首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sumatriptan, a 5-hydroxytryptamine(1D) (5-HT(1D))-receptor agonist used in the treatment in migraine, inhibits gastric motility via the enteric nervous system. As no studies have reported enteric neuronal 5-HT(1D) receptors, we used conventional intracellular recordings to characterize the actions of sumatriptan on 145 guinea-pig antral myenteric neurones. In 24 of 29 neurones with a 5-HT(1P) receptor-mediated depolarizing response to 5-HT, application of sumatriptan caused a dose-dependent depolarization, accompanied by increased membrane resistance and enhanced excitability. Depolarizing responses to sumatriptan occurred both in cholinergic and in nitrergic neurones. Sumatriptan did not mimic the 5-HT(3) receptor-mediated fast-depolarizing responses or 5-HT(1A) receptor-mediated inhibitory responses to 5-HT. Sumatriptan had no effect on neurones not responding to 5-HT. The depolarizing response to sumatriptan was inhibited by renzapride, but not by 5-HT(1-7) receptor antagonists. We conclude that sumatriptan behaves as an agonist at the 5-HT(1P) receptor on myenteric neurones in the guinea-pig gastric antrum. The actions of sumatriptan on gastric motility seem to be attributable to a direct action on enteric neurones.  相似文献   

2.
The development of central serotoninergic neurons in the chick embryo has been investigated immunocytochemically by utilizing an antiserum to serotonin (5-HT). Immunoreactive neurons are first detected in the brainstem on embryonic day 4 (E4, stage 23), days earlier than 5-HT systems have been detected previously by biochemical techniques. The earliest 5-HT-containing cells at E4 appear rostral to the pontine flexure, yet by E5, 5-HT neuronal groups are observed throughout the brainstem from just caudal to the mesencephalic flexure to the cervical flexure. During this and subsequent phases of development, two distinct patterns of cellular migration seem to be involved in the formation of the various 5-HT neuronal groups. One pattern involves a ventral migration of 5-HT cells, which appears dependent upon the directional guidance of midline radial processes (formed by floor plate cells) that extend across the neuroepithelium. The other pattern involves a lateral migration of cells, followed by an aggregation and rearrangement of 5-HT neurons into distinct subgroups or clusters. Through these patterns of migration most components of the 5-HT neuronal system can be recognized as early as E12, with the mature organization of the 5-HT cell groups occurring by E17. One unexpected finding was the comparatively late appearance (between E9 and E12) of 5-HT neurons in the paraventricular organ of the hypothalamus. Thus, in comparison to the initial observation of the majority of brainstem 5-HT neurons at E4 to E5, the hypothalamic 5-HT cells appear after a delay of between 5 and 7 days. Such differences illustrate the fact that neurons sharing a common neurotransmitter phenotype do not necessarily share the same developmental timetable for the expression of that particular phenotype, or they may undergo neurogenesis during considerably different periods of embryogenesis.  相似文献   

3.
Intracellular recordings were obtained from the somata of type A and C primary afferents in the isolated bullfrog dorsal root ganglion (DRG) preparation. Bath application of serotonin (5-HT) in concentrations of 0.25-1.0 mM led to slow and fast depolarizing responses. Slow, maintained 5-HT depolarizations were observed in 47% of type A and 70% of type C neurons. These slow depolarizations were associated with an underlying increase in input resistance (Rin). In some type A neurons, the Rin increase was masked by a decrease in Rin due to depolarization-induced rectification. The slow 5-HT depolarization of type A, but not type C neurons showed pronounced tachyphylaxis to repeated 5-HT applications. In type C afferents, serotonin's slow action was often accompanied by spontaneous firing. Manganese decreased slow 5-HT depolarizations of both cell types. A slow depolarization and excitation of type C afferents by methysergide and cinanserin was also observed. Fast transient 5-HT depolarizations accompanied by a rapid decrease in Rin were observed in 7% of type A and 24% of type C neurons. In some DRG cells the fast and slow depolarizations combined to form a biphasic response. The actions of 5-HT reported here resemble in some ways 5-HT responses recorded extracellularly from the spinal terminations of primary afferents.  相似文献   

4.
Wilms K  Vierig G  Davidowa H 《Neuropeptides》2001,35(5-6):257-270
In rats anaesthetized with urethane single unit activity was extracellularly recorded in the neostriatum, and several drugs were microiontophoretically ejected. Separate administration of the sulfated octapeptide cholecystokinin (CCK-8S), serotonin (5-HT) or 8-OH-DPAT (a 5-HT(1A/7) receptor agonist) predominantly induced increases in the neuronal discharge rates (Wilcoxon test significant P<0.05), whereas the 5-HT(2A/2C) receptor agonist DOI affected only a few neurones and mainly reduced firing. After coadministration of CCK-8S and serotonin, activating effects also predominated (Wt P<0.05), but the neuronal responsiveness was significantly reduced (Chi2P<0.01). Similarly, concomitant application of CCK-8S and 8-OH-DPAT led to significant activation accompanied with a reduction of inhibitory effects. The block of serotonin- or 8-OH-DPAT-effects through specific 5-HT(1A) receptor antagonists implies the involvement of this receptor subtype within the striatum. In conclusion, concomitant action of CCK-8S and serotonin induces a mean level of neuronal activation that might promote normal function.  相似文献   

5.
Our work has been concerned with the role of high affinity serotonin receptors in regulating the development of the serotonergic system. In previous studies, we have found evidence that these receptors occur on astroglial cells and that their number is developmentally linked. The current work is aimed at investigating the mechanism by which these receptors may regulate serotonin neuronal growth. Primary cultures of astroglial cells were exposed to serotonin (5-HT) or the selective receptor agonists 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-D-PAT, for 5-HT1a receptors) or trifluoro-methyl-phenyl-piperazine (TFMPP) and m-chlorophenylpiperazine (mCPP) (for 5-HT1b receptors). Media was collected after 4 or 24 h, and added to primary cultures of serotonergic neurons. Growth was determined by specific uptake of radiolabeled serotonin into the cultures. Our results show the presence of a factor(s) in the glial-conditioned media which can be stimulatory or toxic to serotonin neurons, depending on the neuronal plating density. This factor is significantly present after 24 h, is found in both brainstem and cortical astroglial-conditioned media and appears to be linked to the 5-HT1a receptor. Thus, it appears possible that the serotonergic neuronal system can regulate its own development through an action on astroglial cells.  相似文献   

6.
Introduction: Both target skeletal muscle (SKM) cells and neurotrophins (NTs) are essential for the maintenance of neuronal function and nerve–muscle communication. The effects of different NTs and SKM cells on growth-associated protein-43 (GAP-43) expression in dorsal root ganglion (DRG) neurons have not been clarified. Methods: The morphological relationship between DRG neurons and SKM cells in neuromuscular cocultures was observed by scanning electron microscopy. The levels of GAP-43 and its mRNA were determined after administration of different NTs. Results: DRG neurons demonstrated dense neurite outgrowth in the presence of NTs. Distinct NTs promoted GAP-43 and its mRNA expression in neuromuscular cocultures of DRG neurons and SKM cells. Conclusions: These results offer new clues for a better understanding of the effects of distinct NTs on GAP-43 expression in DRG sensory neurons in the presence of target SKM cells and implicate NTs and target SKM cells in DRG neuronal regeneration. Muscle Nerve 47: 909–915, 2013  相似文献   

7.
Numerous 5-hydroxytryptamine (5-HT)-containing cell bodies were visualized by fluorescence microscopy in the caudal brainstem rostal to the decussation of the pyramids in a region from which a desynchronized sleep-like pattern of sympathetic activity was obtained in a previous study. In unanaesthetized mid-collicular decerebrated cats recordings were made of sympathetic activity in a renal nerve. The inhibition of renal nerve activity occurring during desynchronized sleep-like state induced by physostigmine was attenuated significantly by procedures which interfered with the pathways from the 5-HT-containing neurones. Small cuts in the dorsolateral funiculus of the cervical spinal cord reduced the inhibition from43 ± 6%to14.0 ± 3%. Microinjection of 5,7-dihydroxytryptamine into cervical spinal cord reduced the serotonin content of the thoracic cord by 22.4% and attenuated the desynchronized sleep-like state inhibition of renal nerve activity by a similar amount. Depletion of serotonin withp-chlorophenylalanine significantly reduced the inhibition of renal nerve activity during the desynchronized sleep-like state, from42.5 ± 5%to10.0 ± 2.0%. It was suggested that serotonin-containing neurones are likely to be involved in the inhibition of renal nerve activity occurring during desynchronized sleep.  相似文献   

8.
Using the whole-cell patch-clamp technique, the effects of serotonin (5-HT) and increased acidity to produce membrane currents and to modify high threshold voltage-dependent calcium currents were studied in isolated dorsal root ganglion (DRG) cells of the frog maintained in short-term culture. DRG cells were classified by morphology into two types: (1) cells with a large number of dark rusty brown granules, and (2) cells devoid of these granules or with few scattered pale granules. Fast application of 5-HT (10–30 μM) induced a rapidly desensitizing inward current with a reversal potential at about 0 mV in 38 of 50 granule-containing neurons (76%) which was never observed (0/35) in “clear” neurons. This current was blocked by 10 nM (+)-tubocurarine. In addition, a small noninactivating outward current was also observed in most DRG neurons during 5-HT superfusion. A sudden decrease of pH from 7.4 to 6 or 5.8 induced a fast inactivating inward current of 100–300 pA in 74% of the “clear” neurons and only 24% of the granule-containing neurons. Small noninactivating membrane currents induced by lowering pH were observed in all neurons. Both 5-HT and increased extracellular H+ reduced the magnitude of high threshold calcium currents in all DRG neurons. It is suggested that the 5-HT receptors are expressed on a morphologically distinct population of neurons while the cells with channels responsible for the fast inactivating proton-induced current cannot be related to any distinct morphological cell type. © 1995 Wiley-Liss, Inc.  相似文献   

9.
The 5-HT1A and 5-HT1B receptors of serotonin play important roles as auto- and heteroreceptors controlling the release of serotonin itself and of other neurotransmitters/modulators in the central nervous system (CNS). To determine the precise localization of these receptors, we examined their respective cellular and subcellular distributions in the nucleus raphe dorsalis and hippocampal formation (5-HT1A) and in the globus pallidus and substantia nigra (5-HT1B), using light and electron microscopic immunocytochemistry with specific antibodies. Both immunogold and immunoperoxidase preembedding labelings were achieved. In the nucleus raphe dorsalis, 5-HT1A immunoreactivity was found exclusively on neuronal cell bodies and dendrites, and mostly along extrasynaptic portions of their plasma membrane. After immunogold labeling, the density of membrane-associated 5-HT1A receptors could be estimated to be at least 30-40 times that in the cytoplasm. In the hippocampal formation, the somata as well as dendrites of pyramidal and granule cells displayed 5-HT1A immunoreactivity, which was also prominent on the dendritic spines of pyramidal cells. In both substantia nigra and globus pallidus, 5-HT1B receptors were preferentially associated with the membrane of fine, unmyelinated, preterminal axons, and were not found on axon terminals. A selective localization to the cytoplasm of endothelial cells of microvessels was also observed. Because the 5-HT1A receptors are somatodendritic, they are ideally situated to mediate serotonin effects on neuronal firing, both as auto- and as heteroreceptors. The localization of 5-HT1B receptors to the membrane of preterminal axons suggests that they control transmitter release from nonserotonin as well as serotonin neurons by mediating serotonin effects on axonal conduction. The fact that these two receptor subtypes predominate at extrasynaptic and nonsynaptic sites provides further evidence for diffuse serotonin transmission in the CNS.  相似文献   

10.
The effects of serotonin (5-HT) on neuronal responses to the excitatory amino acid agonist N-methyl-D-aspartate (NMDA) were examined in neocortical slices of the Fischer rat using current-clamp and single-electrode voltage-clamp techniques. Layer V neocortical neurons responded to application of NMDA by depolarization with no change or an apparent increase in input resistance. Following perfusion with 10(-5) M 5-HT, the response of these neurons to NMDA was significantly increased in both amplitude and duration, whereas neuronal responses to quisqualic acid and acetylcholine were not altered by 5-HT. Furthermore, the enhanced response to NMDA in 5-HT was long-lasting, and could not be reversed during the course of the experiment. Resting membrane potential and the postspike train afterhyperpolarization were not significantly altered by 5-HT, although the input resistance was decreased by 5-HT. Excitatory postsynaptic potentials (EPSPs) were usually not affected or reversibly decreased by 5-HT. However, in a few cells exhibiting a complex voltage-dependent EPSP, 5-HT produced a long-lasting enhancement in the amplitude of the EPSP. Under voltage-clamp conditions, with Na+- and K+-channels blocked, 5-HT enhanced the inward current stimulated by application of NMDA. It is suggested that 5-HT selectively enhances the voltage- and Ca2+-dependent NMDA response.  相似文献   

11.
Recent work by ourselves and others has indicated that serotonin (5-HT) acts as a regulator of neuronal growth in fetal tissue, probably through an action on the high affinity 5-HT receptors known to be present. In order for our hypothesis to be correct, these receptors must be shown to be functional in fetal tissue. Furthermore, since 5-HT has a dual role in neuronal development, these receptors must be functional both in the region of the serotonergic cell body (brainstem) and in projection areas (forebrain). We have tested the functional status of fetal 5-HT receptors by testing their ability to adapt to changes in the level of 5-HT. Pregnant rats were treated with saline, p-chlorophenylalanine (a 5-HT depletor) or 5-methoxytryptamine (a 5-HT agonist) and the characteristics of the high affinity 5-HT receptors in the rat pups determined using a binding assay with [3H]5-HT. Our results show that both forebrain and brainstem receptors respond to alterations in transmitter level in a manner similar to adult brain. Thus, fetal 5-HT receptors are functional and capable of playing a role in neuronal development.  相似文献   

12.
We have used intracellular recording techniques to examine the effects of 5-hydroxytryptamine (5-HT, serotonin) on 5-HT-containing neurones of the guinea pig dorsal raphe nucleus in vitro. Bath-applied 5-HT (30-300 microM) had two opposing effects on the membrane excitability of these cells, reflecting the activation of distinct 5-HT receptor subtypes. As demonstrated previously in the rat, 5-HT evoked a hyperpolarization and inhibition of 5-HT neurones, which appeared to involve the activation of an inwardly rectifying K(+) conductance. This hyperpolarizing response was blocked by the 5-HT(1A) receptor-selective antagonist WAY-100635 (30-100 nM). In the presence of WAY-100635, 5-HT induced a previously unreported depolarizing, excitatory response of these cells, which was often associated with an increase in the apparent input resistance of the neurone, likely due to the suppression of a K(+) conductance. Like the hyperpolarizing response to 5-HT, this depolarization could be recorded in the presence of the Na(+) channel blocker tetrodotoxin. In addition, the response was not significantly attenuated by the alpha(1)-adrenoceptor antagonist prazosin (500 nM), indicating that it is not due to the release of noradrenaline, or to the direct activation of alpha(1)-adrenoceptors by 5-HT. The 5-HT(3) receptor antagonist granisetron (1 microM) and the 5-HT(4) receptor antagonist SB 204070 (100 nM) failed to reduce the depolarizing response to 5-HT; however, ketanserin (100 nM), mesulergine (100 nM) and lysergic acid diethylamide (1 microM) significantly reduced or abolished the depolarization, indicating that this effect of 5-HT is mediated by 5-HT(2) receptors.  相似文献   

13.
Granule cells in the rat dentate gyrus contain mineralocorticoid and glucocorticoid receptors to which the adrenal hormone corticosterone binds with differential affinity. These cells also express various receptor-subtypes for serotonin (5-HT), including the 5-HT1A receptor which mediates a membrane hyperpolarization accompanied by a decrease in membrane resistance. Earlier studies have shown that removal of corticosterone by adrenalectomy, particularly in the dentate gyrus, results in enhanced expression of the 5-HT1A receptor mRNA and increased 5-HT1A receptor binding capacity. This was normalized by activation of mineralocorticoid receptors or concurrent activation of both receptor types. In the present, intracellular recording study in vitro, we examined if the altered levels of 5-HT1A receptor mRNA and protein are associated with changes in the response to 5-HT. We found that the hyperpolarization and resistance decrease induced in granule cells by a submaximal (10 microM) dose of 5-HT were unaltered 2-4 days after adrenalectomy, indicating a dissociation between corticosteroid actions on 5-HT1A receptor mRNA/protein levels and functional responses to 5-HT. Subsequent occupation of mineralocorticoid receptors in vitro significantly suppressed the 5-HT induced change in resistance, 1-4 h after steroid application. Compared to this, concurrent activation of glucocorticoid receptors led to large responses to 5-HT. This modulation by steroids was not observed with a higher dose of 5-HT (30 microM). The data suggest that with moderate amounts of 5-HT, corticosteroids affect the information flow through the dentate gyrus such that excitatory transmission is promoted with predominant mineralocorticoid receptor activation and attenuated with additional glucocorticoid receptor occupation.  相似文献   

14.
Pre-embedding immunoperoxidase (for serotonin) and postembedding immunogold (for γ-aminobutyric acid; GABA) labelling were combined at light and electron microscopic levels to demonstrate the neuronal targets of serotonin (5-HT) afferents in the ventral posterior lateral nucleus (VPL) of the cat thalamus. 5-HT-immunoreactive fibres and terminal varicosities were found in close proximity to GABA-immunoreactive interneurons and non-GABAergic relay neurons. Ultrastructurally, the vast majority of 5-HT terminals made close membrane contacts without overt membrane specializations with GABAergic axon terminals, GABAergic presynaptic dendrites and GABAergic somata. A very small number of 5-HT terminals formed typical asymmetrical synapses with GABAergic presynaptic dendrites and with dendritic shafts of relay cells. Some 5-HT terminals participated with the presynaptic dendrites in triadic synaptic arrangements. These findings suggest a dual innervation pattern by 5-HT afferents in VPL and the release of 5-HT in large part at sites not associated with morphologically detectable synapses.  相似文献   

15.
Mih  ly Haj  s  Trevor Sharp 《Brain research》1996,740(1-2):162-168
We recently reported raphe neurones which frequently fired spikes in short bursts. However, the action potentials were broad and the neurones fired in a slow and regular pattern, suggesting they were an unusual type of 5-hydroxytryptamine (5-HT) neurone. In the present study, we investigated whether these putative burst-firing 5-HT neurones project to the forebrain and whether all spikes fired in bursts propagate along the axon. In anaesthetised rats, electrical stimulation of the medial forebrain bundle evoked antidromic spikes in both burst-firing neurones and in single-spiking, classical 5-HT neurones recorded in the dorsal raphe nucleus. Although the antidromic spike latency of the single-spiking and burst-firing neurones showed a clear overlap, burst-firing neurones had a significantly shorter latency than single-spiking neurones. For both burst-firing neurones and classical 5-HT neurones, antidromic spikes made collisions with spontaneously occurring spikes. Furthermore, in all burst-firing neurones tested, first, second and third order spikes in a burst could be made to collide with an antidromic spike. Interestingly, in a small number of burst-firing neurones, antidromic stimulation evoked spike doublets, similar to those recorded spontaneously. From these data we conclude that burst-tiring neurones in the dorsal raphe nucleus project to the forebrain, and each spike generated by the burst propagates along the axon and could thereby release transmitter (5-HT).  相似文献   

16.
The influence of memantine on several properties of a neuronal cell line was tested. The aim was to get some insight into possible mechanisms of action of this drug which is therapeutically applicable in treatment of spasticity, Parkinson's disease, and cerebral coma. In neuroblastoma X glioma hybrid cells, memantine, at micromolar concentrations, blocked the depolarization induced by iontophoretically applied serotonin (5-hydroxytryptamine, 5-HT). In the hybrid cells, receptors of the 5-HT3 type mediated the depolarization, which was frequently accompanied by a series of action potentials. The inhibition by memantine of the serotonin response occurred fast and was completely reversible, irrespective of whether the cell showed a stable membrane potential or spontaneous action potentials. However, memantine did not alter spontaneous or electrically evoked action potential activity in the hybrid cells, and apparently did not block the underlying ionic conductances. Furthermore memantine did not affect either the cation permeability activated by substance P in the hybrid cells or the K+ channel triggered by bradykinin in a glioma cell line. Thus, memantine appears specifically to suppress the ion channel opened by serotonin in the hybrid cells. The interaction of memantine with serotonin receptors and the associated ion channels reported here, might give an important clue, as to a site of action of memantine in the nervous system.  相似文献   

17.
The lamprey brainstem and spinal cord can be maintained in vitro. It is a simple vertebrate preparation with comparatively few neurones. The neural correlates of different patterns of behaviour can be elicited in this in-vitro preparation. The subject of this review is the neuronal organization underlying locomotion, and, in particular, the role of different types of interneurones and their transmitters and mode of synaptic interaction. Excitatory amino acids, glycine, GABA, 5-HT, tachykinins and CCK have been implied as putative transmitters. The activation of one type of excitatory amino acid receptor, the NMDA receptor, can elicit TTX-resistant pacemaker-like membrane, potential oscillations. 5-HT can exert indirectly a potentiating effect via a depression of the postspike after-hyperpolarization (Ca2+-dependent potassium channels).  相似文献   

18.
In anaesthetized cats the effect on antidromically identified single sympathetic preganglionic neurones (SPN) in the third thoracic segment of microelectrophoretically applied monoamines, amino acids and acetyl choline was examined. 5-Hydroxytryptamine (5-HT) creainine sulphate and bimaleate excited a majority of SPN. A few cells were inhibited by 5-HT creatinine sulphate. These effects were observed on spontaneously active SPN (cardiac and non-cardiac type) and on silent SPN. Noradrenaline, adrenaline and dopamine inhibited all ‘types’ of SPN, including spontaneously active neurones silent neurones activated by glutamate ordl-homo- cysteic acid and neurones synaptically activated by electrically stimulating a brain stem excitatory region. Acetyl choline had no effect on different types of SPN.  相似文献   

19.
This study used a pharmacological approach to evaluate the consequences of the metabolic perturbations of neurotransmitters on brain development. Pregnant rats received p-chlorophenylalanine (pCPA), an inhibitor of serotonin (5-hydroxytryptamine, 5-HT) synthesis, or saline (control) from the 11th day of gestation once or daily up to the 15th, 17th and 20th day, followed by processing of the forebrain and/or nasal cranium of foetal males and females for high-performance liquid chromatography of monoamines, radioimmunoassay of gonadotropin-releasing hormone (GnRH) and quantitative and semiquantitative immunocytochemistry for GnRH. The pCPA treatment resulted in a 50-70% depletion of 5-HT in the nasal crania and forebrains at any studied age. Radioimmunoassay showed no change in GnRH content in 5-HT deficient foetuses at E16 compared to controls, being higher in both cases in the rostral forebrain than in the hypothalamus. In controls at E21, the GnRH content in the hypothalamus exceeded that in the rostral forebrain, whereas in the 5-HT deficient group the opposite was found. These data suggest that 5-HT provided a stimulating effect on GnRH neurone migration, and this was confirmed by quantification of GnRH-immunoreactive neurones in the forebrain along the trajectory of their migration. At E18 and E21, the fractions of GnRH neurones in the rostral part of the trajectory in pCPA-treated foetuses were greater than those in control foetuses but the opposite was true for the caudal part of the trajectory. Moreover, 5-HT appeared to control the proliferation of the precursor cells of GnRH neurones and their differentiation, as derived from the observations of the increased number of GnRH neurones in the forebrain of foetuses of both sexes, as well as the region-specific decreased neuronal size and content of GnRH in 5-HT-deficient females. Thus, 5-HT appears to contribute to the regulation of the origin, differentiation and migration of GnRH neurones.  相似文献   

20.
Brainstem neurones which project to the immediate vicinity of the spinal motoneurones which supply the intercostal and abdominal respiratory muscles were identified by means of the retrograde transport of horseradish peroxidase (HRP). A combined electrophysiological and histological technique was used in which recording of phasic inspiratory or expiratory motoneurone activity within upper (T3-T4) or lower (T8-T9) thoracic segments was followed by the ion-tophoretic injection of HRP at these recording sites. HRP labelled cells were concentrated in those brainstem regions known to contain phasic respiratory neurones, namely the ventrolateral nucleus of the solitary tract (vl-NTS) or dorsal respiratory group (DRG), the ambiguus complex or ventral respiratory group (VRG) and the parabrachial pontine (PB) nuclei. In 18 cats, 248 cells were labelled in these three respiratory regions of the brainstem while 668 were much more diffusely distributed in other regions of the medulla and pons. The ipsilateral and contralateral contributions within the respiratory regions were respectively; 23%:77% (DRG), 33%:67% (VRG), 95%:5% (PB). These results are considered in the general context of previous electrophysiological and histological findings, but also with particular reference to a related study of the projections from brainstem neurones to the phrenic nucleus [32].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号