scans of the upper thoracic zygapophysial joints of C7, T1, T2 and T3 in 20 male and 20 female patients in the axial and sagittal planes. The degree of screw angulation was recorded in the sagittal and axial planes and the screw length was measured at the spinal level from C7 to T3.

Results

The smallest medial–lateral diameter and anterior–posterior diameter of IAP was found at T3 in the female patients and C7 in the male patients. The screw trajectory length ranged from 14.9 to 20.5 mm in all patients. All the above measurements were significantly different between male and female patients at all levels (P < 0.05). The mean value of screw trajectory angle was 19.3°–20.1° in the axial plane and 44.3°–45.7° in the sagittal plane. There was no statistically significant difference (P > 0.05) between male and female patients in the axial and sagittal angles.

Conclusion

The morphometric data of C7–T3 zygapophysial joints indicate the suitable screw diameter and screw length for this technique. Transarticular screw fixation proved to be a potentially safe alternative to pedicle screw fixation in this region.  相似文献   

16.

Purpose

To determine whether translaminar facet screws can provide stability equivalent to pedicle screws and whether the two posterior instrumentations have the same influence on the adjacent segments in two-level anterior lumbar interbody fusion.

Methods

In a biomechanical study conducted, we used 12 fresh human lumbar spines and tested an intact spine with a stand-alone two-level anterior lumbar interbody fusion and anterior fusion augmented with pedicle screws or translaminar facet screws, under 400 N compressive preloads and 7.5 N m moments in flexion, extension, axial rotation and lateral bending, and measured the stiffness of the operated level, range of motion and intradiscal pressure at the adjacent levels.

Results

We found a significant increase in the stiffness of the segments operated, range of motion and intradiscal pressure at the adjacent superior segment in the stand-alone two-level anterior lumbar interbody fusion during flexion, axial rotation and lateral bending, but a decrease in extension, when compared with the intact spine. The stiffness of operated segments, range of motion and intradiscal pressure in the adjacent segment are significantly higher in the two-level anterior lumbar interbody fusion augmented with posterior instrumentation than in the stand-alone two-level anterior lumbar interbody fusion. There was no significant difference between the two augmented constructs except that, at the adjacent superior segment, the intradiscal pressure was more in the construction augmented with a pedicle screw than with a translaminar facet screw in flexion.

Conclusions

Translaminar facet screws can provide stability equivalent to pedicle screws, but their influence on the adjacent segments is relatively lower; therefore, we suggest that translaminar facet screws be the choice in the optimal posterior instrumentation in a two-level anterior lumbar interbody fusion.  相似文献   

17.

Background

Therapy of vertebral fractures in the elderly is a growing challenge for surgeons. Within the last two decades, the use of polymethylmethacrylate (PMMA) in the treatment of osteoporotic vertebral fractures has been widely established. Besides vertebroplasty and kyphoplasty, the augmentation of pedicle screws with PMMA found widespread use to strengthen the implant–bone interface. Several studies showed an enhanced pullout strength of augmented screws compared to standard pedicle screws in osteoporotic bone models. To validate the clinical relevance, we analyzed postoperative radiologic follow-up data in regard to secondary loss of correction and loosening of pedicle screws in elderly patients.

Materials and methods

In this retrospective comparative study, 24 patients admitted to our level I trauma center were analyzed concerning screw loosening and secondary loss of correction following vertebral fracture and posterior instrumentation. Loss of correction was determined by the bisegmental Cobb angle and kyphosis angle of the fractured vertebra. Follow-up computed tomography (CT) scans were used to analyze the prevalence of clear zones around the pedicle screws as a sign of loosening.

Results

In 15 patients (mean age 76 ± 9.3 years) with 117 PMMA-augmented pedicle screws, 4.3 % of screws showed signs of loosening, whereas in nine patients (mean age 75 ± 8.2 years) with 86 uncemented screws, the loosening rate was 62.8 %. Thus, PMMA-augmented pedicle screws showed a significantly lower loosening rate compared to regular pedicle screws. Loss of correction was minimal, despite poor bone quality. There was significantly less loss of correction in patients with augmented pedicle screws (1.1° ± 0.8°) as compared to patients without augmentation (5° ± 3.8°).

Conclusion

The reinforcement of pedicle screws using PMMA augmentation may be a viable option in the surgical treatment of spinal fractures in the elderly.  相似文献   

18.

Purpose

To retrospective review the clinical outcomes of the modified operative technique using a polyester suture material (Ethibond* Excel) for atlantoaxial transarticular screw fixation and posterior fusion.

Methods

The retrospective reviews were conducted from 2002 to 2012. The patient’s medical record reviews included demographic data, cause of atlantoaxial instability, orthopedic and surgical history, clinical presentation, radiographic finding including plain radiography, complications, operative detail, and outcome of treatment. Fusion of C1–C2 was defined as either graft consolidation or absence of C1–C2 movement on lateral flexion–extension radiograph.

Results

Twenty-three patients demonstrated clinical and radiographic evidence of atlantoaxial instability (13 men and 10 women, with a mean age of 42 years). Majority of atlantoaxial instability was caused by trauma. Most common clinical symptom was neck pain with or without cervical myelopathy. Bilateral screws were placed in 18 of the 23 patients. Five patients underwent placement of unilateral screws. The 13 patients were inserted by screws with diameter 4.0 mm. The means screw length was 40.33 mm. The means of operative time and estimated blood loss were 3.6 h and 234 ml, respectively. The mean of follow-up duration was 18 months. All 41 screws were positioned satisfactorily in C1 lateral mass. All 23 patients achieved fusion (100 % fusion rate). After a period of follow-up, 9 of the 10 neurological deficit patients had completely recovered.

Conclusions

We concluded that the atlantoaxial transarticular screw fixation and posterior fusion using polyester cable can be used for C1–2 fusion with a high fusion rate and less complications in various cases.  相似文献   

19.

Study design

A cross-sectional study of the data retrospectively collected by chart review.

Objectives

This study aimed to clarify screw perforation features in 129 consecutive patients treated with computer-assisted cervical pedicle screw (CPS) insertion and to determine important considerations for computer-assisted CPS insertion.

Summary of background data

CPS fixation has been criticized for the potential risk of serious injury to neurovascular structures. To avoid such serious risks, computed tomography (CT)-based navigation has been used during CPS insertion, but screw perforation can occur even with the use of a navigation system.

Methods

The records of 129 consecutive patients who underwent cervical (C2–C7) pedicle screw insertion using a CT-based navigation system from September 1997 to August 2013 were reviewed. Postoperative CT images were used to evaluate the accuracy of screw placement. The screw insertion status was classified as grade 1 (no perforation), indicating that the screw was accurately inserted in pedicle; grade 2 (minor perforation), indicating perforation of less than 50 % of the screw diameter; and grade 3 (major perforation), indicating perforation of 50 % or more of the screw diameter. We analyzed the direction and rate of screw perforation according to the vertebral level.

Results

The rate of grade 3 pedicle screw perforations was 6.7 % (39/579), whereas the combined rate of grades 2 and 3 perforations was 20.0 % (116/579). No clinically significant complications, such as vertebral artery injury, spinal cord injury, or nerve root injury, were caused by the screw perforations. Of the screws showing grade 3 perforation, 30.8 % screws were medially perforated and 69.2 % screws were laterally perforated. Of the screws showing grades 2 and 3 perforation, 21.6 % screws were medially perforated and 78.4 % screws were laterally perforated. Furthermore, we evaluated screw perforation rates according to the vertebral level. Grade 3 pedicle screw perforation occurred in 6.1 % of C2 screws; 7.5 % of C3 screws; 13.0 % of C4 screws; 6.5 % of C5 screws; 3.2 % of C6 screws; and 4.0 % of C7 screws. Grades 2 and 3 pedicle screw perforations occurred in 12.1 % of C2 screws, 22.6 % of C3 screws, 31.5 % of C4 screws, 22.2 % of C5 screws, 14.4 % of C6 screws, and 12.1 % of C7 screws. C3–5 screw perforation rate was significantly higher than C6–7 (p = 0.0024).

Conclusions

Careful insertion of pedicle screws is necessary, especially at C3 to C5, even when using a CT-based navigation system. Pedicle screws tend to be laterally perforated.  相似文献   

20.

Purpose

To present the technique of free-hand subaxial cervical pedicle screw (CPS) placement without using intra-operative navigating devices, and to investigate the crucial factors for safe placement and avoidance of lateral pedicle wall perforation, by measuring and classifying perforations with postoperative computed tomography (CT) scan.

Summary of background data

The placement of CPS has generally been considered as technically demanding and associated with considerable lateral wall perforation rate. For surgeons without access to navigation systems, experience of safe free-hand technique for subaxial CPS placement is especially valuable.

Materials and methods

A total of 214 consecutive traumatic or degenerative patients with 1,024 CPS placement using the free-hand technique were enrolled. In the operative process, the lateral mass surface was decorticated. Then a small curette was used to identify the pedicle entrance by touching the cortical bone of the medial pedicle wall. It was crucial to keep the transverse angle and make appropriate adjustment with guidance of the resistance of the thick medial cortical bone. The hand drill should be redirected once soft tissue breach was palpated by a slim ball-tip prober. With proper trajectory, tapping, repeated palpation, the 26–30 mm screw could be placed. After the procedure, the transverse angle of CPS trajectory was measured, and perforation of the lateral wall was classified by CT scan: grade 1, perforation of pedicle wall by screw placement, with the external edge of screw deviating out of the lateral pedicle wall equal to or less than 2 mm and grade 2, critical perforation of pedicle wall by screw placement, large than 2 mm.

Results

A total of 129 screws (12.64 %) were demonstrated as lateral pedicle wall perforation, of which 101 screws (9.86 %) were classified as grade 1, whereas 28 screws (2.73 %) as grade 2. Among the segments involved, C3 showed an obviously higher perforating rate than other (P < 0.05). The difference between the anatomical pedicle transverse angle and the screw trajectory angle was higher in patients of grade 2 perforation than the others. In the 28 screws of grade 2 perforation verified by axial CT, 26 screws had been palpated as abnormal during operation. However, only 19 out of the 101 screws of grade 1 perforation had shown palpation alarming signs during operation. The average follow-up was 36.8 months (range 5–65 months). There was no symptom and sign of neurovascular injuries. Two screws (0.20 %) were broken, and one screw (0.10 %) loosen.

Conclusion

Placement of screw through a correct trajectory may lead to grade 1 perforation, which suggests transversal expansion and breakage of the thinner lateral cortex, probably caused by mismatching of the diameter of 3.5 mm screws and the tiny cancellous bone cavity of pedicle. Grade 1 perforation is deemed as relatively safe to the vertebral artery. Grade 2 perforation means obvious deviation of the trajectory angle of hand drill, which directly penetrates into the transverse foramen, and the risk of vertebral artery injury (VAI) or development of thrombi caused by the irregular blood flow would be much greater compared to grade 1 perforation. Moreover, there are two crucial maneuvers for increasing accuracy of screw placement: identifying the precise entry point using a curette or hand drill to touch the true entrance of the canal after decortication, and guiding CPS trajectory on axial plane by the resistant of thick medial wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号