首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six female subjects, aged 24-34 years, performed shoulder-neck exercise for 1 h or until they were exhausted by holding out their arms horizontally at 60° to the sagittal plane. One continuous and six intermittent protocols were applied, all with a mean load corresponding to the torque of the arms, i.e. about 15% maximal voluntary contraction (MVC). The intermittent protocols varied according to cycle time (10 s, 60 s, 360 s) and duty cycle (0.33, 0.50, 0.67, 0.83). Electromyogram (EMG), mean arterial blood pressure ( a), heart rate (f c) and perceived fatigue were monitored at regular intervals during exercise. Blood concentrations of potassium, lactate and ammonia were determined in pre- and postexercise samples of venous blood. Before and up to 4 h after exercise, measurements were made of MVC, pressure pain threshold, proprioceptive performance, and of EMG, a and f c during 1-min arm-holding at 25% MVC. Endurance times ranged from about 10 min to more than 1 h, significantly relating to both cycle time and duty cycle. The a, f c EMG amplitude and perceived fatigue increased early during all protocols and continued to increase throughout the exercise period. Duty cycle influenced all of these variables, while only a and fatigue perception were related to cycle time. Cardiovascular and neuromuscular recovery was incomplete for hours after several of the protocols, as indicated for example by a sensitizised response to the 1-min armholding. The protocols differed substantially as regards the relationship between different responses. Thus, ranking of the protocols in terms of physiological strain was different, depending on the criterion variable. The result stresses the relevance of applying a comprehensive selection of variables when evaluating the responses to intermittent shoulder-neck exercise.  相似文献   

2.
Summary The transient and steady-state cardiopulmonary responses to combined rhythmic (R) and isometric (I) exercise were examined in nine subjects. Isometric exercise at 30% maximal voluntary contraction (MVC) was started 1.5 min prior to either a 50% or 75% maximal oxygen uptake ( ) cycle ride and continued for 1.5 min into the 10-min R. Systolic (P as) and diastolic (P ad) blood pressure, heart rate (f c), inspired ventilation volumes ( ), and oxygen uptake ( ) were recorded every 30 s throughout each experiment. Responses to I effort alone were recorded for comparison with experiments in which the combined exercises were performed during the first 1.5 min when R had not yet begun.P as responses in the first 1.5 min of I (no R) showed the typical rapid linear increase. Addition of the R effort further increasedP as to levels which remained nearly constant (steady state) throughout R. R alone produced a slowerP as increase to approximately the same steady-state levels as those of the combined R and I exercise. ForP ad, the linear increase which occurred during the first 1.5 min of I was attenuated with the superimposition of R. Following cessation of I,P ad fell rapidly during continued R to levels not different from experiments with R alone. Thef c during I alone increased slightly. As I continued, the onset of the R induced a further rapid increase inf c to levels not different from R alone. The showed a similar response to c. during I alone did not change significantly. These results suggest that a 30% MVC started 1.5 min prior to and ending 1.5 min into a R effort may enable steady-stateP as andf c for a 50% effort to be reached more rapidly than in response to R alone.  相似文献   

3.
The effects of acute and repeated exposures to 500 kPa O2 on the distribution of cerebral blood flow and systemic haemodynamics were assessed in awake rats. After habituation, the control rats (group 1,n=7) were restrained for 1 h daily for 8 days in air at 101 kPa, while the test rats (group 2,n=8) were exposed to 500 kPa O2 for 1 h daily for 8 consecutive days. During a final exposure, both groups were exposed to 500 kPa O2. Systolic (BPs) and mean arterial blood pressure (BP a), and heart rate (f c) were measured continuously from implanted arterial catheters; while cardiac output and regional were measured by the microsphere method in air before the O2 exposure, and after both 5 min and 60 min at 500 kPa O2 in all the animals. The baseline measurements in air of BPs andBP a were higher andf c was lower in group 2, while the acid-base chemistries were similar in the two groups. Total was similar in both groups. However in group 2, blood flows and calculated O2 supplies to colliculi, hippocampus, hypothalamus, and most cerebral cortical regions were higher, but lower to pons and medulla oblongata. During O2 exposure andf c decreased, andBP a, BPs, and peripheral vascular resistance increased in all the rats. Arterial partial pressure of CO2 and [HCO3 ] decreased in group 1, but remained at baseline levels in group 2. Total and decreased in both groups, and the distribution was altered. Calculated O2 supplies to different brain regions varied according to the changes, so that most regions sustained baseline O2 delivery, although O2 delivery to some regions may have been reduced. The decline of also indicated reduced removal of waste from the brain, so that CO2 tension and temperature could have been elevated, thereby potentiating the toxic effects of O2 on brain cells. In conclusion, repeated O2 exposures induced heterogeneous and persistent changes in , as well as a persistent increase in arterial pressure.  相似文献   

4.
Summary The metabolic and physiological responses to different exercise to rest ratios (E: R) (2:1, 1: l, 1:2) of eight subjects exercising at work rates approximately 10% above and below maximum oxygen uptake ( ) were assessed. Each of the six protocols consisted of 15 1-min-long E : R intervals. Total work (kJ), oxygen uptake ( ), heart rate (f c and plasma lactate concentrations were monitored. With increases in either E : R or work rate, andf c increased (P <0.05). The average (15 min) andf c ranged from 40 to 81 %, and from 62 to 91% of maximum, respectively. Plasma lactate concentrations nearly doubled at each E : R when work rate was increased from 90 to 110% of and ranged from a low of 1.8 mmol -I–1 (1: 2–90) to a high of 10.7 mmol·1–1 (2:1–110). The 2:1–110 protocol elicited plasma lactate concentrations which were approximately 15 times greater than that of rest. These data suggest that plasma lactate concentrations during intermittent exercise are very sensitive to both work rate and exercise duration.  相似文献   

5.
Summary This study was designed to examine the interrelationships between performance in endurance running events from 10 to 90 km, training volume 3–5 weeks prior to competition, and the fractional utilization of maximal aerobic capacity (% ) during each of the events. Thirty male subjects underwent horizontal treadmill testing to determine their , and steady-state at specific speeds to allow for calculation of % sustained during competition. Runners were divided into groups of ten according to their weekly training distance (group A trained less than 60 km · week–1, group B 60 to 100 km · week–1, and group C more than 100 km · week–1). Runners training more than 100 km · week–1 had significantly faster running times (average 19.2%) in all events than did those training less than 100 km · week–1. or % sustained during competition was not different between groups. The faster running speed of the more trained runners, running at the same % during competition, was due to their superior running economy (19.9%). Thus all of the group differences in running performance could be explained on the basis of their differences in running economy. These findings suggest either that the main effect of training more than 100 km · week–1 may be to increase running economy, or that runners who train more than 100 km · week–1 may have inherited superior running economy. The finding that the maximal horizontal running speed reached during the progressive maximal treadmill test was a better predictor (r=0.72) of running performance at all distances than was the (r=0.54) suggests that peak treadmill running speed can predict performance in endurance running events.  相似文献   

6.
The aim of this study was to evaluate the thermoregulatory changes induced by 27-h of sleep deprivation (SD) in men at rest both in a comfortable ambient temperature and in cold air. A group of 12 male subjects were placed in a comfortable ambient temperature (dry bulb temperature,T db = 25° C, relative humidity, rh = 40%–50% , clothing insulation = 1 clo) for 1 h and then they were submitted to a standard cold air test in a climatic chamber for 2h (T db=1° C, rh = 40%–50%, wind speed = 0.8 m·s–1, nude), before and after 27 h of sleep deprivation. Thermoregulatory changes (rectal temperature,T re; mean skin temperature, sk; metabolic heat production ) were monitored continuously. At comfortable ambient temperature, no significant change was observed after SD forT re, sk and . During the cold test,T re did not change but sk and were higher after SD (P<0.05). Increased (+ 6%,P < 0.05) was related to earlier and higher shivering, with a possible increase in the sensitivity of the thermoregulatory system as shown by the shorter time to onset of continous shivering (d): 8.66 (SEM 1.33) min versus 28.20 (SEM 1.33) min (P < 0.001) and by a higher sk observed at d: 27.60 (SEM 1.40)° C versus 21.40 (SEM 0.60)° C (P < 0.001). These results were associated with higher cold sensations and shivering following SD. They also suggested that SD modified thermoregulatory responses at a central level especially in a cold environment.  相似文献   

7.
Summary In two experiments maximal aerobic power calculated from maximal mechanical power (W max) was evaluated in 39 children aged 9–11 years. A maximal multi-stage cycle ergometer exercise test was used with an increase in work load every 3 min. In the first experiment oxygen consumption was measured in 18 children during each of the prescribed work loads and a correction factor was calculated to estimate using the equation . An appropriate increase in work rate based on height was determined for boys (0.16 W · cm–1) and girls (0.15 W · cm–1) respectively. In the second experiment 21 children performed a maximal cycle ergometer exercise test twice. In addition to the procedure in the first experiment a similar exercise test was performed, but without measurement of oxygen uptake. Calculated correlated significantly (p<0.01) with those values measured in both boys (r=0.90) and girls (r=0.95) respectively, and the standard error of estimation for (calculated) on (measured) wass less than 3.2%. Two expressions of relative work load (% and %W max) were established and found to be closely correlated. The relative work load in % could be predicted from the relative work load in % W max with an average standard error of 3.8%. The data demonstrate that calculated based on a maximal multi-stage exercise test provides an accurate and valid estimate of   相似文献   

8.
Summary The relationship between record time (t r) and maximal oxygen uptake ( ) has been examined in 69 male physical education students who had taken part in 800-m and 1500-m footraces. It was found thatt r and were inversely related. The relationshipst r=f( ) have been fitted by two exponential equations:t r(1500 m)=698e –0.0145 t r(800 m) = 272e–0.01 P<0.001. A mathematical formulation of the energy conservation principle in supramaximal running, based on the exponential increase of the oxygen uptake as a function of time with a rate constant of 0.025 s–1 has been applied to thet r calculation from . As calculatedt r were highly correlated to measuredt r (P<0.001), it was concluded that the relationshipst r=f( ) can be interpreted on the basis of the model described in this study.  相似文献   

9.
To evaluate the mechanism of potentiation of sweating after long-term physical training, we compared sweating function in trained and untrained subjects using the frequency of sweat expulsion (f sw) as an indicator of central sudomotor activity. Nine trained male subjects (trained group) and eight untrained male subjects (untrained group) performed 30-min cycle exercise at 35% maximal oxygen uptake at 25°C ambient temperature and 35% relative humidity. Oesophageal temperature (T oes), mean body temperature b, chest sweating rate ( sw,chest), forearm sweating rate ( forearm), andf sw were measured. The slopes of the sw,chest versus body temperature (T oes and b) and versusf sw relationships in the trained group were significantly greater than those in the untrained group (both,P < 0.05), while there was no difference between the groups in the slopes of the sw,chest versus body temperature or versusf sw relationships. Neither the body temperature threshold for initiation of chest or forearm sweating nor the slope of thef sw- b relationship differed between groups. We concluded that, during light exercise at moderate ambient temperature, the sw,chest in the subjects who had undergone long-term physical training was greater than that in the untrained subjects while the sw,forearm was not changed. The greater sw,chest in the trained subjects was concluded to be due to an increase of sensitivity of peripheral mechanisms.  相似文献   

10.
Summary The aim of this study was to determine whether in humans there are differences in the heat storage calculated by partitional calorimetry (S, the balance of heat gains and heat losses) compared to the heat storage obtained by conventional methods (thermometry) via either core temperature or mean body temperatures ( , whereT c is core temperature and is mean skin temperature) when two different sites are used as an index ofT c [rectal (T re) and auditory canal (T ac) temperatures]. Since women respond to the heat differently than men, both sexes were studied. After a stabilisation period at thermal neutrality, six men and seven women were exposed to a globe temperature of 50°C, relative humidity of 17% and wind speed of 0.8–1.0 m·s–1 for 90 min semi-nude at rest, whereT re,T ac, , metabolic rate, dry (radiant+convective heat exchange) and evaporative heat losses,S, heat storage byT c ( ) and heat storage by were assessed every minute. In the men,S was equal to 350.8(SEM 49.6) kJ whereas amounted to only 114.6(SEM 16.2) and 196.7(SEM 32.3) kJ forT re andT ac, respectively (P<0.05). Final underestimatedS by 49% [177.7(SEM 23.0) kJ;P<0.05] whereas was not significantly different than S [255.7(SEM 37.9) kJ]. In the women,S corresponded to a total of 294.3(SEM 23.2) kJ, a value that was very similar to the 262.6(SEM 31.0) kJ], whereas underpredicted by 35% [190.4(SEM 26.3) kJ;P<0.05]. As in the men,S T c was much lower thanS [116.6(SEM 19.9) and 190.3(SEM 24.2) kJ forT re andT ac, respectively;P<0.05]. Using seven other well-known weighting coefficients, could under- and overestimateS by up to 55% and 11%, respectively. In all subjects, a large portion of the variance (68% and 75%) in the difference betweenS and , could be explained primarily by the T ac. The results demonstrated that although some estimates of thermometric heat storage matched the calorimetricS, other predictions underestimated it by up to 67% during passive heating. It is suggested that these differences can be explained in part by he site chosen to representT c, the use of eitherT c or in the heat storage calculation, and the thermoneutral/hot weighting coefficient(s) chosen to determine . Until more representative measurements of body temperatures at different depths (core, shell and intermediate) are possible, the use of and -derived heat storage is difficult to justify.  相似文献   

11.
Summary Heart rate (HR) and oxygen uptake at the mechanical power corresponding to the capillary blood lactate ([1a]cap) of 4 mmol·1–1 (W It) were measured in 34 healthy male subjects during incremental exercise . On the basis of these measurements, the subjects were asked to cycle at W1, for 60 min (steady-state exercise, . Twenty subjects could not reach the target time (mean exhaustion time, te, 38.2 min, SD 5.3), while 6 of the 14 remaining subjects declared themselves exhausted at the end of exercise. The final [la]cap if the two groups of exhausted subjects were 5.3 mmol · 1–1, SD 2.3 and 4.3 mmol · 1–1, SD 1.1, respectively. At the end of [la]cap and HR were significantly lower in the 8 unexhausted subjects than in the other subjects. This group also had a lower HR at during . The HR and appeared to be higher during than during . When all subjects were ranked according to theirt e during , (expressed per kilogram of body mass) was found to be negatively related to t e . In conclusion, during , measurements of physiological variables at fixed [la]cap give a poor prediction of their trends during W,, and of the relative t e ; at the same work load [la]cap can be quite different in the two experimental conditions. Furthermore, resistance to exercise fatigue at seems lower in the fitter subjects.  相似文献   

12.
Anti-G straining manoeuvres, derived from the Valsalva manoeuvre (VM), are physiological methods for protecting fighter pilots against positive accelerations (+Gz). The aim of this study was to investigate the effects of a standard VM on cerebral haemodynamics, in normo- and hypergravity. In six healthy male volunteers, we investigated the cerebral blood flow velocity response induced by a 10-s, 70-hPa (52.5 mmHg) VM, under normogravity, + 2, + 3 and + 4 Gz acceleration plateaus. Mean blood flow velocity ( ) in middle cerebral artery was monitored by transcranial Doppler velocimetry. In normogravity, no significant variation in was observed at the onset of VM. After a maximal period of 1.2 s, while VM was sustained, decreased significantly (P < 0.05). Following the end of the manoeuvre did not change significantly. When the expiratory pressure had returned to the control value, was transiently increased (P < 0.05) before returning to control values. During hypergravity, was significantly decreased at + 3 and + 4 Gz (P < 0.05) before the onset of VM. While performing VM under + Gz, the main difference compared to the normogravity condition was a significant increase of (P < 0.05) at the onset of the manoeuvre. Our findings would suggest that when performed under + Gz stress, a 70-hPa VM can transiently improve cerebral haemodynamics. However, when VM is sustained for more than 1.2 s it results in a lasting decrease of cerebral perfusion which may lower + Gz tolerance.F. Melchior deceased 31 October 1992  相似文献   

13.
Summary This study investigated cardiovascular responses to 2 min sustained submaximal (20% MVC) and maximal (100% MVC) voluntary isometric contractions of the finger flexors in healthy young women. Cardiovascular variables investigated were: heart rate (f c), mean arterial pressure ( a), and stroke volume (SV). Doppler echocardiography was used to estimate SV from measures of aortic diameter (AD) and time-velocity integrals. Preliminary studies indicated that AD did not change significantly after 2 min sustained 100% MVC. Therefore, pre-exercise AD values were used to calculate SV before, during and after exercise. During the 2-min 100% MVC period, f c and aincreased significantly during the first 30 s of contraction. f c then remained constant during the remainder of the 2-min contraction period, while acontinued to rise. SV did not change significantly during the 100% MVC task but increased significantly during recovery from sustained 100% MVC. The data suggest that the magnitude of cardiovascular responses to isometric exercise is dependent on the specific task performed, and that there is a different pattern of response for f c, a, and SV during 20% and 100% MVC tasks. Unlike f c and a, SV did not change significantly during isometric exercise, but increased significantly after sustained 100% MVC.  相似文献   

14.
Summary It has recently been demonstrated that, compared to normal conditions, ventilation ( ) was increased during exercise after glycogen depletion, in spite of a marked increase in plasma pH (pHP). It was further demonstrated that in patients with McArdle's syndrome was reduced when substrate availability was improved. In the present experiments, six endurance trained men performed two successive cyclo-ergometric incremental exercise tests (tests A, B) after normal nutrition (N) and after a fatty meal in conjunction with a sodium bicarbonate (NaHCO3) solution (FSB) or without NaHCO3 (F), and the relationship between , plasma potassium concentration ([K+]P), and pHP was checked. Plasma free fatty acid concentration ([FFA]P) was markedly increased in the F and FSB trials (P<0.001). In FSB pHP was significantly increased, compared to N and F (P<0.001). In all the B tests, pHP increased during moderate and intense exercise and in FSB, remained alkalotic even during maximal exercise intensity. In contrast, and [K+]P changes were almost equal in all the trials and in tests A and B. It was found that exercise-induced changes of and [K+]P in the present experiments were not markedly affected by [FFA]P or pHP values and that these changes also occurred independently of changes in pHP or plasma bicarbonate concentration. The often used glycogen depletion strategy may have slightly increased but apparently did not overcompensate for a possible decrease in due to increased pHP. The close relationship between and [K+]P was not affected by acid-base or substrate changes; this would further confirm the hypothesis that K+ may act as a stimulus for exercise .  相似文献   

15.
Summary Thirty-three college women (mean age=21.8 years) participated in a 5 d·wk–1, 12 week training program. Subjects were randomly assigned to 3 groups, above lactate threshold (> LT) (N=11; trained at 69 watts above the workload associated with LT), =LT (N=12; trained at the work load associated with LT) and control (C) (N=10). Subjects were assessed for , LT, LT/ , before and after training, using a discontinuous 3 min incremental (starting at 0 watts increasing 34 watts each work load) protocol on a cycle ergometer (Monark). Respiratory gas exchange measures were determined using standard open circuit spirometry while LT was determined from blood samples taken immediately following each work load from an indwelling venous catheter located in the back of a heated hand. Body composition parameters were determined before and after training via hydrostatic weighing. Training work loads were equated so that each subject expended approximately 1465 kJ per training session (Monark cycle ergometer) regardless of training intensity. Pretraining, no significant differences existed between groups for any variable. Post training the > LT group had significantly higher (13%), (47%) and LT/ (33%) values as compared to C (p<.05). Within group comparisons revealed that none of the groups significantly changed as a result of training, only the > LT group showed a significant increase in (48%) (p<.05), while both the = LT and > LT group showed significant increases in LT/ (= LT 16%, > LT 42% (p<.05)). No differences were found between or within groups post training for body composition parameters. It was concluded that training above the LT results in an improvement in LT and that large improvements in may not be required for large improvements in .Data were collected at the Human Performance Laboratory, University of Colorado  相似文献   

16.
The slope of the linear relationship between ventilation and carbon dioxide production has been thought to indicate that is one of the major stimuli to . A group of 15 normal subjects undertook different incremental treadmill exercise protocols to explore the relationship between and . An incremental protocol using 1 instead of 3-min stages of exercise resulted in an increase in the to ratio [26.84 (SEM 1.23) vs 31.08 (SEM 1.36) (P < 0.008) for the first stage, 25.24 (SEM 0.86) vs 27.83 (SEM 0.91) (P < 0.005) for the second stage and 23.90 (SEM 0.86) vs 26.34 (SEM 0.81) (P = 0.001) for the third stage]. Voluntary hyperventilation to double the control level of during exercise resulted in an increase in the to slope [from 21.3 (SEM 0.71) for the control run to 35.1 (SEM 1.2) for the hyperventilation run (P < 0.001)]. Prolonged hyperventilation (5 min) during exercise at stage 2 of the Bruce protocol resulted in a continuted elevation of and the slope. A steady state of and metabolic gas exchange can only be said to have been present after at least 3 min of exercise. Voluntary hyperventilation increased the slope of the relationship between and . End-tidal carbon dioxide fell, but remained within the normal range. These results would suggest that a non-carbon dioxide factor may have been responsible for the increase we found in during exercise, and that factors other than increased dead space ventilation can cause an increased ventilation to slope, such as that seen in some pathophysiological conditions, such as chronic heart failure.  相似文献   

17.
Summary To investigate the influence of time of day on sympathoadrenal and pressor reactivity during exercise, eight trained men [age, mean (SD), 24 (0.5) years; maximal oxygen uptake ( ), 4.7 l·min–1] performed bouts of static (ST) and dynamic (DYN) exercise at 0600–0800 hours (AM) and at 1600–1800 hours (PM). The ST protocol utilized a two-leg isometric contraction at 30% maximum voluntary contraction until failure, and was monitored by a strain gauge interfaced from a leg extension apparatus to a computer. Heart rate (fc) and blood pressure ( ) responses were recorded at rest, after 1 and 2 min of exercise, and at failure. Epinephrine (EPI) and norepinephrine (NE) levels were recorded before exercise, and after 2 min of exercise. The DYN exercise protocol involved stationary. cycling for consecutive 6-min periods at 60% and 80% . fc, , EPI, and NE were recorded before exercise and at each workload. No differences were observed in preexercise or exercise fc under any condition. Preexercise did not differ under any condition. The response to DYN was significantly higher at 80% during PM only. was significantly higher in ST-PM at 1 min, 2 min, and failure. Elevations in both systolic and diastolic P a contributed to this difference. Preexercise EPI-ST-AM was significantly elevated vs PM, but no other preexercise data were significantly different. Absolute exercise levels were significantly higher for EPIST-PM vs AM only, but the percentage change from baseline was significantly (P<0.01) higher in ST-PM for EPI (+231% PM vs + 32% AM) and NE (+352% PM vs +216% AM). The EPI and NE responses to DYN exercise tended to be higher in AM, but were not significantly different. These data support a time of day pattern in sympathoadrenal and pressor reactivity to exercise that is dependent on the type of activity involved but independent of baseline patterns.  相似文献   

18.
Summary The purpose of this investigation was to compare cardiac output ( c ) in paraplegic subjects (P) with wheelchair-confined control subjects (C) at high intensities of arm exercise. At low and moderate exercise intensity c was the same at a given oxygen uptake ( O2) in P and C. A group of 11 athletic male P with complete spinal-cord lesions between T6 and T12 and a group of 5 well-matched athletic male C performed maximal arm-cranking exercise and submaximal exercise at 50%, 70% and 80% of each individual's maximal power output (Wmax) . Maximal O2 ( O2max) was significantly lower, O2max per kilogram body mass was equal and maximal heart rate (f c) was significantly higher in P compared to C. At O2 of 1.3, 1.5 and 1.7 1-min–1, and for P 65%–90% of the O2max, c was not significantly different between the groups, although, c in P was achieved with a significantly lower stroke volume (SV) and a significantly higherf c. Although the SV was lower in P, it followed the same pattern as SV in C during incremental exercise, i.e. an increase in SV until about 45%W max and thereafter a stable SV. The similar c at a given O2 in both groups indicated that, even at high exercise intensities, circulation in P can be considered isokinetic with a complete compensation byf c for a lower SV.  相似文献   

19.
Summary Mean values for body size, body composition and endurance indices have been obtained from a homogeneous group of 125 physically active men to find predicted values of AT (age 23.4±4.3 years; height 175.9±6.5 cm; weight 72.2±8.9 kg; body fat 17.9±4.7% body weight, muscularity index 19.0±1.5 kg fat-free mass/cm2 · 10–4 height; forced vital lung capacity 5667±815 cm3; 48.5±6.0 cm3 · kg–1 · min–1; anaerobic threshold 61.0±7.8% ). Endurance performance and fitness indices were a little higher than average, but about 10% lower than in endurance-trained athletes. The authors suggest that standards of anaerobic threshold (AT) for ergonomics and endurance training should be about 55–65% , but not lower than 1800 cm3 O2 · min–1. The coefficients of correlation of AT relating to , and submaximal load were significant at the 0.01 level. Using regression analysis, predicted values of AT were developed. A predicted value of AT can be obtained from the regression line of AT on Lsubmax used as a nomogram, during a simple PWC170 exercise test without blood or gas analysis.  相似文献   

20.
Summary These experiments examined the effect of exercise intensity and duration on the magnitude of the abrupt change in ventilation at the start ( ) and end ( ) of exercise. Five subjects performed constant load treadmill exercise at 50% and 80% of their maximum oxygen consumption ( ) for 6 and 10 min while inspiring atmospheric air. The subjects also completed additional exercise tests at 80% for 10 min while inspiring an oxygen-enriched gas mixture. During each exercise trial ventilation was measured breath-by-breath. The and were determined by using non-linear curve-fitting techniques. The results showed that was greater at the start of the 80-% exercise tests compared to the 50-% tests and that at each level of exercise was greater than . The results also demonstrated that was inversely related to the intensity and duration of exercise. Furthermore, the was not altered subsequent to the inspiration of oxygen-enriched air. These findings have led us to postulate that the stimulus responsible for is reduced during exercise and that the degree of reduction is related to the intensity and duration of exercise. In addition, it was concluded that these changes might occur independently of peripheral chemoreceptor activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号