首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rationale Neurotensin (NT) agonists have been proposed as potential antipsychotics based exclusively upon their ability to inhibit dopamine-2 (D2) receptor transmission. Several other pharmacological mechanisms have been implicated in enhancing the antipsychotic profile produced by D2 inhibition alone. These include inhibition of 5-HT2A and 1-adrenoceptors. Recently, we reported that systemic administration of the neurotensin agonist PD149163 blocks deficits in prepulse inhibition (PPI) of the startle reflex produced by the 5-HT2A receptor agonist DOI. This suggested that NT agonists could inhibit 5-HT2A modulation of neurotransmission.Objective To determine if other peripherally administered NT agonists shared this effect, we examined the effects of NT69L, another NT agonist, on DOI-induced PPI deficits. In addition, to determine if NT agonists also inhibit 1-adrenoceptor neurotransmission, we examined the effects of PD149163 and NT69L on PPI deficits induced by the 1-adrenoceptor agonist, cirazoline.Methods In the NT69L/DOI study, rats received subcutaneous (SC) injections of NT69L (0, 0.1, 1, or 2 mg/kg) followed 30 min later by SC saline or DOI (0.5 mg/kg). In the NT agonist/cirazoline studies, animals received SC injections of either PD149163 (0, 0.01, 0.1, or 1 mg/kg) or NT69L (0, 0.01, 0.1, or 1 mg/kg) followed 30 min later by SC saline or cirazoline (0.7 mg/kg). Animals were tested in startle chambers 20 min later.Results In all three experiments the PPI disruption produced by DOI and cirazoline was blocked by the NT agonists.Conclusions These findings provide strong evidence that NT agonists inhibit 5-HT2A and 1-adrenoceptor modulation of neurotransmission, pharmacological effects that, in conjunction with their known inhibition of dopamine transmission, strengthen the antipsychotic potential of NT agonists.  相似文献   

2.
It has previously been suggested that ergotamine produces external carotid vasoconstriction in vagosympathectomised dogs via 5-HT1B/1D receptors and 2-adrenoceptors. The present study has reanalysed this suggestion by using more selective antagonists alone and in combination. Fifty-two anaesthetised dogs were prepared for ultrasonic measurements of external carotid blood flow. The animals were divided into thirteen groups (n=4 each) receiving an i.v. bolus injection of, either physiological saline (0.3 ml/kg; control), or the antagonists SB224289 (300 g/kg; 5-HT1B), BRL15572 (300 µg/kg; 5-HT1D), rauwolscine (300 µg/kg; 2), SB224289 + BRL15572 (300 µg/kg each), SB224289 + rauwolscine (300 µg/kg each), BRL15572 + rauwolscine (300 µg/kg each), rauwolscine (300 µg/kg) + prazosin (100 µg/kg; 1), SB224289 (300 µg/kg) + prazosin (100 µg/kg), SB224289 (300 µg/kg) + rauwolscine (300 µg/kg) + prazosin (100 µg/kg), SB224289 (300 µg/kg) + prazosin (100 µg/kg) + BRL44408 (1,000 µg/kg; 2A), SB224289 (300 µg/kg) + prazosin (100 µg/kg)+ imiloxan (1,000 µg/kg; 2B), or SB224289 (300 µg/kg) + prazosin (100 µg/kg) + MK912 (300 µg/kg; 2C). Each group received consecutive 1-min intracarotid infusions of ergotamine (0.56, 1, 1.8, 3.1, 5.6, 10 and 18 µg/min), following a cumulative schedule. In saline-pretreated animals, ergotamine induced dose-dependent decreases in external carotid blood flow without affecting arterial blood pressure or heart rate. These control responses were: unaffected by SB224289, BRL15572, rauwolscine or the combinations of SB224289 + BRL15572, BRL15572 + rauwolscine, rauwolscine + prazosin, SB224289 + prazosin, or SB224289 + prazosin + imiloxan; slightly blocked by SB224289 + rauwolscine; and markedly blocked by SB224289 + rauwolscine + prazosin, SB224289 + prazosin + BRL44408 or SB224289 + prazosin + MK912. Thus, the cranio-selective vasoconstriction elicited by ergotamine in dogs is predominantly mediated by 5-HT1B receptors as well as 2A/2C-adrenoceptor subtypes and, to a lesser extent, by 1-adrenoceptors.In memoriam: Luis F. Valdivia died on 26 May 2004  相似文献   

3.
Rationale Recent studies suggest that 2 adrenoceptor blockade may improve the antipsychotic-like effects of neuroleptics and attenuate dopamine D2 receptor antagonist-induced catalepsy. However, several 2 adrenergic antagonists also display serotonin 5-HT1A receptor agonist activity, which may contribute to anticataleptic actions.Objectives In this study, we examined a series of 2 adrenergic antagonists to determine the role of activity at serotonin 5-HT1A receptors in their anticataleptic effects.Methods Catalepsy in rats induced by the antipsychotic haloperidol (2.5 mg/kg, SC) was measured using the cross-legged position (CLP) and bar tests. The compounds examined in this study, in decreasing rank order of 2 adrenergic versus 5-HT1A receptor selectivity, were atipamezole, methoxy-idazoxan (RX821002), efaroxan, idazoxan, and yohimbine. Antagonism studies were conducted using the selective 5-HT1A receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexanecarboxamide dihydrochloride (WAY100635).Results Idazoxan, efaroxan, and yohimbine significantly attenuated the cataleptic effects of haloperidol (2.5 mg/kg, SC) in the CLP test and the actions of their highest doses were significantly blocked by pre-treatment with WAY100635 (0.63 mg/kg, SC). In contrast to the other compounds, methoxy-idazoxan was ineffective in the CLP test. Atipamezole exhibited anticataleptic effects in the bar and CLP tests which were not blocked by WAY100635. Similarly, the anticataleptic effects of methoxy-idazoxan and idazoxan in the bar test were not blocked by WAY100635.Conclusions Serotonin 5-HT1A receptors play a prominent role in anticataleptic effects of certain 2 adrenergic antagonists in the CLP test, whereas 2-adrenergic mechanisms are likely to be primarily responsible for the anticataleptic effects of these ligands in the bar test.  相似文献   

4.
In view of the high structural and pharmacological similarities between the alpha(2A)-adrenoceptors of humans and other mammalian species, it has been concluded, in particular, from experiments in rabbits that the (2A)-adrenoceptor is the exclusive site of action of central antihypertensive drugs, although the amino acid sequence of the alpha(2A)-adrenoceptor of just this species was unknown. Therefore, the aim of the present investigation was to determine the complete nucleotide sequence of the coding region of the rabbit alpha(2A)-adrenoceptor gene. Degenerate oligonucleotides corresponding to regions of the alpha(2A)-adrenoceptor conserved between rat and man were used in a polymerase chain reaction with genomic DNA prepared from rabbit. A 1,356-base pair product with an open reading frame of 1,353 base pairs was obtained that encodes a protein of 451 amino acids which is similar to the alpha(2A)-adrenoceptors of other mammals (man, pig, rat, mouse, guinea-pig and cattle) but not to their alpha(2B)- and alpha(2C)-adrenoceptor subtypes suggesting its classification as an alpha(2A)-adrenoceptor. However, the degree of amino acid sequence identity is, at best, only 80% and, thus, about 10% less than between the other mammalian species. Compared with the human sequence there are 81 substantial changes of amino acids. In conclusion, rabbit and human alpha(2A)-adrenoceptors substantially differ in their amino acid sequence which may explain the opposite pharmacodynamic properties of the central antihypertensive drug rilmenidine (alpha(2)-adrenoceptor agonism and antagonism, respectively) reported in the literature. Hence, the present study supports the view that experiments with central antihypertensive drugs in rabbits are not reliably predictive for the site of action of such drugs in man.  相似文献   

5.
[(3)H]Prazosin bound to alpha(1A)- and alpha(1B)-adrenoceptors, as well as to a cimetidine-sensitive non-alpha(1)-adrenoceptor binding site in rat kidney membranes. An experimental design is presented where the alpha(1)-adrenoceptors are selectively exposed by blocking the non-alpha(1) binding site with 60 microM cimetidine. Conversely, the non-alpha(1) binding site can be selectively exposed by blocking the alpha(1)-adrenoceptors with 600 nM metitepine. The identity of the non-alpha(1) binding site for [(3)H]prazosin in the rat kidney, herein pharmacologically characterized by 33 competing substances, is still unknown.  相似文献   

6.
We investigated whether or not surgical denervation of the rat vas deferens changes the 1-adrenoceptor subtypes involved in the contractions to noradrenaline. Denervated vas deferens was 22 times more sensitive to noradrenaline (pD2=7.35±0.04) than control vas (pD2=6.01±0.03). This difference in noradrenaline potency was eliminated when cocaine (6 M) was added to control vas (pD2=7.22±0.04). The noradrenaline-induced contractions of control and denervated vas deferens were insensitive to the 1B/1D-adrenoceptor alkylating agent chloroethylclonidine (100 M, 45 min). The concentration-response curves to noradrenaline in control and denervated vas deferens were competitively antagonised by prazosin (pA29.6), WB-4101 (pA29.5), 5-methyl urapidil (pA28.4), phentolamine (pA28.7), yohimbine (pA26.9), BMY 7378 (pA26.9) and indoramin (pA28.7). After the treatment of control and denervated vas deferens with phenoxybenzamine, the partial agonist oxymetazoline antagonised competitively the concentration-response curves to noradrenaline showing pA2 values 7.4 in both groups. We conclude that noradrenaline-induced contractions in control and denervated rat vas deferens are mediated by 1A-adrenoceptors and that surgical denervation of the rat vas deferens is not able to change the 1-adrenoceptor subtypes involved in the contractions to noradrenaline.  相似文献   

7.
Delayed rectifier K+ currents (IK) play a critical role in determining cardiac action potential duration (APD). Modulation of IK affects cardiac excitability critically. There are three components of cardiac delayed rectifier, and the slowly activating component (IKs) is influenced strongly by a variety of stimuli. Plasma levels of noradrenaline and endothelin are elevated in heart failure, and arrhythmias are promoted by such humoral abnormalities through modulation of ion channels. It has been reported that protein kinase A (PKA) and protein kinase C (PKC) modulate IKs from human minK in a complex manner. In the present study, we coexpressed human minK with the human 1-adrenoceptor (h1AR) and the endothelin receptor subtype A (hETAR) in Xenopus oocytes and investigated the effects of receptor activation on the currents (IKs) flowing through the oocytes. ET-1 modulated IKs biphasically: a transient increase followed by a decrease. The PKC inhibitor chelerythrine completely inhibited the effects of ET-1. Intracellular EGTA abolished the transient increase by ET-1 and partially inhibited the subsequent decrease in the currents. When IKs was increased by 10–6 M isoproterenol (ISO), ET-1 did not increase but rather decreased the current to an even greater extent than under control conditions. In addition, the effects of ISO on IKs were suppressed by ETAR stimulation. These data indicate that IKs can be regulated by cross-talk between the ETAR and 1AR systems in addition to direct regulation by each receptor system.  相似文献   

8.
The ability of the human 5-HT1A receptor to activate different recombinant G proteins was investigated in CHO-K1 cells by monitoring 5-HT ligand-mediated Ca2+ responses upon co-expression with either Gq, G15 or chimeric Gq/i3 proteins. Each G protein yielded a typical 5-HT-dependent Ca2+ response with different kinetic parameters both for the onset-time of maximal Ca2+ response (21 to 30 s) and time-dependent attenuation (43 to 73% of residual activity at 1 min upon peak Ca2+ response). Pertussis toxin-treatment fully abolished the Ca2+ responses mediated by both the endogenous Gi/o and the chimeric-PTX-sensitive Gq/i3 proteins. In contrast, Ca2+ responses driven by recombinant Gq and G15 proteins were decreased by PTX, respectively by 52% and 35%, corresponding to the level of endogenous G protein activation. The pharmacology of the 5-HT ligand-mediated Ca2+ responses was highly affected by both the presence and nature of the co-expressed G protein. This influence was more pronounced for the partial agonists L 694247, 8-OH-DPAT, flesinoxan and buspirone in contrast to ipsapirone. The G protein rank order for apparent increase of ligands' intrinsic activity was: Gq <Gq/i3 <G15 protein. Each of the 5-HT-mediated Ca2+ responses could be antagonised by WAY 100635, buspirone and methiothepin regardless of the absence or presence of a Gq, Gq/i3 or G15 protein. In conclusion, these data reinforce that depending on the presence and nature of the G protein environment, 5-HT1A ligands may display a large spectrum of activities.Abbreviations AFU Arbitrary fluorescence unit - 5-CT 5-Carboxamidotryptamine - 5-HT 5-Hydroxytryptamine (serotonin) - 8-OH-DPAT 8-(Hydroxy-2-(di-n-propylamino)tetralin - CHO Chinese hamster ovary - PLC Phospholipase C - WAY 100635 N-[2-[4-(2-methoxyphenyl)1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexanecarboxamide - PTX Bordetella pertussis toxin - wt Wild-type  相似文献   

9.
Abstract Rationale. The discriminative stimulus effects of zolpidem in squirrel monkeys trained at doses greater than or equal to 3.0 mg/kg differ from those of conventional benzodiazepines (BZs), but the extent to which these effects reflect the selectivity of zolpidem for GABAA1 receptors is not known. Objectives. The present study investigated the ability of GABAA1-preferring agonists to substitute for training doses of zolpidem greater than or equal to 3.0 mg/kg and the ability of GABAA1-preferring antagonists to block zolpidem's discriminative stimulus effects. Methods. Squirrel monkeys were trained to discriminate intravenous injections of zolpidem (3.0 or 5.6 mg/kg) from saline and tested with BZ agonists differing in selectivity and efficacy at GABAA1 receptors. Antagonism of the effects of zolpidem was studied using the GABAA1-preferring antagonists β-carboline-3-carboxylate-t-butyl ester (β-CCT) and 3-propyloxy-β-carboline (3-PBC). Results. Zolpidem and quazepam (GABAA1-preferring agonist) engendered full substitution for zolpidem, whereas CL 218,872 (GABAA1-preferring partial agonist) and the non-selective BZ agonists alprazolam and flunitrazepam engendered low and variable levels of zolpidem-lever responding (35–58%). Both β-CCT and 3-PBC antagonized the discriminative stimulus effects of zolpidem in a surmountable fashion. Conclusions. Our findings provide evidence for a key role of GABAA1 receptors in the discriminative stimulus effects of zolpidem at relatively high training doses, and suggest that selectivity and relatively high efficacy at GABAA1 receptors is required for BZ agonists to reproduce these discriminative stimulus effects. Electronic Publication  相似文献   

10.
Rationale Sweet-substance-induced analgesia has been widely studied, and the investigation of the neurotransmitters involved in this antinociceptive process is an important way for understanding the involvement of the neural system controlling this kind of antinociception.Objective The aim of this study was to investigate the involvement of opioid and monoaminergic systems in sweet-substance-induced analgesia.Methods The present work was carried out in an animal model with the aim of investigating whether acute (24 h) or chronic (14 days) intake of a sweet substance, such as sucrose (250 g/l), is followed by antinociception. Tail withdrawal latencies in the tail-flick test were measured before and immediately after this treatment. Immediately after the recording of baseline values, independent groups of rats were submitted to sucrose or tap-water intake and, after chronic treatment, they were pretreated with intraperitoneal administration of (1) naltrexone at 0.5, 1, 2 or 3 mg/kg; (2) naloxonazine at 5, 10, 20 or 30 mg/kg; (3) methysergide at 0.5, 1, 2 or 3 mg/kg; (4) ketanserin at 0.5, 1, 2 or 3 mg/kg; or (5) physiological saline.Results Naltrexone and methysergide at two major doses decreased sweet-substance-induced analgesia after chronic intake of a sweet substance. These effects were corroborated by peripheral administration of naloxonazine and ketanserin.Conclusions These data give further evidence for: (a) the involvement of endogenous opioids and a 1-opioid receptor in the sweet-substance-induced antinociception; (b) the involvement of monoamines and 5HT2A serotonergic/1-noradrenergic receptors in the central regulation of the sweet-substance-produced analgesia.  相似文献   

11.
Rationale Nicotine and agonists at 42 and 7 nicotinic acetylcholine receptors (nAChRs) improve learning and memory. The 7-nAChR subtype is of special interest, since it appears to play no role in the abuse liability of nicotine.Objectives and methods To further investigate the role of the 7-nAChR in learning and memory, the effects of the specific 7-nAChR agonist AR-R17779 on cognition were measured in the rat social recognition test (SRT) and the effect of the 7-nAChR antagonist methyllycaconitine (MLA) was studied. The SRT and a scopolamine-induced deficit version were validated with the acetylcholinesterase inhibitor metrifonate. Social memory was measured by the ability of an adult rat to recognize a juvenile rat after a delay. The difference in social interaction time (SIT) was measured between two encounters. The difference in SIT is expressed as percent reduction in social interaction time (%RSIT).Results Metrifonate (10 and 30 mg/kg PO) increased %RSIT in a behaviorally specific manner, employing a 24-h interval and reversed the scopolamine-induced deficit at a retention time of 15 min. Likewise, AR-R17779 increased %RSIT in unimpaired animals (1, 3, 10 and 30 mg/kg SC) employing a 24-h retention interval, and reversed the scopolamine-induced deficit (0.3 and 1 mg/kg SC) after a 15-min retention interval. The effects of AR-R17779 (1 mg/kg SC) in unimpaired animals were reversed by MLA (10 µg ICV), which induced a decrease of %RSI at a 15-min retention interval when given alone.Conclusions AR-R17779 increased social recognition memory by activation of 7-nAChRs, suggesting that 7-nAChR agonists possess cognitive-enhancing properties.  相似文献   

12.
The aim of this study was to determine the role of β3-adrenoceptors in the action of endogenous catecholamines (adrenaline and noradrenaline) on rat retinal arterioles in vivo. Using an original high-resolution digital fundus camera, the rat ocular fundus images were captured. The diameter of retinal arterioles contained in the images was measured. Both systemic blood pressure and heart rate were recorded continuously. Adrenaline (0.3–5.0 μg/kg/min, i.v.) increased the diameter of retinal arterioles, mean blood pressure and heart rate in a dose-dependent manner. Under blockade of β12-adrenoceptors with propranolol (2 mg/kg, i.v. bolus followed by 100 μg/kg/min infusion), adrenaline decreased the diameter of retinal arterioles. Similar observation was made under treatment with the β3-adrenoceptor antagonist L-748337 (50 μg/kg, i.v.). The pressor response to adrenaline was enhanced by propranolol, but not by L-748337. The positive chronotropic action of adrenaline was markedly prevented by propranolol, whereas it was unaffected by L-748337. Noradrenaline (0.03–1.0 μg/kg/min, i.v.) decreased the diameter of retinal arterioles but increased the mean blood pressure and heart rate. The effects of noradrenaline on retinal arteriolar diameter and blood pressure were unaffected by propranolol or L-748337. The positive chronotropic action of noradrenaline was almost completely abolished by propranolol. These results suggest that β3-adrenoceptors play crucial roles in vasodilator responses to adrenaline of retinal arterioles but have minor or no effect on noradrenaline-induced responses. The results also indicate that the functional role of β3-adrenoceptors may be more important than that in peripheral resistance vessels.  相似文献   

13.
Stimulation of glucagon release and inhibition of insulin secretion from the islets of Langerhans are important for the blood-glucose-elevating effect of adrenaline. The mechanisms by which adrenaline accomplishes these actions may involve direct effects and indirect ones mediated by altered release of other islet hormones. In the present study we investigated how adrenaline affects the cytoplasmic Ca2+ concentration, which controls glucagon secretion from the pancreatic -cell. The studies were performed on isolated mouse -cells, which were identified by immunocytochemistry.The adrenaline effects consisted of initial mobilisation of intracellular Ca2+, accompanied by voltage-dependent influx of the ion. Part of the effect could be attributed to -adrenoceptor activation, as it was mimicked by the rise in cAMP and inhibited by the antagonist propranolol as well as the protein kinase A inhibitor adenosine 3,5-cyclic monophosphorothioate Rp-isomer. 1-Adrenoceptors were also involved, since the antagonists phentolamine and prazosin completely abolished the effects of adrenaline. Experiments with clonidine and yohimbine gave little evidence of a role of 2-adrenoceptors. The results indicate that 1- and -adrenoceptors on the -cells mediate adrenaline-stimulated glucagon secretion. The complete inhibition of the adrenaline response after blocking 1-adrenoceptors indicates an interaction with the -adrenergic pathway.Drs. Vieria and Liu contributed equally to the article  相似文献   

14.
Nimesulide, a non-steroidal, anti-inflammatory drug, produces ulcerogenic effects in adrenalectomized rats but is gastro-protective in intact rats. The objective of this study was to determine whether adrenal gland hormones are involved in the anti-ulcer effects of nimesulide. The results revealed that 100 mg/kg nimesulide produces gastric ulceration in adrenalectomized rats, which is prevented by prednisolone and adrenaline. The anti-ulcer effects of adrenaline and prednisolone in adrenalectomized rats were in turn antagonized by yohimbine, a selective α2-receptor blocker, but not by doxazosine (α1-receptor blocker) or propranolol (β-blocker). Adrenaline prevented the formation of indomethacin-induced ulcers in both adrenalectomized and intact rats, but prednisolone increased the indomethacin-induced ulcerous area in intact rats, whereas it decreased the size of the ulcers in adrenalectomized rats. In addition, prednisolone prevented ulcer formation in intact rats in which the adrenaline concentration had been decreased by metyrosine. These results suggest that glucocorticoids are anti-ulcerogenic in not only adrenalectomized rats but also in intact rats with diminished circulating levels of adrenaline. In the light of these data, the effect of nimesulide on plasma adrenaline concentrations was studied. In comparison to the adrenaline levels found in intact control rats, the administration of nimesulide at doses of 10, 20, 40 and 100 mg/kg decreased adrenaline concentrations by 12.8, 22.6, 30.4, and 58.2%, respectively, without affecting blood corticosterone concentrations. The anti-ulcer effect of nimesulide was observed to be dose-dependent, and the strength of this effect was directly correlated the decreasing concentration of adrenaline. The concentration of adrenaline was decreased by 60.9% in rats treated with 300 mg/kg metyrosine in which prednisolone produced anti-ulcer effects. In summary, we have shown that nimesulide produces its anti-ulcer effect by decreasing endogenous adrenaline concentrations and that glucocorticoids may induce anti-ulcer effects via α2-adrenoreceptors, but not via their own receptors. This research was conducted in the Laboratory of Pharmacology at Ataturk University, Faculty of Medicine, Department of Pharmacology, 25240 Erzurum/Turkey.  相似文献   

15.
16.
Rationale High levels of calcium independent phospholipase A2 (iPLA2) are present in certain regions of the brain, including the cerebral cortex, striatum, and cerebellum (Ong et al. 2005). Objectives The present study was carried out to elucidate a possible role of the enzyme in the motor system. Methods The selective iPLA2 inhibitor bromoenol lactone (BEL), the nonselective PLA2 inhibitor methyl arachidonyl fluorophosphonate (MAFP), and an antisense oligonucleotide were used to interfere with iPLA2 activity in various components of the motor system. Control animals received injections of carrier (phosphate buffered saline, PBS) at the same locations. The number of vacuous chewing movements (VCM) was counted from 1 to 14 days after injection. Results Rats that received BEL and high-dose MAFP injections in the striatum, thalamus, and motor cortex, but not the cerebellum, showed significant increase in VCM, compared to those injected with PBS at these locations. BEL-induced VCM were blocked by intramuscular injections of the anticholinergic drug, benztropine. Increased VCM was also observed after intrastriatal injection of antisense oligonucleotide to iPLA2. The latter caused a decrease in striatal iPLA2 levels, confirming a role of decreased enzyme activity in the appearance of VCM. Conclusions These results suggest an important role for iPLA2 in the cortex–striatum–thalamus–cortex circuitry. It is postulated that VCM induced by iPLA2 inhibition may be a model of human parkinsonian tremor.  相似文献   

17.
The synthetic cannabinoid ajulemic acid (CT-3) is a potent cannabinoid receptor agonist which was found to reduce pain scores in neuropathic pain patients in the absence of cannabis-like psychotropic adverse effects. The reduced psychotropic activity of ajulemic acid has been attributed to a greater contribution of peripheral CB receptors to its mechanism of action as well as to non-CB receptor mechanisms. Loss of inhibitory synaptic transmission within the dorsal horn of the spinal cord plays a key role in the development of chronic pain following inflammation or nerve injury. Inhibitory postsynaptic transmission in the adult spinal cord involves mainly glycine. As we hypothesised that additional non-CB receptor mechanisms of ajulemic acid might contribute to its effect in neuropathic pain, we investigated the interaction of ajulemic acid with strychnine-sensitive α1- and α1β-glycine receptors by using the whole-cell patch clamp technique. Ajulemic acid showed a positive allosteric modulating effect in a concentration range which can be considered close to clinically relevant concentrations (EC50 values: α1 = 9.7 ± 2.6 μM and α1β = 12.4 ± 3.4 μM). Direct activation of glycine receptors was observed at higher concentrations above 100 μM (EC50 values: α1 = 140.9 ± 21.5 μM and α1β = 154.3 ± 32.1 μM). These in vitro results demonstrate that ajulemic acid modulates strychnine-sensitive glycine receptors in clinically relevant concentrations.  相似文献   

18.
Rationale Previous studies have demonstrated reductions of serotonin 5-HT2A receptors in the neocortex of Alzheimers disease (AD) patients. However, it is unclear whether such losses play a role in the cognitive decline of AD.Objectives To correlate neocortical 5-HT2A receptor alterations with cognitive decline in AD.Methods Postmortem frontal and temporal cortical 5-HT2A receptors were measured by [3H]ketanserin binding in aged controls as well as in a cohort of AD patients who had been longitudinally assessed for cognitive decline and behavioral symptoms.Results 5-HT2A receptor densities in both regions were reduced in severely demented AD patients compared to age-matched controls. In the temporal cortex, this reduction also correlated with the rate of decline of Mini-Mental State Examination (MMSE) scores. The association between 5-HT2A receptor loss and cognitive decline was independent of the effects of choline acetyltransferase (ChAT) activity and presence of behavioral symptoms.Conclusions Our data suggest that loss of neocortical 5-HT2A receptors may predict for faster cognitive decline in AD, and point to serotomimetics as potentially useful adjuvants to cholinergic replacement therapies.  相似文献   

19.
Glucocorticoids affect the expression and density of neurotransmitter receptors in many tissues but data concerning the heart are contradictory and incomplete. We injected rats with hydrocortisone for 1–12 days and measured the densities of cardiac muscarinic receptors, 1-, 1- and 2-adrenoceptors and propranolol-resistant binding sites (formerly assumed to be the putative 4-adrenoceptor). Some aspects of intracellular signalling were also evaluated: we measured adenylyl cyclase activity (basal, isoprenaline- and forskolin-stimulated and carbachol-inhibited), the coupling between muscarinic receptors and G proteins and basal and isoprenaline-stimulated heart rate. The density of cardiac muscarinic receptors increased (in both the atria and the ventricles). The density of 1-adrenoceptors increased in the atria and was little changed in the ventricles. The density of 2-adrenoceptors increased in both the atria and the ventricles. The number of 1-adrenoceptors decreased initially, followed by a transient increase in the atria and did not change in the ventricles. The density of propranolol-resistant binding sites first increased and then diminished in the atria and did not change in the ventricles. Although there were noticeable changes in receptor densities, the stimulatory and inhibitory effects on adenylyl cyclase, basal and isoprenaline-stimulated heart rate and the coupling between muscarinic receptors and G proteins were not significantly altered. This may indicate that changes in receptor densities might be one of the mechanisms maintaining stable functional output. Deceased  相似文献   

20.
(-)-Isoprenaline enhances cardiac contractility through beta-adrenoceptors. However, in cardiac tissue from transgenic mice with a 200-400-fold cardiac overexpression of the human beta(2)-adrenoceptor (TG4) we observed a pronounced cardiodepression at high (-)-isoprenaline concentrations. Here, we investigated the functional role of the coexisting beta(1)-, beta(2)-, and beta(3)-adrenoceptor subtypes in several regions of the TG4 heart, and in particular their contribution to the negative inotropic effect. In paced TG4 left atria, (-)-isoprenaline produced bell-shaped concentration-effect curves increasing (-logEC(50)M=9.0) and decreasing (-logIC(50)M=6.4) contractile force. These effects were unaffected by the beta(1)-selective CGP 20712A (300 nM). The beta(2)-selective inverse agonist ICI 118,551 (30-1,000 nM) antagonised in surmountable manner both the positive and negative inotropic effects of (-)-isoprenaline with similar concentration-dependence, consistent with an exclusive mediation through beta(2)-adrenoceptors. The beta(3)-adrenoceptor-selective agonist BRL37344 (1 nM-10 microM) failed to produce significant inotropic effects in TG4 left atria. Subsequently, we measured left atrial action potentials accompanying the inotropic changes induced by (-)-isoprenaline. Action potentials tended to have shorter duration in left atria from TG4 mice than from non-transgenic littermate mice. However, (-)-isoprenaline prolonged the duration of 30% repolarisation in atria from non-transgenic littermate but not from TG4 mice, while 90% repolarisation was abbreviated in both groups of atria. Negative inotropic effects of (-)-isoprenaline were also observed in right ventricular preparations. Pertussis toxin-treatment of the mice abolished the negative inotropic effects in left atria and reduced cardiodepression in right ventricle, indicating an involvement of beta(2)-adrenoceptor coupling to PTX-sensitive G-proteins. In additional experiments, designed to study the native murine beta(1)-adrenoceptor function, we used the physiological beta(1)-adrenoceptor agonist (-)-noradrenaline. In the presence of 600 nM ICI 118,551 we failed to find a functional role of the beta(1)-adrenoceptors in left atria, and detected only a marginal contribution to the positive chronotropic effect in right atria. We also investigated the effects of the non-conventional partial agonist (-)-CGP 12177 (0.2 nM-6 microM), which in wild-type mice causes tachycardia through beta(1)-adrenoceptors. In TG4 right atria, however, (-)-CGP 12177-evoked tachycardia was resistant to blockade by CGP 20712A but antagonised by ICI 118,551, consistent with mediation through human beta(2)-adrenoceptors.The results from TG4 mice suggest that the positive and negative inotropic effects of (-)-isoprenaline are mediated through human overexpressed beta(2)-adrenoceptors coupled to G(s) protein and G(i) protein, respectively. The (-)-isoprenaline-evoked shortening of the atrial action potential combined with reduced responses of L-type Ca(2+) current may contribute to the negative inotropic effects. The function of murine cardiac beta(1)-adrenoceptors is suppressed by overexpressed human beta(2)-adrenoceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号