首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, we reported the characterization of pypAg-1, a novel protective membrane protein of Plasmodium yoelii-infected erythrocytes. Immunization studies indicated that pypAg-1 contained at least two protective epitopes. One of these determinants was associated with the N-terminal portion of pypAg-1, that also included a 220 amino acid domain unusually rich in tryptophan residues. Using sera from mice immunized against P. yoelii, we have identified a second related antigen, pypAg-3. The pypag-3 cDNA encodes a 43 kDa blood-stage protein that is also characterized by the presence of a 220 residue tryptophan-rich domain. Of particular interest, sequence comparisons revealed that 24 tryptophan residues are positionally conserved between pypAg-1 and pypAg-3. Otherwise, the two antigens share limited sequence similarity. Full-length recombinant pypAg-3 was expressed, purified and used to produce a high titer polyclonal rabbit antiserum. As with pypAg-1, immunofluorescence studies showed that pypAg-3 is expressed in the cytoplasm and associated with the membrane of P. yoelii infected erythrocytes. In addition, pypAg-1 and pypAg-3 appear to be secreted proteins, as both were detected in culture supernatants of P. yoelii-infected erythrocytes. Finally, metabolically labeled pypAg-1 and pypAg-3 secreted from parasitized cells bind to the surface of uninfected, normal mouse erythrocytes. As such, the conservation of the unusual tryptophan-rich domain between two blood-stage malarial proteins with similar biological properties suggests that it may be important for protein export and/or function.  相似文献   

2.
Oral immunization of mice with Escherichia coli-expressed Plasmodium yoelii merozoite surface protein 4/5 or the C-terminal 19-kDa fragment of merozoite surface protein 1 induced systemic antibody responses and protected mice against lethal malaria infection. A combination of these two proteins administered orally conferred improved protection compared to that conferred by either protein administered alone.  相似文献   

3.
By motif searching of the unfinished sequences in the Malaria Genome Sequencing Project databases we have identified a novel EGF-like domain-containing protein of Plasmodium falciparum. The sequence lies within a single open reading frame of 1791 bp and is predicted to encode a polypeptide of 597 amino acids. There are hydrophobic regions at the extreme N- and C-termini, which could represent secretory signal peptide and GPI attachment sites, respectively. Similar to MSP1, there are two EGF-like domains located near the C-terminus. RT-PCR analysis of the novel gene shows that it is transcribed in asexual stages of the malaria parasite. We have expressed portions of the protein as recombinant GST fusions in Escherichia coli and raised antisera in rabbits. Antibodies to the EGF-like domains of the novel protein are highly specific and do not cross-react with the EGF-like domains of MSP1, MSP4 or MSP5 expressed as GST fusion proteins. Antiserum raised to the most C-terminal region of the protein reacts with four bands of 98, 50, 25 and 19 kDa in P. falciparum parasite lysates whereas antisera to the N-terminal fusion proteins recognise the 98 and 50 kDa bands, suggesting that the novel protein may undergo processing in a similar way to MSP1. Immunoblot analysis of stage-specific parasite samples reveals that the protein is present throughout the parasite asexual life cycle and in isolated merozoites, with the smaller fragments present in ring stage parasites. The protein partitions in the detergent-enriched phase after Triton X-114 fractionation and is localized to the surfaces of trophozoites, schizonts and free merozoites by indirect immunofluorescence. Antisera to the C-terminus stain the surface of rings, whereas antisera to the N-terminus do not, suggesting that a fragment of the protein is carried into the developing ring stage parasite. Based on the accepted nomenclature in the field we designate this protein MSP8. We have shown that the MSP8 fusion proteins are in a conformation that can be recognised by human immune sera and that there is very limited diversity in the MSP8 gene sequences from various P. falciparum laboratory isolates. MSP8 shows significant similarity to the recently reported sequence of the protective P. yoelii merozoite surface protein pypAg-2 [Burns JM, Belk CC, Dunn PD. Infect Immun 2000;68:6189-95.] suggesting that the two proteins are homologues. Taken together, these findings suggest that MSP8/pypAg-2 may play an important role in the process of red cell invasion and is a potential malaria vaccine candidate.  相似文献   

4.
Immunization with a particulate fraction of blood-stage antigens was shown previously to protect mice against Plasmodium yoelii malaria. To identify antigens inducing the protective response, sera from immunized mice were used to screen a P. yoelii cDNA expression library. Sequence analysis of one 2.6-kb cDNA clone indicated that the identified gene, pypag-1, encoded a novel plasmodial antigen. Two nonoverlapping regions of pypag-1 were expressed in Escherichia coli. The first recombinant antigen, pAg-1N, contained the N-terminal 337 residues, which included a putative transmembrane domain and a region relatively rich in tryptophan residues. The second recombinant antigen, pAg-1C, contained the remaining C-terminal 211 residues, which included 31 copies of a 5-amino-acid degenerative repeat. Immunoblot studies using rabbit antiserum raised against recombinant pAg-1N showed that the native pypAg-1 protein migrated at approximately 98 kDa, considerably slower than its predicted molecular mass of 66 kDa. Immunofluorescence studies localized the expression of the native pypAg-1 protein both to the cytoplasm and at the surface of P. yoelii-infected erythrocytes. Immunization with either pAg-1N or pAg-1C induced a four- to sevenfold reduction in P. yoelii blood-stage parasitemia. As such, pypAg-1 appears to contain at least two distinct protective epitopes. To our knowledge, this is the first characterization of a protective antigen of P. yoelii that is associated with the erythrocyte membrane.  相似文献   

5.
The genes encoding merozoite surface protein 4/5 (MSP4/5) from Plasmodium berghei and Plasmodium yoelii have been cloned and completely sequenced. Comparisons of the predicted protein sequences with those of Plasmodium chabaudi MSP4/5 and Plasmodium falciparum MSP4 and MSP5 show general structural similarities. All predicted proteins contain hydrophobic signal sequences, potential GPI attachment sequences and a single epidermal growth factor (EGF)-like domain at the C-terminus. The amino acid sequence of the EGF-like motif is highly conserved in rodent malaria species and also shows a considerable degree of similarity with the EGF-like domains found in the P. falciparum proteins. Both the P. yoelii and P. berghei genes show evidence of both spliced and unspliced mRNA at steady state. This phenomenon is similar to that seen for the P. chabaudi MSP4/5 gene, and is believed to be involved in regulation of protein expression. We describe here the construction of clones expressing full length recombinant protein. Antibodies directed against recombinant MSP4/5 proteins recognize a single polypeptide on parasite material and show crossreactivity between MSP4/5 from different murine malaria species, but do not crossreact with either MSP4 or MSP5 from P. falciparum. The various antisera show reactivity against reduction sensitive epitopes as well as reduction insensitive epitopes.  相似文献   

6.
Immunization with Plasmodium yoelii merozoite surface protein-8 (PyMSP-8) has been shown to protect mice against lethal P. yoelii 17XL malaria. Here we demonstrate that PyMSP-8-specific antibodies preferentially suppress P. yoelii 17XL growth in mature erythrocytes compared to growth in reticulocytes and do not suppress the growth of nonlethal P. yoelii 17X, a parasite that primarily replicates in reticulocytes. The protection against normocyte-associated P. yoelii malaria parasites is mediated by antibodies that recognize conformational epitopes of PyMSP-8 that are nonpolymorphic. We examined changes in gene expression in reticulocyte-restricted P. yoelii 17XL parasites that escaped neutralization by PyMSP-8-specific antibodies using P. yoelii DNA microarrays. Of interest, Pymsp-8 gene expression decreased, while the expression of msp-1, msp-7, and several rhoptry protein genes increased. Breakthrough parasites also exhibited increases in the expression of a subset of yir and Pyst-a genes that are predicted to encode polymorphic antigens expressed on the surface of infected erythrocytes. These data suggest that changes in the expression of parasite proteins expressed on the merozoite surface, as well as the surface of infected erythrocytes, may alter host cell tropism and contribute to the ability of malaria parasites to evade merozoite-specific, neutralizing antibodies.  相似文献   

7.
Immunization with merozoite surface protein 4/5 (MSP4/5), the murine malaria homologue of Plasmodium falciparum MSP4 and MSP5, has been shown to protect mice against challenge by parasites expressing the homologous form of the protein. The gene encoding MSP4/5 was sequenced from a number of Plasmodium yoelii isolates in order to assess the level of polymorphism in the protein. The gene was found to be highly conserved among the 13 P. yoelii isolates sequenced, even though many of the same isolates showed pronounced variability in their MSP1(19) sequences. Nonsynonymous mutations were detected only for the isolates Plasmodium yoelii nigeriensis N67 and Plasmodium yoelii killicki 193L and 194ZZ. Immunization and challenge of BALB/c mice showed that the heterologous MSP4/5 proteins were able to confer a level of protection against lethal Plasmodium yoelii yoelii YM challenge infection similar to that induced by immunization with the homologous MSP4/5 protein. To explore the limits of heterologous protection, mice were immunized with recombinant MSP4/5 protein from Plasmodium berghei ANKA and Plasmodium chabaudi adami DS and challenged with P. y. yoelii YM. Interestingly, significant protection was afforded by P. berghei ANKA MSP4/5, which shows 81% sequence identity with P. y. yoelii YM MSP4/5, but it was abolished upon reduction and alkylation. Significant protection was not observed for mice immunized with recombinant P. c. adami DS MSP4/5, which shows 55.7% sequence identity with P. y. yoelii YM MSP4/5. This study demonstrates the robustness of MSP4/5 in conferring protection against variant forms of the protein in a murine challenge system, in contrast to the situation found for other asexual-stage proteins, such as MSP1(19) and AMA1.  相似文献   

8.
Previously, we described the isolation of the Plasmodium yoelii sequence-related molecules P. yoelii MSP-7 (merozoite surface protein 7) and P. yoelii MSRP-2 (MSP-7-related protein 2) by their ability to interact with the amino-terminal end of P. yoelii MSP-1 in a yeast two-hybrid system. One of these molecules was the homologue of Plasmodium falciparum MSP-7, which was biochemically isolated as part of the shed MSP-1 complex. In the present study, with antibodies directed against recombinant proteins, immunoprecipitation analyses of the rodent system demonstrated that both P. yoelii MSP-7 and P. yoelii MSRP-2 could be isolated from parasite lysates and from parasite culture supernatants. Immunofluorescence studies colocalized P. yoelii MSP-7 and P. yoelii MSRP-2 with the amino-terminal portion of MSP-1 and with each other on the surface of schizonts. Immunization with P. yoelii MSRP-2 but not P. yoelii MSP-7 protected mice against a lethal infection with P. yoelii strain 17XL. These results establish that both P. yoelii MSP-7 and P. yoelii MSRP-2 are expressed on the surface of merozoites and released from the parasite and that P. yoelii MSRP-2 may be the target of a protective immune response.  相似文献   

9.
Plasmodium yoelii merozoite surface protein 4/5 (PyMSP4/5), expressed as a recombinant protein, was highly effective at protecting mice against lethal challenge with P. yoelii. There was a significant correlation between prechallenge antibody levels and peak parasitemia, suggesting that the homologues of PyMSP4/5 in Plasmodium falciparum are promising components of a subunit vaccine against malaria.  相似文献   

10.
Malaria merozoite surface and apical organellar molecules facilitate invasion into the host erythrocyte. The underlying molecular mechanisms of invasion are poorly understood, and there are few data to delineate roles for individual merozoite proteins. Apical membrane antigen-1 (AMA-1) is a conserved apicomplexan protein present in the apical organelle complex and at times on the surface of Plasmodium and Toxoplasma zoites. AMA-1 domains 1/2 are conserved between Plasmodium and Toxoplasma and have similarity to the defined ligand domains of MAEBL, an erythrocyte-binding protein identified from Plasmodium yoelii. We expressed selected portions of the AMA-1 extracellular domain on the surface of COS-7 cells to assay for erythrocyte-binding activity. The P. yoelii AMA-1 domains 1/2 mediated adhesion to mouse and rat erythrocytes, but not to human erythrocytes. Adhesion to rodent erythrocytes was sensitive to trypsin and chymotrypsin, but not to neuraminidase. Other parts of the AMA-1 ectodomain, including the full-length extracellular domain, mediated significantly less erythrocyte adhesion activity than the contiguous domains 1/2. The results support the role of AMA-1 as an adhesion molecule during merozoite invasion of erythrocytes and identify highly conserved domains 1/2 as the principal ligand of the Plasmodium AMA-1 and possibly the Toxoplasma AMA-1. Identification of the AMA-1 ligand domains involved in interaction between the parasite and host cell should help target the development of new therapies to block growth of the blood-stage malaria parasites.  相似文献   

11.
It has been reported previously that immunization with recombinant protein containing the two epidermal growth factor (EGF)-like modules from merozoite surface protein 1 (MSP-1) of Plasmodium yoelii (strain YM) protects mice against a lethal blood-stage challenge with the same parasite strain. Since MSP-1 is expressed in both liver- and blood-stage schizonts and on the surface of merozoites, we evaluated the effectiveness of immunization with recombinant proteins containing either the individual or the two combined EGF-like modules in producing a protective response against a sporozoite challenge. The recombinant protein expressing the combined EGF-like modules of the YM strain protected mice against a homologous sporozoite challenge, and sterile protection, as defined by the absence of detectable blood-stage parasites, was observed in the majority of the mice. In contrast, mice immunized with recombinant P. yoelii YM MSP-1 were not protected against a heterologous challenge with sporozoites from strain 265 BY of P. yoelii. The lack of protection may be explained by differences identified in the amino acid sequences of MSP-1 for the two strains. A recombinant protein containing the two EGF-like modules of MSP-1 from P. yoelii 265 BY was produced and used to immunize mice. These mice were protected against a homologous challenge with sporozoites of P. yoelii 265 BY. The results suggest that a recombinant MSP-1 has potential as a vaccine against malaria, but its efficacy may be limited by sequence polymorphism and selection of variants.  相似文献   

12.
We have purified apical merozoite antigen 1 (AMA-1) from extracts of red blood cells infected with the rodent malaria parasite Plasmodium yoelii yoelii YM. When used to immunize mice, the protein induced a strong protective response against a challenge with the parasite. Monoclonal antibodies specific for P. yoelii yoelii AMA-1 were prepared, and one was very effective against the parasite on passive immunization. A second protein that appears to be located in the apical rhoptry organelles and associated with AMA-1 was identified.  相似文献   

13.
Vaccination with native full-length merozoite surface protein 1 (MSP1) or with recombinant C-terminal peptides protects mice against lethal challenge with virulent malaria parasites. To determine whether other regions of MSP1 can also induce protection, Plasmodium yoelii MSP1 was divided into four separate regions. Each was expressed in Escherichia coli as a fusion protein with glutathione S-transferase (GST). The N-terminal fragment began after the cleavage site for the signal sequence and ended in the region comparable to the cleavage site for the C terminus of the 82-kDa peptide of Plasmodium falciparum. This expressed protein was 30 kDa smaller than the predicted peptide. One peptide from the middle region was produced, and the C terminus consisted of a 42-kDa fragment corresponding to the analogous peptide of P. falciparum and a 19-kDa fragment that extended 37 amino acids in the amino-terminal direction beyond the probable cleavage site. To test protection of mice against lethal P. yoelii challenge, three mouse strains (CAF1, BALB/c, and A/J) were vaccinated with each of the four recombinant proteins of MSP1. Mice vaccinated with the C-terminal 19-kDa protein were highly protected (described previously), as were those vaccinated with the 42-kDa protein that contained the 19-kDa fragment. The N-terminally expressed fragment of P. yoelii was not full length because of proteolytic cleavage in E. coli. The GST-82-kDa partial fragments induced some immunity, but the surviving mice still had high parasitemias. Vaccination with the peptide from the middle region of MSP1 gave minimal to no protection. Therefore, in addition to the C-terminal 19- and 42-kDa proteins, the only other fragment to give protection was the 82-kDa protein. The protection induced by the truncated 82-kDa protein was minimal compared with that of the C-terminal fragments.  相似文献   

14.
The 19 kDa carboxylterminal fragment of merozoite surfaceprotein 1 (MSP119) is a leading malaria vaccine candidate[1]. Immunization of monkeys [ 2 , 3 ] or mice [ 4 , 5 ]with recombinant MSP119 confers protection against chal-lenge infection. Studies in m…  相似文献   

15.
BALB/c mice immunized with irradiated Plasmodium yoelii sporozoites produce antibodies and cytotoxic T lymphocytes against the circumsporozoite protein and against a 140-kDa protein, sporozoite surface protein 2 (PySSP2). Approximately 50% of mice immunized with P815 cells transfected with the gene encoding PySSP2 are protected against malaria, and this protection is reversed by in vivo depletion of CD8+ T cells. To determine if CD8+ T cells against PySSP2 are adequate to protect against malaria in the absence of other malaria-specific immune responses, we produced three CD8+ T-cell clones by stimulating spleen cells from mice immunized with irradiated P. yoelii sporozoites with a mitomycin-treated P815 cell clone transfected with the PySSP2 gene. Adoptive transfer of clone TSLB7 protected 100% of mice against P. yoelii. The second clone protected 58% of mice, and the third clone provided no protection. Clone TSLB7 protected even when administered 3 h after sporozoite inoculation at a time when sporozoites had entered hepatocytes, suggesting that it is recognizing and eliminating infected hepatocytes. These studies demonstrate that cytotoxic T lymphocytes against PySSP2 can protect against P. yoelii sporozoite challenge in the absence of other parasite-specific immune responses.  相似文献   

16.
The gene coding for merozoite surface protein 7 has been identified and sequenced in three lines of Plasmodium falciparum. The gene encodes a 351 amino acid polypeptide that is the precursor of a 22-kDa protein (MSP7(22)) on the merozoite surface and non-covalently associated with merozoite surface protein 1 (MSP1) complex shed from the surface at erythrocyte invasion. A second 19-kDa component of the complex (MSP7(19)) was shown to be derived from MSP7(22) and the complete primary structure of this polypeptide was confirmed by mass spectrometry. The protein sequence contains several predicted helical and two beta elements, but has no similarity with sequences outside the Plasmodium databases. Four sites of sequence variation were identified in MSP7, all within the MSP7(22) region. The MSP7 gene is expressed in mature schizonts, at the same time as other merozoite surface protein genes. It is proposed that MSP7(22) is the result of cleavage by a protease that may also cleave MSP1 and MSP6. A related gene was identified and cloned from the rodent malaria parasite, Plasmodium yoelii YM; at the amino acid level this sequence was 23% identical and 50% similar to that of P. falciparum MSP7.  相似文献   

17.
Vaccination of mice with the 42-kDa region of Plasmodium yoelii merozoite surface protein 1 (MSP1(42)) or its 19-kDa C-terminal processing product (MSP1(19)) can elicit protective antibody responses in mice. To investigate if the 33-kDa N-terminal fragment (MSP1(33)) of MSP1(42) also induces protection, the gene segment encoding MSP1(33) was expressed as a glutathione S-transferase (GST) fusion protein. C57BL/6 and BALB/c mice were immunized with GST-MSP1(33) and subsequently challenged with the lethal P. yoelii YM blood stage parasite. GST-MSP1(33) failed to induce protection, and all mice developed patent parasitemia at a level similar to that in naive or control (GST-immunized) mice; mice immunized with GST-MSP1(19) were protected, as has been shown previously. Specific prechallenge immunoglobulin G (IgG) antibody responses to MSP1 were analyzed by enzyme-linked immunosorbent assay and immunofluorescence. Despite being unprotected, several mice immunized with MSP1(33) had antibody titers (of all IgG subclasses) that were comparable to or higher than those in mice that were protected following immunization with MSP1(19). The finding that P. yoelii MSP1(33) elicits strong but nonprotective antibody responses may have implications for the design of vaccines for humans based on Plasmodium falciparum or Plasmodium vivax MSP1(42).  相似文献   

18.
The complete nucleotide sequence of the gene encoding the precursor to the major merozoite surface antigens of Plasmodium chabaudi chabaudi strain IP-PC1 has been determined. A single open reading frame was detected, that coded for a protein of 199 kDa. The encoded protein (p199) contains putative signal and membrane anchor sequences and shows a clustering of Cys residues in the last 120 amino acids. Incompletely conserved tandem repeat oligopeptides are present at different positions in the molecule. P199 shows 69% overall homology to the analogous antigen in Plasmodium yoelii yoelii strain YM. The divergence between these antigens is largely confined to 4 areas where a number of insertions and/or deletions have occurred. All repeats occur in these divergent regions. The overall homology with both alleles of Plasmodium falciparum PMMSA is 33%.  相似文献   

19.
CBA mice infected with the malaria parasite Plasmodium berghei yoelii (P. yoelii) develop a self-resolving infection lasting 15-18 days; on recovery from a primary infection they are immune to further infection. Cell and serum transfers from immune to non-immune mice were used to analyse the mechanism of resistance. Whereas serum from mice which had recovered from a single infection was ineffective in transferring immunity, hyperimmune serum (from mice repeatedly challenged with P. yoelii) protected against challenge inocula of 10(4) and 5 X 10(4) but was ineffective against higher inocula (10(5)). Doses of serum which completely protected intact mice were ineffective when administered to T-cell deprived recipients. The injection of spleen cells from recovered mice conferred immunity on both normal and T cell deprived mice. Pretreatment of immune cell donors with cyclophosphamide reduce the ability of spleen cells to transfer immunity. Treatment of the immune cells with an anti-Thy 1 antiserum and complement in vitro did not abrogate their protective effect. The significance of these results is discussed in relation to the effector mechanisms which might operate in murine malaria.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号