首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rodent barrel field cortex integrates somatosensory information from two separate thalamic nuclei, the ventral posterior medial nucleus (VPM) and the rostral sector of the posterior complex (POm). This paper compares the sensory responses of POm and VPM cells in urethane-anesthetized rats as a first step in determining how cortex integrates multiple sensory pathways. A complete representation of the contralateral body surface was identified in POm. Trigeminal receptive fields (RFs) of POm and VPM cells were mapped by computer-controlled displacement of individual whiskers; responses were quantified by using peristimulus time histograms. Average RF size was similar in POm (5.1 whiskers) and VPM (4.4 whiskers), but evoked responses in the two nuclei differed significantly according to all other measures. VPM cells were maximally responsive to one single whisker--the "center RF." Stimulating this whisker evoked, on average, a response of 1.4 spikes/stimulus at a latency of 7 ms; surrounding whiskers evoked responses of less than 1 spike/stimulus at latencies of greater than 8 ms. In contrast, POm cells were nearly equally responsive to several whiskers. Quantitative criteria allowed us to designate a single whisker as the "center RF" and stimulating this whisker evoked, on average, a response of 0.5 spikes/stimulus at a latency of 19 ms. VPM cells, but not POm cells, were able to "follow" repeated whisker deflection at greater than 5 Hz. We conclude that, when a single whisker is deflected, VPM activates the related cortical barrel-column at short latency--before the onset of activity in POm. The timing of activation could allow POm cells to modulate the spread of activity between cortical columns.  相似文献   

2.
Retrograde tracing with true blue (TB) and diamidino yellow (DY) and anterograde tracing with either wheatgerm agglutinin-conjugated horseradish peroxidase (WGA-HRP) or Phaseolus vulgaris leucoagglutinin (PHA-L) were employed to investigate the projections from trigeminal nucleus principalis (PrV) and trigeminal subnucleus interpolaris (SpI) to their targets in the medial ventral posterior (VPM) and posterior (POm) nuclei of the thalamus. Many more cells in both PrV and SpI were labeled by tracer injections into VPM than into POm. Only a very small number of double-labeled neurons were observed in either PrV or SpI. However, a significantly higher percentage of SpI cells projected to POm or to both POm and VPM than was the case for PrV. Anterograde tracing with WGA-HRP showed that the projections from both PrV and SpI to VPM were much denser than those from the same nuclei to POm. Small injections of PHA-L into either PrV or SpI produced a focus of fairly dense labeling in VPM and much more diffuse terminal labeling in POm. These anatomical data provide evidence for two separate trigeminothalamic pathways, one originating from PrV and the second originating from SpI. Both of these pathways converge and diverge at the thalamic level. That is, information from the PrV pathway and from the SpI pathway are both provided to VPM in a morphologically restricted fashion and to POm in a morphologically widespread fashion.  相似文献   

3.
Spatiotemporal convergence and divergence in the rat S1 "barrel" cortex   总被引:12,自引:0,他引:12  
The size and response magnitude of receptive fields were evaluated for cells in the rat cortical barrel-field by using standard vibrissal deflections of 1.14 degrees. Such stimuli fell within the plateau region of stimulus-response curves. The response of all neurones to all vibrissae within and surrounding centre-receptive fields were analysed for probability and latency of response. It was found that cells in supragranular layers had small centre-receptive fields (average 1.6 vibrissae) with small excitatory surrounds (1.5 vibrissae) while cells in the granular layers had small, powerful centre-receptive fields (1.4) with moderately large excitatory surrounds (2.6). Neurones in infragranular layers possessed large but weak centre-receptive fields (2.6) with large surrounds (3.5). Sixty-four neurones in layer IV were studied, the precise locations of which were identified by using dye lesioning and cytochrome oxidase staining. There were no differences in receptive field size for cells within septa and barrel hollows, but the latter were twice as likely to produce two or more spikes per stimulus from the principal vibrissa (65% against 33%). Histological analysis showed that the principal vibrissa was synonymous with the appropriate vibrissa for the barrel on 86% (55 of 64) of occasions. A quantitative analysis of convergent input to three neighbouring barrels (E1, E2, and D1) showed considerable graded overlap of receptive field surrounds, although facial hair adjacent to the mystacial pad only influenced cells on the edge of the barrel-field. Individual vibrissae exhibited significant divergent input to adjacent inappropriate barrels, being preferentially directed to distant septal rather than barrel hollow cells. An analysis of latencies showed that 40% of barrel hollow cells and 48% of barrel septal cells responded at short (less than 10 ms) latencies to their appropriate vibrissa. In contrast, responses to inappropriate vibrissae were overwhelmingly of long latency (10-greater than 30 ms), only 2% of inappropriate responses from barrel hollow cells and 13% from septal cells being of short latency. These results suggest that direct inputs largely project to appropriate barrels. The possibility that divergent inputs are generated by intracortical mechanisms is discussed.  相似文献   

4.
The post eromedial ventral nucleus (VPM) of the cat is divided cytoar-chitectonically into the magnocellular (VPMmc), lateral parvocellular (VPMpcl), and medial parvocellular (VPMpcm) divisions. Cell bodies of neurons in the VPMpcm are small, while those in the VPMpcl are small to medium-sized. The VPMmc contains large neurons. Direct projections from the lower brain stem structures to each of the three divisions of the VPM were examined by the retrograde horseradish peroxidase (HRP) method. When HRP injection was done into the VPMmc, labeled neurons were mainly located conlralaterally in the ventral division of the principal sensory trigeminal nucleus (Vp), in the rostral part of the oral subnucleus in the spinal trigeminal nucleus (Vsp), and in the interpolar sub-nucleus of the Vsp; a few labeled neurons were also found contralaterally in lamina I of the caudal subnucleus of the Vsp. When HRP injection was restricted to the VPMpcl or VPMpcm, HRP-labeled neurons were mainly observed ipsilaterally, respectively, in the dorsal division of the Vp, or in the parabrachiaJ nucleus (PBN) regions dorsomedial and ventromedial to the brachium conjunctivum. After HRP injection into the parvocellular part of the VPM (VPMpc), labeled neurons were also seen contralaterally in the Vsp, but these were far less numerous than those seen after HRP injections into the VPMmc. Thus, each of the three divisions of the VPM receives main ascending afferent fibers from different brain stem structures; the VPMpcm, VPMpcl, or VPMmc receives afferent fibers, respectively, from the PEN ipsilaterally, from the dorsal division of Vp ipsilaterally, or from the ventral division of the Vp and the Vsp contralaterally.  相似文献   

5.
Extracellular recording, intracellular recording, intracellular horseradish peroxidase injection, and receptive field mapping techniques were employed to evaluate the physiological and morphological properties of medial ventral posterior nucleus (VPM) and posterior nucleus (POm) neurons in normal adult rats. Overall, we physiologically characterized 148 VPM and 121 POm neurons. Over 82% of the VPM cells were excited only by deflection of one or more mystacial vibrissae, 10% were activated by displacement of guard hairs, and the remainder were either excited by indentation of the skin or were unresponsive. Less than 40% of the POm cells were activated by vibrissa deflection, 18% were excited by displacement of guard hairs, and another 17% were unresponsive. Most of the rest of the POm cells were excited by stimulation of skin, mucosa, or activation of muscle-related afferents. Small percentages of POm cells responded only to noxious stimulation, were classified as having a wide dynamic range, or were inhibited by peripheral stimulation. Electrical stimulation of either PrV or SpI activated most neurons in both VPM and POm. This excitation was almost invariably followed by a long-lasting hyperpolarization which was generally strong enough to prevent responses to either electrical stimuli delivered in the brainstem or mechanical stimulation of the periphery. The receptive fields of vibrissa-sensitive cells in POm were generally much larger than those of cells in VPM. Data obtained with extracellular recording indicated that VPM and POm cells responded to an average of 1.4 and 4.0 vibrissae, respectively. Intracellular recording from smaller samples of VPM and POm cells demonstrated the existence of inputs that were insufficient to produce spikes from the cell, but did yield epsp's. When both sub- and suprathreshold excitation were considered, the average number of vibrissa in the receptive field of a VPM cell was 2.7 and the value for POm cells became 7.8. HRP-filled neurons recovered in POm (N = 20) generally had much larger dendritic arbors than neurons in VPM (N = 31). For the former cells, the size of the dendritic tree was significantly correlated with the number of vibrissa to which the cell responded; for the latter neurons, it was not.  相似文献   

6.
Immunocytochemical techniques were used to study the effects of tactual deprivation on glutamic acid decarboxylase (GAD) containing neurons in rat somatosensory barrel cortex. In normal rats GAD immunoreactive neurons and puncta are present in all laminae, with dense patches of GAD immunoreactive puncta centered on the barrels in lamina IV. Trimming whiskers of adult rats leads to a reversible decrease of GAD immunoreactivity in barrels corresponding to trimmed hairs. Intensity of GAD staining also is reversibly altered in supragranular laminae of nondeprived barrel columns flanked by deprived barrels. This indicates that GAD levels in the barrel cortex ordinarily fluctuate with changes in sensory input. By contrast, animals whose whiskers are trimmed from birth have normal GAD staining in both deprived and nondeprived barrels. Moreover, if trimmed whiskers of neonatally deprived animals are allowed to grow to normal lengths and are retrimmed later in adulthood GAD staining is not affected. Thus early tactual deprivation disrupts mechanisms that permit modulation of transmitter enzyme levels in cortical neurons following changes in sensory experience.  相似文献   

7.
One hundred and twenty-six cells, sampled in the vicinity of the D1 barreloid in the ventroposterior medial nucleus of the thalamus, were tested for magnitude and latency of response to brief deflections (3 ms; 1.14 degrees) of vibrissae in adult rats under controlled conditions of light urethane anaesthesia. Similar results were achieved for D1 and non-D1-dominant cells. D1-dominant cells (N = 76) responded to the centre-receptive field (D1) vibrissa with a mean of 1.08 spikes per stimulus at modal latencies of 3-12 ms (inter-quartile range 4-5 ms) and to surrounding vibrissae with a mean of 0.26 spikes per stimulus at latencies of 3-41 ms (interquartile range 5-8 ms). Surround-receptive fields showed extensive overlap but were reduced and finally eliminated by deepening anaesthesia. A cell-by-cell analysis showed no correlation between latency and response magnitude for responses to surround vibrissae. Response magnitudes to the surround- and centre-receptive field inputs for D1-dominant barrel cells were some 2.5- and 1.7-fold greater, respectively, than for thalamic cells under identical experimental conditions. The latencies to centre- and surround-receptive field inputs for D1-dominant barrel cells were 2.5 and 10-20 ms later than for thalamus, respectively. These data on a mismatch of latencies for surround- and centre-receptive fields in thalamus and cortex support the notion that surround-receptive fields of cortical barrel cells are almost entirely constructed intracortically during light anaesthesia (Armstrong-James et al., '91), although it is argued that surround-receptive fields of thalamic cells conceivably could be relayed in other cortical states or serve a role in plasticity.  相似文献   

8.
We examined whether sensory deprivation during formation of the cortical circuitry influences the pattern of intracortical single-cell connections in rat barrel cortex. Excitatory postsynaptic potentials (EPSPs) from layer 2/3 (L2/3) pyramidal neurons were recorded in vitro using patch-clamp techniques. In order to evoke EPSPs, presynaptic neurons were stimulated by photolytically applied glutamate, thus generating action potentials. Synaptic connections between the stimulated and the recorded neuron were identified by the occurrence of PSPs following photostimulation. Sensory deprivation changed the pattern of projections from L4 and L2/3 neurons to L2/3 pyramidal cells. In slices of non-deprived rats 86% of the total presynaptic neurons were located in the first and only 10% in the second barrel column. Deprivation changed these values to 67% and 26%, respectively. Therefore, the probability of presynaptic cells projecting to L2/3 neurons was shifted from adjacent to more remote barrel columns. These results indicate that deprivation of sensory input influences the pattern of intracortical connections.  相似文献   

9.
The postnatal development of glutamic acid decarboxylase (GAD; GAD67 and GAD65) expression was studied in the rat somatosensory cortex. Delineation of barrels in layer IV by GAD67 immunoreactivity occurred between postnatal days P3 and P6 and remained evident into adulthood. At birth, a band of GAD67-positive elements was already present in superficial layer V. This band was prominent until P6 and gradually disappeared after P9. In parallel, there was a gradual appearance of GAD67-immunoreactive cells neuropil and puncta, which began in layer VI/subplate at P1 and achieved the adult laminar pattern by about P13. This later GAD67 immunoreactivity was responsible for the demarcation of barrels in layer IV. Development of GAD65 immunoreactivity was delayed relative to GAD67. GAD65 immunoreactivity, which was in little evidence before P6, increased markedly in density and in delineation of cell bodies over the next several weeks. During this prolonged developmental process, GAD65 first showed a negative image of the barrels compared with the septae and the surrounding cortex. Subsequently, there was a filling in of the barrels resulting in rather uniform GAD65 immunoreactivity across the barrel field and surrounding cortex. These results suggest that the development of the γ-aminobutyric acid (GABA) synthetic system in the barrel cortex involves several processes: the disappearance of a precocious GAD67 system in layer V, the temporally overlapping maturation of the mature GAD67 system in an inside-outside manner, and the delayed and prolonged development of the GAD65 system. J. Comp. Neurol. 402:62–74, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
The medial prefrontal cortex (mPFC) has been associated with diverse functions including attentional processes, visceromotor activity, decision making, goal directed behavior, and working memory. The present report examined the effects of stimulation of the midline thalamus, concentrating on ventral nuclei of the midline thalamus, on evoked activity at the mPFC. The nucleus reuniens (RE) of the ventral midline thalamus is a major source of projections to the hippocampus and to the mPFC, and has been shown to exert pronounced excitatory effects on the hippocampus. No previous study has systematically examined the actions of the ventral midline thalamus on the mPFC. We showed that stimulation of the dorsal and ventral midline thalamus, but not of an intermediate region lying between them (null zone), produced short latency, large amplitude evoked potentials throughout the dorsoventral extent of the medial PFC. The largest effects were elicited with ventral midline stimulation (rhomboid/reuniens nuclei) at the ventral mPFC--the prelimbic (PL) and infralimbic (IL) cortices. Specifically, stimulation of RE produced evoked potentials (early negative component, N2) at the PL cortex at a mean latency of 22.6 msec and mean amplitude of 0.85 mV, indicative of monosynaptic effects. In addition, we showed that paired pulse stimulation of RH/RE produced strong facilitatory actions (paired pulse facilitation) at IL (83%) and PL (75%). These findings indicate that RE exerts strong direct excitatory effects on the mPFC, and coupled with the demonstration that RE produces similar actions on the hippocampus, indicates that RE is in a position to influence and possibly coordinate the activity of these two forebrain structures subserving memory.  相似文献   

11.
Frank Lambert Rice   《Brain research》1984,322(2):393-395
The possible excitatory effect of N-acetyl-alpha- aspartylglutamate ( NAAG ) was studied in 3 different systems. First on the increase in 45Ca2+ influx into rat brain cortex slices in vitro, a process that is enhanced by excitatory substances. In this system 1.25 mM NAAG was entirely inactive, nor did it potentiate the excitatory effect of 0.5 mM L-glutamate. NAAG (1 mM) was able to inhibit the specific binding of [3H]kainic acid to its receptors in rat brain cortex membranes by 57.2%, but such inhibition could be accounted by the release of L-glutamate because of hydrolysis of NAAG during the incubation. In vivo infusion of NAAG (10 or 100 micrograms) through permanently implanted cannulas into the cat dorsal hippocampus, or into the pulvinar nucleus of the thalamus, was also without effect. NAAG was also unable to potentiate or to antagonize the excitatory effects of glutamate in this preparation.  相似文献   

12.
Methods involving the anterograde and retrograde transport of wheat-germ agglutinin conjugated horseradish peroxidase and the retrograde transport of Fluoro-Gold were used in rats to examine the distribution within the spinal trigeminal nucleus of trigeminal neurons projecting to the nucleus submedius (Sm) of the thalamus, as well as the distribution of axon terminals within the Sm. Following injections into the trigeminal nucleus, axon terminals were seen in the dorsal part of the anterior Sm; the terminals occurred bilaterally but had an obvious contralateral dominance. To help determine the precise location of the Sm-petal neurons, the border between trigeminal subnuclei interpolaris and caudalis was examined by the use of immunohistochemical procedures for calcitonin gene-related peptide (CGRP). The Sm-petal neurons that were labeled retrogradely occurred only at the caudal interpolaris and rostral caudalis levels; the number of labeled neurons on the contralateral side was approximately six times that on the ipsilateral side. Most of these neurons were located in the ventral part of the caudal interpolaris and rostral caudalis and spinal trigeminal tract; in caudalis, the neurons were almost exclusively localized to its superficial layers. There were approximately three times more labeled neurons in interpolaris than in caudalis. In the experiments combined with immunohistochemistry for CGRP, many neurons (34%) were seen in proximity to CGRP-like immunopositive fibers. These results suggest that the Sm of the rat receives its orofacial afferent inputs from brainstem neurons that are localized to the caudal interpolaris and rostral caudalis. In view of previous studies that have implicated these three structures in somatosensory function, and in particular nociception, our data point to a role for this direct projection from interpolaris and caudalis to Sm in the central processing of pain.  相似文献   

13.
The neural connections from the ventral pallidum (VP) through the mediodorsal nucleus of the thalamus (MD) to the medial prefrontal cortex (MPC) were investigated. Extracellular recordings were made from 219 neurons in the medial and lateral portions of the MD and the VP and the MPC were stimulated. The most frequent response to VP stimulation was inhibition and inhibition preceded by excitation. Also, the most frequent response of MD units to MPC stimulation was inhibition and inhibition preceded by excitation. Nineteen of 26 MD units, activated antidromically by MPC stimulation, responded orthodromically to VP stimulation. The most frequent orthodromic response of these MD output neurons was inhibition and inhibition preceded by excitation. GABA iontophorized onto MD neurons reduced their rate of discharge. GABA and picrotoxin iontophorized onto MD neurons did not influence the inhibitory or excitatory responses to VP stimulation. These electrophysiological results support previous anatomical findings of connections between the VP and the MPC by way of the MD. MD output neurons to the MPC receive mostly inhibitory inputs from VP afferents. A high proportion of MD neurons respond orthodromically to both VP and MPC stimulation, suggesting the convergence of synaptic inputs from these structures to the same MD units.  相似文献   

14.
The present study examined the way in which an indirect partial deafferentation of the medial portion of the ventrobasal complex (VPM/VPL) induced by neonatal transection of the infraorbital nerve (ION) altered the structural and functional properties of its constituent neurons. This manipulation significantly reduced the volume of the contralateral VPM/VPL. In addition, cell counts in Nissl-stained material revealed a significant reduction of the number of VPM/VPL neurons contralateral to neonatal ION transection. We also analyzed the effect of neonatal ION transection on the soma-dendritic morphology of individual neurons in the ventral posteromedial nucleus of the thalamus (VPM) by intracellular injection of horseradish peroxidase (HRP) in vivo and Lucifer yellow in fixed slices. Neonatal transection of the ION resulted in increased dendritic length, area, and volume of VPM neurons in both preparations; however only the changes observed in fixed slices reached statistical significance. Alterations in the functional characteristics of VPM neurons were also observed following neonatal nerve damage. There was a significant decrease in the percentage of vibrissae-sensitive neurons and a corresponding increase in the percentages of neurons responsive to guard hair deflection or that were unresponsive to peripheral stimulation. Neonatal nerve damage also resulted in significantly longer latencies of VPM cells after stimulation of either trigeminal nucleus principalis or subnucleus interpolaris. The present results indicate that the development of normal response properties and soma-dendritic morphology of VPM neurons is dependent upon intact afferent input during development. Indirect partial deafferentation of VPM/VPL by neonatal transection of the ION results in reduced neuron number, which may result in decreased competition among the dendrites of these neurons. This proposal is consistent with observations of increased dendritic dimensions of VPM neurons contralateral to neonatal ION damage.  相似文献   

15.
The early development of the principal sensory nucleus of the trigeminal nerve (PSN) was examined to determine whether spatiotemporal patterns of synaptogenesis coincide with patterns in neuronal generation, migration, and death. The morphogenesis of PSN neurons during the period from G16 to P14 was studied with a Golgi method. Prenatally, PSN neurons had dendrites that extended into the sensory tract of the trigeminal nerve (s5), and from as early as G18, these dendrites were studded with spines. The dendrites in the s5 degenerated or regressed in the early postnatal period so that the s5 was free of dendrites by P14. The development of anti-synapsin I immunoreactivity was traced from G14 to P10. Immunoreactive puncta (synaptic boutons) appeared in the medial third of the s5 transiently between G18 and P5. On the other hand, puncta in the PSN did not appear until G20, at which time they were confined to the lateral margin of the PSN. By P0, puncta were distributed throughout the PSN. Cytochrome oxidase activity in the PSN was low and unpatterned prenatally. Postnatally, cytochrome oxidase activity intensified and a segmented pattern of barreloids appeared in the ventral PSN on the day of birth. By P5, the complete pattern of barreloids, spanning the full width of the ventral PSN, was evident. The development of cytochrome oxidase activity in the PSN followed the lateral-to-medial gradient of synaptogenesis revealed by the development of synapsin 1 immunoreactivity. This gradient is opposite of that for neuronal generation, migration, and death. Moreover, the s5 serves as a transient synaptic field.  相似文献   

16.
17.
The striatum integrates sensory information to enable action selection and behavioural reinforcement. In the rat, a large topographical projection from the rat barrel cortex to widely distributed areas of the striatum is assumed to be an important structural component supporting these processes. The striatal sensory response is, however, not comprehensively understood at a network level. We used a 10-Hz, 100-ms air puff, allowing undamped movement of multiple whiskers, to look at functional connectivity in contralateral cortex and striatum in response to sensory stimulation. Simultaneous recordings of cortical and striatal local field potentials (LFPs) were made under isoflurane anaesthesia in 15 male Brown Norway rats. Four electrodes were placed in the barrel cortex while the dorsolateral striatum was mapped with a 500-μm resolution, resulting in a maximum of 315 recording positions per animal. Significant event-related responses were unevenly distributed throughout the striatum in 34.8% of positions recorded within this area. Only 10.3% of recorded positions displayed significant total power increases in the LFPs during the stimulation period at the stimulus frequency. This suggests that the responses seen in the LFPs are due to phase rearrangement rather than an amplitude increase in the signal. Analysis of corticostriatal imaginary coherence revealed stimulus-induced changes in the functional connectivity of 12% of corticostriatal pairs, the sensory response of sparsely distributed neuronal ensembles within the dorsolateral striatum is reflected in the phase relationship between the cortical and striatal local fields.  相似文献   

18.
The sensory properties of neurons in the several forelimb areas of rat sensorimotor cortex were examined using the technique of extracellular single-unit recording in the awake, head-restrained rat. Cells with peripheral receptive fields were tested for the amount and modality of sensory input during joint manipulation and brushing and tapping of limbs, face and trunk. Input-output correlations were made on the basis of the results of receptive field mapping and intracortical microstimulation in the same electrode penetration. It was found that neurons (n = 117) in the rostral forelimb area receive virtually no sensory input while 30% of neurons (n = 114) in the caudal forelimb primary motor area do receive such input. The inputs to caudal forelimb motor area neurons were primarily (83%) from single joints; along perpendicular electrode penetrations the same joint that activated a cortical cell also moved when microstimulation was delivered along the same electrode penetration. In the granular and dysgranular zones of somatic sensory forelimb cortex, 70% of neurons (n = 82) were responsive to peripheral sensory inputs, with most of the cells in the granular cortex responsive to cutaneous inputs while cells in the dysgranular cortex were more responsive to deep inputs. The lack of sensory inputs to the rostral forelimb motor area is consistent with the proposal that this region may be a part of the supplementary motor area of the rat.  相似文献   

19.
Prior anterograde tracing work identified somatotopically organized lamina I trigemino‐ and spinothalamic terminations in a cytoarchitectonically distinct portion of posterolateral thalamus of the macaque monkey, named the posterior part of the ventral medial nucleus (VMpo; Craig [2004] J. Comp. Neurol. 477:119–148). Microelectrode recordings from clusters of selectively thermoreceptive or nociceptive neurons were used to guide precise microinjections of various tracers in VMpo. A prior report (Craig and Zhang [2006] J. Comp. Neurol. 499:953–964) described retrograde tracing results, which confirmed the selective lamina I input to VMpo and the anteroposterior (head to foot) topography. The present report describes the results of microinjections of anterograde tracers placed at different levels in VMpo, based on the anteroposterior topographic organization of selectively nociceptive units and clusters over nearly the entire extent of VMpo. Each injection produced dense, patchy terminal labeling in a single coherent field within a distinct granular cortical area centered in the fundus of the superior limiting sulcus. The terminations were distributed with a consistent anteroposterior topography over the posterior half of the superior limiting sulcus. These observations demonstrate a specific VMpo projection area in dorsal posterior insular cortex that provides the basis for a somatotopic representation of selectively nociceptive lamina I spinothalamic activity. These results also identify the VMpo terminal area as the posterior half of interoceptive cortex; the anterior half receives input from the vagal‐responsive and gustatory neurons in the basal part of the ventral medial nucleus. J. Comp. Neurol. 522:36–63, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
The medial division of the medial geniculate (MGM) and the posterior intralaminar nucleus (PIN) are association nuclei of the auditory thalamus. We made tracer injections in these nuclei to evaluate/compare their presynaptic terminal and postsynaptic target features in auditory cortex, amygdala and striatum, at the light and electron microscopic levels. Cortical labeling was concentrated in Layer 1 but in other layers distribution was location-dependent. In cortical areas designated dorsal, primary and ventral (AuD, Au1, AuV) terminals deep to Layer 1 were concentrated in infragranular layers and sparser in the supragranular and middle layers. In ectorhinal cortex (Ect), distributions below Layer 1 changed with concentrations in supragranular and middle layers. In temporal association cortex (TeA) terminal distributions below Layer 1 was intermediate between AuV/1/D and Ect. In amygdala and striatum, terminal concentrations were higher in striatum but not as dense as in cortical Layer 1. Ultrastructurally, presynaptic terminal size was similar in amygdala, striatum or cortex and in all cortical layers. Postsynaptically MGM/PIN terminals everywhere synapsed on spines or small distal dendrites but as a population the postsynaptic structures in cortex were larger than those in the striatum. In addition, primary cortical targets of terminals were larger in primary cortex than in area Ect. Thus, although postsynaptic size may play some role in changes in synaptic influence between areas it appears that terminal size is not a variable used for that purpose. In auditory cortex, cortical subdivision-dependent changes in the terminal distribution between cortical layers may also play a role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号