首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
AMP-activated protein kinase (AMPK), a cellular energy sensor, has been reported to participate in modulating inflammatory responses, but its role in intestinal inflammation remains unclear. IBD has been characterized by excessive innate and adaptive immune responses. Here, the roles of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), an agonist of AMPK, in regulating immune responses of experimental colitis were investigated. In vitro effects of AICAR on LPS-induced macrophage activation and Th1 and Th17 differentiation, as well as in vivo effects of AICAR in mice with 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis, were explored. In acute colitis, daily AICAR treatment commenced 2 days after TNBS delivery (day 1), while in relapsing colitis, AICAR treatment commenced after three weekly TNBS administrations. Colon inflammation, production of proinflammatory cytokines and NF-κB activation in colon tissues, and Th1 and Th17 cell populations in lamina propria mononuclear cells (LPMCs) and mesenteric lymph node cells (MLNs) were assayed. Results show that AICAR significantly inhibited in vitro LPS-induced macrophage activation and Th1 and Th17 cell differentiation. Administration of AICAR was therapeutically effective in ameliorating acute and relapsing experimental colitis, as shown by reduced body weight loss and significant attenuation in colon histological inflammation. Moreover, this treatment inhibited NF-κB activation in macrophages, and reduced levels of TNF, Th1- and Th17-type cytokines, and Th1 and Th17 cell populations in LPMCs and MLNs. AICAR-initiated AMPK activation may act as a central downregulator in ongoing innate and adaptive immune responses of murine colitis, providing a novel therapeutic approach in the treatment of IBD.  相似文献   

2.
This study aimed to ascertain the potential of Centratherum anthelminticum seeds methanolic fraction (CAMFs) for the management of type 2 diabetes and its associated complications. CAMFs was initially tested on β-TC6 cells for H2O2-induced nuclear factor-κB (NF-κB) translocation effects. The result displayed that CAMFs significantly inhibited NF-κB translocation from cytoplasm into the nucleus, dose-dependently. Furthermore, a 12-week sub-chronic CAMFs study was carried out on streptozotocin (STZ)-nicotinamide–induced type 2 diabetic rat model to evaluate glycemia, essential biochemical parameters, lipid levels, oxidative stress markers, and pro-inflammatory cytokines level. Our study result showed that CAMFs reduced hyperglycemia by increasing serum insulin, C-peptide, total protein, and albumin levels, significantly. Whereas, elevated blood glucose, glycated hemoglobin, lipids and enzyme activities were restored to near normal. CAMFs confirmed antioxidant potential by elevating glutathione (GSH) and reducing malondialdehyde (MDA) levels in diabetic rats. Interestingly, CAMFs down-regulated elevated tumor necrosis factor α (TNF-α), interleukin (IL)-1β and IL-6 in the tissues and serum of the diabetic rats. We conclude that CAMFs exerted apparent antidiabetic effects and demonstrated as a valuable candidate nutraceutical for insulin-resistant type 2 diabetes and its associated complications such as dyslipidemia, oxidative stress, and inflammation.  相似文献   

3.
Prenatal ethanol exposure (PEE) induces dyslipidemia and hyperglycemia in fetus and adult offspring. However, whether PEE increases the susceptibility to non-alcoholic fatty liver disease (NAFLD) in offspring and its underlying mechanism remain unknown. This study aimed to demonstrate an increased susceptibility to high-fat diet (HFD)-induced NAFLD and its intrauterine programming mechanisms in female rat offspring with PEE. Rat model of intrauterine growth retardation (IUGR) was established by PEE, the female fetus and adult offspring that fed normal diet (ND) or HFD were sacrificed. The results showed that, in PEE + ND group, serum corticosterone (CORT) slightly decreased and insulin-like growth factor-1 (IGF-1) and glucose increased with partial catch-up growth; In PEE + HFD group, serum CORT decreased, while serum IGF-1, glucose and triglyceride (TG) increased, with notable catch-up growth, higher metabolic status and NAFLD formation. Enhanced liver expression of the IGF-1 pathway, gluconeogenesis, and lipid synthesis as well as reduced expression of lipid output were accompanied in PEE + HFD group. In PEE fetus, serum CORT increased while IGF-1 decreased, with low body weight, hyperglycemia, and hepatocyte ultrastructural changes. Hepatic IGF-1 expression as well as lipid output was down-regulated, while lipid synthesis significantly increased. Based on these findings, we propose a “two-programming” hypothesis for an increased susceptibility to HFD-induced NAFLD in female offspring of PEE. That is, the intrauterine programming of liver glucose and lipid metabolic function is “the first programming”, and postnatal adaptive catch-up growth triggered by intrauterine programming of GC-IGF1 axis acts as “the second programming”.  相似文献   

4.
5.
Neutrophils are activated following hemorrhagic shock and the accumulation of neutrophils in the lung is associated with lung injury. This research investigated the effects of a semisynthetic 2-benzoylaminobenzoic acid derivative, methyl 2-(2-fluorobenzamido)benzoate (DSM-RX78), on superoxide anion (O2) production in formyl-l-methionyl-l-leucyl-l-phenylalanine (FMLP)-activated human neutrophils, and on lung injury in Sprague-Dawley rats subjected to trauma-hemorrhage. DSM-RX78 concentration-dependently inhibited O2 production, but not elastase release, in FMLP-activated human neutrophils. DSM-RX78 displayed no superoxide-scavenging ability, and it failed to alter the subcellular NADPH oxidase activity. Significantly, DSM-RX78 increased cAMP formation and protein kinase (PK)A activity in FMLP-activated neutrophils, which occurred through the selective inhibition of cAMP-specific phosphodiesterase (PDE) activity but not an increase in adenylate cyclase function or cGMP-specific PDE activity. These results show that DSM-RX78 is a new inhibitor of cAMP-specific PDE. Moreover, DSM-RX78 reduced FMLP-induced phosphorylation of protein kinase B (Akt), but not calcium mobilization. The inhibitory effects of DSM-RX78 on O2 production and Akt phosphorylation were reversed by PKA inhibitors, suggesting that DSM-RX78 regulates O2 production of human neutrophils by promoting cAMP/PKA-dependent inhibition of Akt activation. On the other hand, administration of DSM-RX78 significantly attenuated the increase in myeloperoxidase activity and edema in the lung, as well as protein concentrations in bronchoalveolar lavage fluid in rats after trauma-hemorrhagic shock. In summary, these results strongly suggest that DSM-RX78 exerts anti-inflammatory effects, which result from the elevation of cAMP levels and PKA activity through its inhibition of cAMP-specific PDE. Also, our findings show that DSM-RX78 attenuates hemorrhagic shock-induced lung injury in rats.  相似文献   

6.
Metabolic homeostasis requires dynamic catabolic and anabolic processes. Autophagy, an intracellular lysosomal degradative pathway, can rewire cellular metabolism linking catabolic to anabolic processes and thus sustain homeostasis. This is especially relevant in the liver, a key metabolic organ thatgoverns body energy metabolism. Autophagy’s role in hepatic energy regulation has just begun to emerge and autophagy seems to have a much broader impact than what has been appreciated in the field. T...  相似文献   

7.
Index     
  相似文献   

8.
《药学学报(英文版)》2022,12(5):2129-2149
Cardiometabolic disease (CMD), characterized with metabolic disorder triggered cardiovascular events, is a leading cause of death and disability. Metabolic disorders trigger chronic low-grade inflammation, and actually, a new concept of metaflammation has been proposed to define the state of metabolism connected with immunological adaptations. Amongst the continuously increased list of systemic metabolites in regulation of immune system, bile acids (BAs) represent a distinct class of metabolites implicated in the whole process of CMD development because of its multifaceted roles in shaping systemic immunometabolism. BAs can directly modulate the immune system by either boosting or inhibiting inflammatory responses via diverse mechanisms. Moreover, BAs are key determinants in maintaining the dynamic communication between the host and microbiota. Importantly, BAs via targeting Farnesoid X receptor (FXR) and diverse other nuclear receptors play key roles in regulating metabolic homeostasis of lipids, glucose, and amino acids. Moreover, BAs axis per se is susceptible to inflammatory and metabolic intervention, and thereby BAs axis may constitute a reciprocal regulatory loop in metaflammation. We thus propose that BAs axis represents a core coordinator in integrating systemic immunometabolism implicated in the process of CMD. We provide an updated summary and an intensive discussion about how BAs shape both the innate and adaptive immune system, and how BAs axis function as a core coordinator in integrating metabolic disorder to chronic inflammation in conditions of CMD.  相似文献   

9.
Efferocytosis as an apoptotic cell (AC) clearance mechanism facilitates the removal of dangerous and damaged cells, an important process in regulating normal homeostasis. Failure to correctly execute apoptosis and efferocytosis is associated with atherosclerosis, as well as chronic inflammatory and autoimmune disorders such as systemic lupus erythematosus (SLE). Effective and timely efferocytosis involves various molecules that act as “Find-Me” signals or as alarmins to quickly allow identification by phagocytic cells. In recent years, most of these molecules have been investigated, but less attention has been paid to the nuclear molecules associated with efferocytosis of ACs and necrotic cells (NCs). These molecules have several functions including acting as alarmin signals for faster recognition of ACs, facilitating the cleanup of ACs and for maintaining self-tolerance. The same group of molecules is also implicated in several inflammatory and autoimmune diseases. Previous studies have shown that these molecules also serve as targets for pharmacological agents such as necrostatins, recombinant Fcnb, anti-histone, neutralizing antibodies, calbiochem, aminophylline, activated protein C, CD24IgG recombinant fission protein, and recombinant thrombomodulin. Thus, greater understanding of these molecules/pathways will enable developments in the treatment and/or prevention of various disorders, especially autoimmune diseases. Here, we review current knowledge about the mechanisms by which nucleic acids, histones, nucleosomes and monosodium urate microcrystals (MSU) can act as alarmins/“Find-Me” signals, how they might be stimulated in defective efferocytosis and their function and importance as biomarkers for prognosis and treatment of atherosclerosis, inflammatory disorders and autoimmune diseases.  相似文献   

10.
《药学学报(英文版)》2021,11(9):2749-2767
Diabetic nephropathy (DN) has been recognized as a severe complication of diabetes mellitus and a dominant pathogeny of end-stage kidney disease, which causes serious health problems and great financial burden to human society worldwide. Conventional strategies, such as renin-angiotensin-aldosterone system blockade, blood glucose level control, and bodyweight reduction, may not achieve satisfactory outcomes in many clinical practices for DN management. Notably, due to the multi-target function, Chinese medicine possesses promising clinical benefits as primary or alternative therapies for DN treatment. Increasing studies have emphasized identifying bioactive compounds and molecular mechanisms of reno-protective effects of Chinese medicines. Signaling pathways involved in glucose/lipid metabolism regulation, antioxidation, anti-inflammation, anti-fibrosis, and podocyte protection have been identified as crucial mechanisms of action. Herein, we summarize the clinical efficacies of Chinese medicines and their bioactive components in treating and managing DN after reviewing the results demonstrated in clinical trials, systematic reviews, and meta-analyses, with a thorough discussion on the relative underlying mechanisms and molecular targets reported in animal and cellular experiments. We aim to provide comprehensive insights into the protective effects of Chinese medicines against DN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号