首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Voltage-gated calcium channels in adult rat inferior colliculus neurons   总被引:1,自引:0,他引:1  
N'Gouemo P  Morad M 《Neuroscience》2003,120(3):815-826
The inferior colliculus (IC) plays a key role in the processing of auditory information and is thought to be an important site for genesis of wild running seizures that evolve into tonic-clonic seizures. IC neurons are known to have Ca(2+) channels but neither their types nor their pharmacological properties have been as yet characterized. Here, we report on biophysical and pharmacological properties of Ca(2+) channel currents in acutely dissociated neurons of adult rat IC, using electrophysiological and molecular techniques. Ca(2+) channels were activated by depolarizing pulses from a holding potential of -90 mV in 10 mV increments using 5 mM barium (Ba(2+)) as the charge carrier. Both low (T-type, VA) and high (HVA) threshold Ca(2+) channel currents that could be blocked by 50 microM cadmium, were recorded. Pharmacological dissection of HVA currents showed that nifedipine (10 microM, L-type channel blocker), omega-conotoxin GVIA (1 microM, N-type channel blocker), and omega-agatoxin TK (30 nM, P-type channel blocker) partially suppressed the current by 21%, 29% and 22%, respectively. Since at higher concentration (200 nM) omega-agatoxin TK also blocks Q-type channels, the data suggest that Q-type Ca(2+) channels carry approximately 16% of HVA current. The fraction of current (approximately 12%) resistant to the above blockers, which was blocked by 30 microM nickel and inactivated with tau of 15-50 ms, was considered as R-type Ca(2+) channel current. Consistent with the pharmacological evidences, Western blot analysis using selective Ca(2+) channel antibodies showed that IC neurons express Ca(2+) channel alpha(1A), alpha(1B), alpha(1C), alpha(1D), and alpha(1E) subunits. We conclude that IC neurons express functionally all members of HVA Ca(2+) channels, but only a subset of these neurons appear to have developed functional LVA channels.  相似文献   

2.
Blocker-resistant Ca2+ currents in rat CA1 hippocampal pyramidal neurons   总被引:6,自引:0,他引:6  
Sochivko D  Chen J  Becker A  Beck H 《Neuroscience》2003,116(3):629-638
Ca(2+) currents resistant to organic Ca(2+) channel antagonists are present in different types of central neurons. Here, we describe the properties of such currents in CA1 neurons acutely dissociated from rat hippocampus. Blocker-resistant Ca(2+) currents were isolated by combined application of N-, P/Q- and L-type Ca(2+) current antagonists (omega-conotoxin GVIA 2 microM; omega-conotoxin MVIIC 3 microM; omega-agatoxin IVA 200 nM; nifedipine 10 microM) and constituted approximately 21% of the total Ba(2+) current.The blocker-resistant current showed properties similar to R-type currents in other cell types, i.e. voltages of half-maximal inactivation and activation of -76 and -17 mV, respectively, and strong inactivation during the test pulse. In addition, blocker-resistant Ca(2+) currents in CA1 neurons displayed a characteristically rapid deactivation. Application of mock action potentials revealed that charge transfer through blocker-resistant Ca(2+) channels is highly sensitive to action potential shape and changes in resting membrane voltage. Pharmacological experiments showed that these currents were highly sensitive to the divalent cation Ni(2+) (half-maximal block at 28 microM), but were relatively resistant to the spider toxin SNX-482 (8% and 52% block at 0.1 and 1 microM, respectively).In addition to the functional analysis, we examined the expression of pore-forming and accessory Ca(2+) channel subunits on the messenger RNA level in isolated CA1 neurons using quantitative real-time polymerase chain reaction. Of the pore-forming alpha subunits encoding high-threshold Ca(2+) channels, Ca(v)2.1, Ca(v)2.2 and Ca(v)2.3 messenger RNA levels were most prominent, corresponding to the high proportion of N-, P/Q- and R-type currents in these neurons.In summary, CA1 neurons display blocker-resistant Ca(2+) currents with distinctive biophysical and pharmacological properties similar to R-type currents in other neuron types, and express Ca(2+) channel messenger RNAs that give rise to R-type Ca(2+) currents in expression systems.  相似文献   

3.
Using whole cell patch-clamp recordings, we pharmacologically characterized the voltage-gated Ca2+ channel (VGCC) currents of chicken nucleus magnocellularis (NM) neurons using barium as the charge carrier. NM neurons possessed both low- and high-voltage-activated Ca2+ channel currents (HVA I(Ba2+)). The N-type channel blocker (omega-conotoxin-GVIA) inhibited more than half of the total HVA I(Ba2+), whereas blockers of L- and P/Q-type channels each inhibited a small fraction of the current. Metabotropic glutamate receptor (mGluR)-mediated modulation of the HVA I(Ba2+) was examined by bath application of glutamate (100 microM), which inhibited the HVA I(Ba2+) by an average of 16%. The inhibitory effect was dose dependent and was partially blocked by omega-conotoxin-GVIA, indicating that mGluRs modulate N and other type HVA I(Ba2+). The nonspecific mGluR agonist, (1S,3R)-1-aminocyclopentane-1,3-dicarbosylic acid (1S,3R-ACPD), mimicked the inhibitory effect of glutamate on HVA I(Ba2+). Group I-III mGluR agonists showed inhibition of the HVA current with the most potent being the group III agonist L(+)-2-amino-4-phosphonobutyric acid. 1S,3R-ACPD (200 microM) had no effect on K+ or Na+ currents. The firing properties of NM neurons were also not altered by 1S,3R-ACPD. We propose that the inhibition of VGCC currents by mGluRs limits depolarization-induced Ca2+ entry into these highly active NM neurons and regulates their Ca2+ homeostasis.  相似文献   

4.
Whole cell recordings from acutely dissociated neocortical pyramidal neurons and striatal medium spiny neurons exhibited a calcium-channel current resistant to known blockers of L-, N-, and P/Q-type Ca(2+) channels. These R-type currents were characterized as high-voltage-activated (HVA) by their rapid deactivation kinetics, half-activation and half-inactivation voltages, and sensitivity to depolarized holding potentials. In both cell types, the R-type current activated at potentials relatively negative to other HVA currents in the same cell type and inactivated rapidly compared with the other HVA currents. The main difference between cell types was that R-type currents in neocortical pyramidal neurons inactivated at more negative potentials than R-type currents in medium spiny neurons. Ni(2+) sensitivity was not diagnostic for R-type currents in either cell type. Single-cell RT-PCR revealed that both cell types expressed the alpha1E mRNA, consistent with this subunit being associated with the R-type current.  相似文献   

5.
By means of whole-cell patch-clamp recordings, we characterized the developmental profile of high-voltage-activated (HVA) calcium (Ca(2+)) channel subtypes in distinct neuronal populations of mouse striatum. Acutely dissociated medium spiny neurons (MSNs) and cholinergic interneurons (ChIs) were recorded from mice at five developmental stages: postnatal-days (PD) 14, 23, 40, 150 and 270. During ageing, total HVA Ca(2+) current recorded from both MSNs and ChIs was unchanged. However, the pharmacological analysis of the differential contribution of HVA Ca(2+) channel subtypes showed a significant rearrangement of each component. In both neuronal subtypes, a large fraction of the total HVA current recorded from PD14 mice was inhibited by the L-type HVA channel blocker nifedipine. This dihydropyridine-sensitive component accounted for nearly 50%, in MSNs, and 35%, in ChIs, of total current at PD14, but its contribution was down-regulated up to 20-25% at 9 months. Likewise, the N-type, omega-conotoxin GVIA-sensitive component decreased from 35% to 40% to about 25% in MSNs and 15% in ChIs. The P-type, omega-agatoxin-sensitive fraction did not show significant changes in both neuronal subtypes, whereas the Q-type, omega-conotoxin MVIIC-sensitive channels did show a significant up-regulation at 9 months. As compared with striatal neurons, we recorded pyramidal neurons dissociated from cortical layers IV-V and found no significant developmental change in the different components of HVA Ca(2+) currents. In conclusion, our data demonstrate a functional reconfiguration of HVA Ca(2+) channels in striatal but not cortical pyramidal neurons during mouse development. Such changes might have profound implications for physiological and pathophysiological processes of the striatum.  相似文献   

6.
Few data are available concerning single Ca channel properties in inner ear hair cells and particularly none in vestibular type I hair cells. By using the cell-attached configuration of the patch-clamp technique in combination with the semicircular canal crista slice preparation, we determined the elementary properties of voltage-dependent Ca channels in chicken embryo type I and type II hair cells. The pipette solutions included Bay K 8644. With 70 mM Ba(2+) in the patch pipette, Ca channel activity appeared as very brief openings at -60 mV. Ca channel properties were found to be similar in type I and type II hair cells; therefore data were pooled. The mean inward current amplitude was -1.3 +/- 0.1 (SD) pA at - 30 mV (n = 16). The average slope conductance was 21 pS (n = 20). With 5 mM Ba(2+) in the patch pipette, very brief openings were already detectable at -80 mV. The mean inward current amplitude was -0.7 +/- 0.2 pA at -40 mV (n = 9). The average slope conductance was 11 pS (n = 9). The mean open time and the open probability increased significantly with depolarization. Ca channel activity was still present and unaffected when omega-agatoxin IVA (2 microM) and omega-conotoxin GVIA (3.2 microM) were added to the pipette solution. Our results show that types I and II hair cells express L-type Ca channels with similar properties. Moreover, they suggest that in vivo Ca(2+) influx might occur at membrane voltages more negative than -60 mV.  相似文献   

7.
Voltage-dependent sodium (INa) and calcium (ICa) currents in small (<30 microM) neurons from adult rat trigeminal root ganglia were characterized with a standard whole cell patch-clamp technique. Two types of INa showing different sensitivity to tetrodotoxin (TTX) were recorded, which showed marked differences in their activating and inactivating time courses. The activation and the steady-state inactivation kinetics of TTX-resistant INa were more depolarized by about +20 and +30 mV, respectively, than those of TTX-sensitive INa. Voltage-dependent ICa was recorded under the condition that suppressed sodium and potassium currents with 10 mM Ca2+ as a charge carrier. Depolarizing step pulses from a holding potential of -80 mV evoked two distinct inward ICa, low-voltage activated (LVA) and high-voltage activated (HVA) ICa. LVA ICa was first observed at -60 to -50 mV and reached a peak at about -30 mV. Amiloride (0.5 mM) suppressed approximately 60% of the LVA ICa, whereas approximately 10% of HVA ICa was inhibited by the same concentration of the amiloride. LVA ICa was far less affected by the presence of external Cd2+ or the replacement of Ca2+ by 10 Ba2+ than HVA ICa. The omega-conotoxin GVIA (omega-CgTx), an N-type ICa blocker, suppressed approximately 65% of the whole cell HVA ICa at the concentration of 1 microM. The omega-CgTx-resistant HVA ICa was sensitive to nifedipine (10 microM), a dihydropyridine (DHP) calcium channel antagonist, which produced an additional blockade by approximately 25% of the drug-free control ( approximately 70% of the omega-CgTx-resistant ICa). The combination of 10 microM nifedipine and 1 microM omega-CgTx left approximately 13% of the drug-free control ICa unblocked. The DHP agonist S(-)-BayK8644 (5 microM) shifted the activation of the HVA ICa to more negative potentials and increased its maximal amplitude. Additionally, S(-)-BayK8644 caused the appearance of a slowed component of the tail current. These results clearly demonstrate that the presence of two types of sodium channels, TTX sensitive and resistant, and three types of calcium channels, T, L, and N type, in the small-sized adult rat trigeminal ganglion neurons.  相似文献   

8.
We examined modulation of ionic currents by Zn2+ in acutely dissociated neurons from the rat's horizontal limb of the diagonal band of Broca using the whole-cell patch-clamp technique. Application of 50 microM Zn2+ increased the peak amplitude of the transiently activated potassium current, I(A) (at + 30 mV), from 2.20+/-0.08 to 2.57+/-0.11 nA (n = 27). This response was reversible and could be repeated in 0 Ca2+/1 microM tetrodotoxin (n = 15). Zn2+ shifted the inactivation curve to the right, resulting in a shift in the half-inactivation voltage from 76.4+/-2.2 to -53.4+/-2.0 mV (n = 11), with no effect on the voltage dependence of activation gating (n = 15). There was no significant difference in the time to peak under control conditions (7.43+/-0.35 ms, n = 14) and in the presence of Zn2+ (8.20+/-0.57 ms, n = 14). Similarly, the time constant of decay of I(A) (tau(d)) at + 30 mV showed no difference (control: 38.68+/-3.68 ms, n = 15; Zn2+: 38.48+/-2.85 ms, n = 15). I(A) was blocked by 0.5-1 mM 4-aminopyridine. In contrast to its effects on I(A), Zn2+ reduced the amplitude of the delayed rectifier potassium current (I(K)). The reduction of outward K+ currents was reproducible when cells were perfused with 1 microM tetrodotoxin in a 0 Ca2+ external solution. The amplitude of the steady-state outward currents at +30 mV under these conditions was reduced from 6.40+/-0.23 (control) to 5.76+/-0.18 nA in the presence of Zn2+ (n = 16). The amplitudes of peak sodium currents (INa) were not significantly influenced (n = 10), whereas barium currents (I(Ba)) passing through calcium channels were potently modulated. Zn2+ reversibly reduced I(Ba) at -10 mV by approximately 85% from -2.06+/-0.14 nA under control conditions to -0.30+/-0.10 nA in the presence of Zn2+ (n = 14). Further analyses of Zn2+ effects on specific calcium channels reveals that it suppresses all types of high-voltage-activated Ca2+ currents. Under current-clamp conditions, application of Zn2+ resulted in an increase in excitability and loss of accommodation (n = 13), which appears to be mediated through its effects on Ca2+-dependent conductances.  相似文献   

9.
Miyazaki K  Ishizuka T  Yawo H 《Neuroscience》2005,136(4):1003-1014
Both N- and P/Q-type voltage-dependent calcium channels are involved in fast transmitter release in the hippocampus, but are differentially regulated. Although variable contributions of voltage-dependent calcium channel subtypes to presynaptic Ca2+ influx have been suggested to give a neural network of great diversity, their presence has only been demonstrated in a culture system and has remained unclear in the brain. Here, the individual large mossy fiber presynaptic terminal was labeled with Ca2+/Sr2+-sensitive fluorescent dextrans in the hippocampal slice of the mouse. The fractional contribution of voltage-dependent calcium channel subtypes to presynaptic Ca2+/Sr2+ influx was directly measured by the sensitivity of Ca2+/Sr2+-dependent fluorescent increment to subtype-selective neurotoxins, omega-conotoxin GVIA (an N-type selective blocker), omega-agatoxin IVA (a P/Q-type selective blocker) and SNX-482 (an R-type selective blocker). Synapse-to-synapse comparison of large mossy fiber terminals revealed that the contributions of N- and R-type voltage-dependent calcium channels varied more widely than that of P/Q-type. Even two large mossy fiber presynaptic terminals neighboring on the same axon differed in the fractional contributions of N- and R-type voltage-dependent calcium channels. On the other hand, these terminals were similar in the fractional contributions of P/Q-type voltage-dependent calcium channels. These results provide direct evidence that individual large mossy fiber synapses are differential in the contribution of N- and R-type voltage-dependent calcium channel subtypes to presynaptic Ca2+/Sr2+ influx. We suggest that the synapse-to-synapse variation of presynaptic voltage-dependent calcium channel subtype contributions may be one of the mechanisms amplifying diversity of the hippocampal network.  相似文献   

10.
Whole cell patch and cell-attached recordings were obtained from neurons in intact ganglia of the myenteric plexus of the guinea pig duodenum. Two classes of neuron were identified electrophysiologically: phasically firing AH neurons that had a pronounced slow afterhyperpolarization (AHP) and tonically firing S neurons that lacked a slow AHP. We investigated the properties of the slow AHP and the underlying current (I(AHP)) to address the roles of Ca(2+) entry and Ca(2+) release in the AHP and the characteristics of the K(+) channels that are activated. AH neurons had a resting potential of -54 mV and the AHP, which followed a volley of three suprathreshold depolarizing current pulses delivered at 50 Hz through the pipette, averaged 11 mV at its peak, which occurred 0.5-1 s following the stimulus. The duration of these AHPs averaged 7 s. Under voltage-clamp conditions, I(AHP)'s were recorded at holding potentials of -50 to -65 mV, following brief depolarization of AH neurons (20-100 ms) to positive potentials (+35 to +50 mV). The null potential of the I(AHP) at its peak was -89 mV. The AHP and I(AHP) were largely blocked by omega-conotoxin GVIA (0.6-1 microM). Both events were markedly decreased by caffeine (2-5 mM) and by ryanodine (10-20 microM) added to the bathing solution. Pharmacological suppression of the I(AHP) with TEA (20 mM) or charybdotoxin (50-100 nM) unmasked an early transient inward current at -55 mV following step depolarization that reversed at -34 mV and was inhibited by niflumic acid (50-100 microM). Mean-variance analysis performed on the decay of the I(AHP) revealed that the AHP K(+) channels have a mean chord conductance of ~10 pS, and there are ~4,000 per AH neuron. Spectral analysis showed that the AHP channels have a mean open dwell time of 2.8 ms. Cell-attached patch recordings from AH neurons confirmed that the channels that open following action currents have a small unitary conductance (10-17 pS) and open with a high probability (相似文献   

11.
By means of the whole cell patch-clamp technique, the biophysical and pharmacological properties of voltage-dependent Ba(2+) currents (I(Ba)) were characterized in embryonic cockroach brain neurons in primary culture. I(Ba) was characterized by a threshold of approximately -30 mV, a maximum at approximately 0 mV, and a reversal potential near +40 mV. Varying the holding potential from -100 to -40 mV did not modify these properties. The steady-state, voltage-dependent activation and inactivation properties of the current were determined by fitting the corresponding curves with the Boltzmann equation and yielded V(0.5) of -10 +/- 2 (SE) mV and -30 +/- 1 mV, respectively. I(Ba) was insensitive to the dihydropyridine (DHP) agonist BayK8644 (1 microM) and antagonist isradipine (10 microM) but was efficiently and reversibly blocked by the phenylalkylamine verapamil in a dose-dependent manner (IC(50) = 170 microM). The toxin omega-CgTxGVIA (1 microM) had no significant effect on I(Ba). Micromolar doses of omega-CmTxMVIIC were needed to reduce the current amplitude significantly, and the effect was slow. At 1 microM, 38% of the peak current was blocked after 1 h. In contrast, I(Ba) was potently and irreversibly blocked by nanomolar concentrations of omega-AgaTxIVA in approximately 81% of the neurons. Approximately 20% of the current was unaffected after treatment of the neurons with high concentrations of the toxin (0. 4-1 microM). The steady-state dose-response relationship was fitted with a Hill equation and yielded an IC(50) of 17 nM and a Hill coefficient (n) of 0.6. A better fit was obtained with a combination of two Hill equations corresponding to specific (IC(50) = 9 nM; n = 1) and nonspecific (IC(50) = 900 nM; n = 1) omega-AgaTxIVA-sensitive components. In the remaining 19% of the neurons, concentrations >/=100 nM omega-AgaTxIVA had no visible effect on I(Ba). On the basis of these results, it is concluded that embryonic cockroach brain neurons in primary culture express at least two types of voltage-dependent, high-voltage-activated (HVA) calcium channels: a specific omega-AgaTxIVA-sensitive component and DHP-, omega-CgTxGVIA-, and omega-AgaTxIVA-resistant component related respectively to the P/Q- and R-type voltage-dependent calcium channels.  相似文献   

12.
Li MF  Wu Y  Wang ZF  Shi YL 《Neuroscience research》2004,49(2):197-203
Toosendanin, a triterpenoid derivative extracted from Melia toosendan Sieb et Zucc, was demonstrated to be a selective presynaptic blocker and an effective antibotulismic agent in previous studies. Here, we observed its effects on Ca(2+) channels in NG108-15 cells by whole-cell patch-clamp recording. Obtained data showed that toosendanin concentration dependently increased the high-voltage-activated (HVA) Ca(2+) current with an EC(50) of 5.13 microM in differentiated NG108-15 cells. The enhancement effect was still observed when the cells were pretreated with 5 microM omega-conotoxin MVIIC. However, when the cells were preincubated with 5 microM nifedipine or 10 microM verapamil-containing solution, the effect was absent. In undifferentiated NG108-15 cells, which only express T-type Ca(2+) channels, toosendanin did not affect Ca(2+) currents. These results show that toosendanin increases Ca(2+) influx in NG108-15 cells via L-type Ca(2+) channels.  相似文献   

13.
The effect of a nitric oxide (NO) donor on high-voltage-activated Ca(2+) channel currents (I(Ca)) was examined using the whole cell patch-clamp technique in L(6)-S(1) dorsal root ganglion (DRG) neurons innervating the urinary bladder. The neurons were labeled by axonal transport of a fluorescent dye, Fast Blue, injected into the bladder wall. Approximately 70% of bladder afferent neurons exhibited tetrodotoxin (TTX)-resistant action potentials (APs), and 93% of these neurons were sensitive to capsaicin, while the remaining neurons had TTX-sensitive spikes and were insensitive to capsaicin. The peak current density of nimodipine-sensitive L-type Ca(2+) channels activated by depolarizing pulses (0 mV) from a holding potential of -60 mV was greater in bladder afferent neurons with TTX-resistant APs (39.2 pA/pF) than in bladder afferent neurons with TTX-sensitive APs (28.9 pA/pF), while the current density of omega-conotoxin GVIA-sensitive N-type Ca(2+) channels was similar (43-45 pA/pF) in both types of neurons. In both types of neurons, the NO donor, S-nitroso-N-acetylpenicillamine (SNAP) (500 microM), reversibly reduced (23.4-26.6%) the amplitude of I(Ca) elicited by depolarizing pulses to 0 mV from a holding potential of -60 mV. SNAP-induced inhibition of I(Ca) was reduced by 90% in the presence of omega-conotoxin GVIA but was unaffected in the presence of nimodipine, indicating that NO-induced inhibition of I(Ca) is mainly confined to N-type Ca(2+) channels. Exposure of the neurons for 30 min to 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 microM), an inhibitor of NO-stimulated guanylyl cyclase, prevented the SNAP-induced reduction in I(Ca). Extracellular application of 8-bromo-cGMP (1 mM) mimicked the effects of NO donors by reducing the peak amplitude of I(Ca) (28.6% of reduction). Action potential configuration and firing frequency during depolarizing current pulses were not altered by the application of SNAP (500 microM) in bladder afferent neurons with TTX-resistant and -sensitive APs. These results indicate that NO acting via a cGMP signaling pathway can modulate N-type Ca(2+) channels in DRG neurons innervating the urinary bladder.  相似文献   

14.
The effects of Zn(2+) were evaluated on high-voltage-activated Ca(2+) currents expressed by pyramidal neurons acutely dissociated from rat piriform cortex. Whole-cell, patch-clamp experiments were carried out using Ba(2+) (5 mM) as the charge carrier. Zn(2+) blocked total high-voltage-activated Ba(2+) currents with an IC(50) of approximately 21 microM. In addition, after application of non-saturating Zn(2+) concentrations, residual currents activated with substantially slower kinetics than control Ba(2+) currents. Both of the above-mentioned effects of Zn(2+) were also observed in high-voltage-activated currents recorded in the presence of nearly-physiological concentrations of extracellular Ca(2+) (1 and 2 mM) rather than Ba(2+). Under the latter conditions, 30 microM Zn(2+) inhibited high-voltage-activated currents somewhat less than observed in extracellular Ba(2+) (approximately 47% and approximately 41%, respectively, vs. approximately 59%), but slowed Ca(2+)-current activation to very similar degrees. All of the pharmacological components in which Ba(2+) currents could be dissected (L-, N-, P/Q-, and R-type) were inhibited by Zn(2+), the percentage of current blocked by 30 microM Zn(2+) ranging from 34 to 57%. Moreover, the activation kinetics of all pharmacological Ba(2+) current components were slowed by Zn(2+). Hence, the lower activation speed observed in residual Ba(2+) currents after Zn(2+) block is due to a true slowing of macroscopic Ca(2+)-current activation kinetics and not to the preferential inhibition of a fast-activating current component. The inhibitory effect of Zn(2+) on Ba(2+) current amplitude was voltage-independent over the whole voltage range explored (-60 to +30 mV), hence the Zn(2+)-dependent decrease of Ba(2+) current activation speed is not the consequence of a voltage- and time-dependent relief from block. Zn(2+) also caused a slight, but significant, reduction of Ba(2+) current deactivation speed upon repolarization, which is further evidence against a depolarization-dependent unblocking mechanism. Finally, the slowing effect of Zn(2+) on Ca(2+)-channel activation kinetics was found to result in a significant, extra reduction of Ba(2+) current amplitude when action-potential-like waveforms, rather than step pulses, were used as depolarizing stimuli. We conclude that Zn(2+) exerts a dual action on multiple types of voltage-gated Ca(2+) channels, causing a blocking effect and altering the speed at which channels are delivered to conducting states, with mechanism(s) that could be distinct.  相似文献   

15.
We investigated the nature of afterdepolarizing potentials in AH neurons from the guinea-pig duodenum using whole-cell patch-clamp recordings in intact myenteric ganglia. Afterdepolarizing potentials were minimally activated following action-potential firing under normal conditions, but after application of charybdotoxin (40 nM) or tetraethyl ammonium (TEA; 10-20 mM) to the bathing solution, prominent afterdepolarizing potentials followed action potentials. The whole-cell current underlying afterdepolarizing potentials (I(ADP)) in the presence of TEA (10-20 mM) reversed at -38 mV and was not voltage-dependent. Reduction of NaCl in the bathing (Krebs) solution to 58 mM shifted the reversal potential of the I(ADP) to -58 mV, suggesting that the current underlying the afterdepolarizing potential was carried by a mixture of cations. The relative contributions of Na(+) and K(+) to this current were estimated to be about 1:5. Substitution of external Na(+) with N-methyl D-glucamine blocked the current while replacement of internal Cl(-) with gluconate did not block the I(ADP). The I(ADP) was also inhibited when CsCl-filled patch pipettes were used. The I(ADP) was blocked or substantially decreased in amplitude in the presence of N-type Ca(2+) channel antagonists, omega-conotoxin GVIA and omega-conotoxin MVIIC, respectively, and was eliminated by external Cd(2+), indicating that it was dependent on Ca(2+) entry. The I(ADP) was also inhibited by ryanodine (10-20 microM), indicating that Ca(2+)-induced Ca(2+) release was involved in its activation. Niflumic acid consistently inhibited the I(ADP) with an IC(50) of 63 microM. Using antibodies against the pore-forming subunits of L-, N- and P/Q-type voltage-gated Ca(2+) channels, we have demonstrated that myenteric AH neurons express N- and P/Q, but not L-type voltage-gated Ca(2+) channels. We conclude that the ADP in myenteric AH neurons, in the presence of an L-type Ca(2+)-channel blocker, is generated by the opening of Ca(2+)-activated non-selective cation channels following action potential-mediated Ca(2+) entry mainly through N-type Ca(2+) channels. Ca(2+) release from ryanodine-sensitive stores triggered by Ca(2+) entry contributes significantly to the activation of this current.  相似文献   

16.
Human retinoblastoma cells are multipotent retinal precursor cells capable of differentiating into photoreceptors, neurons, and glia. The current-voltage relation of the undifferentiated cells is dominated by a transient inward current that disappears shortly after differentiation. In 20 mM Ba(2+)-containing bath solutions, the current has an activation midpoint near -25 mV and appears to be fully inactivated at -20 mV. Sr(2+) and Ca(2+) are preferred charge carriers relative to Ba(2+), and the current vanishes in the absence of these divalent cations. Cd(2+) blocks the current with an IC(50) of 160 microM, and Ni(2+) blocks in a biphasic manner with IC(50)s of 22 and 352 microM. The current is unaffected when sodium is replaced with other monovalent cations, and it is insensitive to nifedipine, omega-conotoxin GVIA, omega-agatoxin IVA, and omega-conotoxin MVIIC. RT-PCR revealed the presence of alpha 1G and alpha 1H mRNA in undifferentiated cells, but following differentiation, a striking reduction of both alpha 1G and alpha 1H mRNA was found, and this was paralleled by the loss of T-type Ca channel currents. alpha 1I subunit mRNA levels were low in undifferentiated and differentiated cells. These results suggest that T-type Ca channels could play a role in undifferentiated retinoblastoma cell physiology since alpha 1G and alpha 1H Ca channel subunit expression is reduced in cells that have differentiated and exited the cell cycle.  相似文献   

17.
Calcium conductances have been found in neonatal inferior colliculus neurons, however the biophysical and pharmacological profiles of the underlying calcium currents have not yet been characterized. In this study, we examined which types of voltage-activated calcium currents comprise the whole-cell inward current of neonatal inferior colliculus neurons (10-22microm in diameter). On the basis of their voltage-dependence and pharmacological sensitivities, three major components of barium currents were identified. A low threshold voltage-activated current that activated around -70mV, a mid threshold voltage-activated current that activated near -50mV, and a high threshold voltage-activated current that activated around -40mV. Low and mid threshold voltage-activated currents were present in 33% and 41% of the recordings, respectively, whereas high threshold voltage-activated currents were recorded in all inferior colliculus neurons tested. Nickel chloride (50microM) and U-92032 (1microM), which both block low threshold voltage-activated currents, reduced the amplitude of low threshold voltage-activated peak currents at a test potential of -60mV by 72% and 10%, respectively. In addition, 50microM nickel chloride and 1microM U-92032 reduced the amplitude of mid threshold voltage-activated peak currents measured at -20mV by 55% and 21%, respectively. Further pharmacological analysis indicated the presence of multiple types of high threshold voltage-activated currents in neonatal inferior colliculus neurons. The dihydropyridine nimodipine (1microM), a selective L-type current antagonist, reduced the amplitude of high threshold voltage-activated peak currents by 25%. In addition, FPL 64176 (1microM), a non-dihydropyridine L-type current agonist caused a dramatic 534% increase in the amplitude of the slow sustained component of the tail current measured at -40mV. These data indicate that inferior colliculus neurons express L-type channels. omega-Conotoxin GVIA (1microM), a selective blocker of N-type current, inhibited high threshold voltage-activated peak currents by 28% indicating the presence of N-type channels. omega-Agatoxin IVA (300nM), a potent P/Q-type antagonist, reduced high threshold voltage-activated peak currents by 27%, suggesting that inferior colliculus neurons express P/Q-type channels. Concomitant application of nimodipine (1microM), omega-conotoxin GVIA (1microM) and omega-agatoxin IVA (300nM) onto inferior colliculus neurons decreased the control high threshold voltage-activated peak currents only by 62%.Thus, inferior colliculus neurons may express at least one more type of calcium current in addition to low and mid threshold voltage-activated currents and L-type, N-type and P/Q-type high threshold currents.  相似文献   

18.
In this study, we explored the pharmacological and biophysical properties of voltage-activated Ca(2+) channels in human chromaffin cells using the perforated-patch configuration of the patch-clamp technique. According to their pharmacological sensitivity to Ca(2+) channel blockers, cells could be sorted into two groups of similar size showing the predominance of either N- or P/Q-type Ca(2+) channels. R-type Ca(2+) channels, blocked by 77% with 20 muM Cd(2+) and not affected by 50 muM Ni(2+), were detected for the first time in human chromaffin cells. Immunocytochemical experiments revealed an even distribution of alpha (1E) Ca(2+) channels in these cells. With regard to their biophysical properties, L- and R-type channels were activated at membrane potentials that were 15-20 mV more negative than P/Q- and N-type channels. Activation time constants showed no variation with voltage for the L-type channels, decreased with increasing potentials for the R- and P/Q-type channels, and displayed a bell shape with a maximum at 0 mV for the N-type channels. R-type channels were also the most inactivated channels. We thus show here that human chromaffin cells possess all the Ca(2+) channel types described in neurons, L, N, P/Q, and R channels, but the relative contributions of N and P/Q channels differ among cells. Given that N- and P/Q-type Ca(2+) channel types can be differentially modulated, these findings suggest the possibility of cell-specific regulation in human chromaffin cells.  相似文献   

19.
Concentrations of extracellular calcium ([Ca(2+)](e)) in the CNS decrease substantially during seizure activity. We have demonstrated previously that decreases in [Ca(2+)](e) activate a novel calcium-sensing nonselective cation (csNSC) channel in hippocampal neurons. Activation of csNSC channels is responsible for a sustained membrane depolarization and increased neuronal excitability. Our study has suggested that the csNSC channel is likely involved in generating and maintaining seizure activities. In the present study, the effects of anti-epileptic agent lamotrigine (LTG) on csNSC channels were studied in cultured mouse hippocampal neurons using patch-clamp techniques. At a holding potential of -60 mV, a slow inward current through csNSC channels was activated by a step reduction of [Ca(2+)](e) from 1.5 to 0.2 mM. LTG decreased the amplitude of csNSC currents dose dependently with an IC(50) of 171 +/- 25.8 (SE) microM. The effect of LTG was independent of membrane potential. In the presence of 300 microM LTG, the amplitude of csNSC current was decreased by 31 +/- 3% at -60 mV and 29 +/- 2.9% at +40 mV (P > 0.05). LTG depressed csNSC current without affecting the potency of Ca(2+) block of the current (IC(50) for Ca(2+) block of csNSC currents in the absence of LTG: 145 +/- 18 microM; in the presence of 300 microM LTG: 136 +/- 10 microM. n = 5, P > 0.05). In current-clamp recordings, activation of csNSC channel by reducing the [Ca(2+)](e) caused a sustained membrane depolarization and an increase in the frequency of spontaneous firing of action potentials. LTG (300 microM) significantly inhibited csNSC channel-mediated membrane depolarization and the excitation of neurons. Fura-2 ratiometric Ca(2+) imaging experiment showed that LTG also inhibited the increase in intracellular Ca(2+) concentration induced by csNSC channel activation. The effect of LTG on csNSC channels may partially contribute to its broad spectrum of anti-epileptic actions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号