首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
CD44 is expressed on T cells where its ability to bind hyaluronan is tightly regulated. Here, we investigated when T cells bind hyaluronan during an immune response. We found that naïve, murine T cells do not bind fluoresceinated hyaluronan but are induced to bind upon antigen‐induced T‐cell activation in vitro and in vivo. Hyaluronan binding occurred on proliferating T cells and the percentage of hyaluronan‐binding cells correlated with the strength of the activation stimulus. A small percentage of hyaluronan‐binding cells persisted after in vitro activation and had a memory phenotype (CD122+CD44hi). This hyaluronan‐binding population increased after culture with IL‐7 or IL‐15 and proliferated more rapidly than nonbinding cells. In vivo, approximately 20–30% of antigen‐specific OT‐I CD8+ memory T cells in the spleen and BM bound hyaluronan. Hyaluronan binding identified memory cells that proliferated faster in IL‐7 and IL‐15, and enriched for CD62L+ central memory cells. In vivo homeostatic proliferation induced hyaluronan binding on a small percentage of the most rapidly dividing cells after several cell divisions. This study demonstrates that hyaluronan binding is induced upon antigen‐induced T‐cell activation and occurs on a percentage of the most proliferative activated and memory T cells.  相似文献   

2.
Although allergen‐specific CD4+ T cells are detectable in the peripheral blood of both individuals with or without allergy, their frequencies and phenotypes within the memory as well as naïve repertoires are incompletely known. Here, we analyzed the DRB1*0401‐restricted responses of peripheral blood‐derived memory (CD4+CD45RO+) and naïve (CD4+CD45RA+) T cells from subjects with or without allergy against the immunodominant epitope of the major cow dander allergen Bos d 2 by HLA class II tetramers in vitro. The frequency of Bos d 2127–142‐specific memory T cells in the peripheral blood‐derived cultures appeared to be higher in subjects with allergy than those without, whereas naïve Bos d 2127–142‐specific T cells were detectable in the cultures of both groups at nearly the same frequency. Surprisingly, the TCR avidity of Bos d 2127–142‐specific T cells of naïve origin, as assessed by the intensity of HLA class II tetramer staining, was found to be higher in individuals with allergy. Upon restimulation, long‐term Bos d 2127–142‐specific T‐cell lines generated from both memory and naïve T‐cell pools from individuals with allergy proliferated more strongly, produced more IL‐4 and IL‐10, and expressed higher levels of CD25 but lower levels of CXCR3 than the T‐cell lines from individuals without allergy, demonstrating differences also at the functional level. Collectively, our current results suggest that not only the memory but also the naïve allergen‐specific T‐cell repertoires differ between individuals with or without allergy.  相似文献   

3.
In addition to naturally occurring regulatory T (nTreg) cells derived from the thymus, functionally competent Treg cells can be induced in vitro from peripheral blood lymphocytes in response to TCR stimulation with cytokine costimulation. Using these artificial stimulation conditions, both naïve as well as memory CD4+ T cells can be converted into induced Treg (iTreg) cells, but the cellular origin of such iTreg cells in vivo or in response to more physiologic stimulation with pathogen‐derived antigens is less clear. Here, we demonstrate that a freeze/thaw lysate of Plasmodium falciparum schizont extract (PfSE) can induce functionally competent Treg cells from peripheral lymphocytes in a time‐ and dose‐dependent manner without the addition of exogenous costimulatory factors. The PfSE‐mediated induction of Treg cells required the presence of nTreg cells in the starting culture. Further experiments mixing either memory or naïve T cells with antigen presenting cells and CFSE‐labeled Treg cells identified CD4+CD45RO+CD25? memory T cells rather than Treg cells as the primary source of PfSE‐induced Treg cells. Taken together, these data suggest that in the presence of nTreg cells, PfSE induces memory T cells to convert into iTreg cells that subsequently expand alongside PfSE‐induced effector T cells.  相似文献   

4.
Current protocols used to select CMV‐specific T cells for adoptive immunotherapy focus on virus‐specific memory T cells from seropositive donors. However, this strategy is not feasible in patients undergoing allogeneic haematopoietic stem‐cell transplantation (HSCT) from CMV‐seronegative donors. Here, we redirected T cells of CMV‐seronegative donors with a human genetically engineered TCR recognizing an HLA‐A*0201‐binding peptide epitope of CMVpp65. To facilitate clinical translation of this approach, we used a non‐viral expression system based on in vitro transcribed RNA and electroporation. Although memory and naïve‐derived T‐cell subsets were both efficiently transfected by TCR‐RNA, memory‐derived T cells showed much stronger levels of HLA‐A*0201‐restricted cytolytic activity to CMV‐infected fibroblasts and maintained acquired function for 5–10 days. In addition to redirection of CD8+ cytotoxic T cells, TCR‐RNA transfection was capable of redirecting CD4+ T cells into potent Ag‐specific Th cells that efficiently triggered maturation of DCs. Our data suggest that memory rather than naïve‐derived T cells are the preferred subset for transient TCR expression by RNA electroporation, providing more efficient and sustained virus‐specific CD4+ and CD8+ T‐cell function. CMV TCR‐RNA may represent a suitable therapeutic ‘off‐the‐shelf’ reagent to be used in severe CMV infections of HSCT patients when endogenous CMV‐specific T‐cell immunity is insufficient.  相似文献   

5.
6.
The role of mineralocorticoid receptors (MRs) in human T‐cell migration is not yet understood. We have recently shown that the MR antagonist spironolactone selectively increases the numbers of circulating naïve and central memory T cells during early sleep, which is the time period in the 24 h cycle hallmarked by predominant MR activation. To investigate whether this effect is specific to spironolactone's blockade of MRs and to study the underlying molecular mechanisms, healthy humans were given the selective MR‐agonist fludrocortisone or placebo and numbers of eight T‐cell subsets and their CD62L and CXCR4 expression were analyzed. Fludrocortisone selectively reduced counts of naïve CD4+, central memory CD4+, and naïve CD8+ T cells and increased CXCR4 expression on the naïve subsets. In complementing in vitro studies, fludrocortisone enhanced CXCR4 and CD62L expression, which was counteracted by spironolactone. Incubation of naïve T cells with spironolactone alone reduced CD62L and CCR7 expression. Our results indicate a regulatory influence of MR signaling on human T‐cell migration and suggest a role for endogenous aldosterone in the redistribution of T‐cell subsets to lymph nodes, involving CD62L, CCR7, and CXCR4. Facilitation of T‐cell homing following sleep‐dependent aldosterone release might thus essentially contribute to sleep's well‐known role in supporting adaptive immunity.  相似文献   

7.
Pulmonary influenza infection causes prolonged lymph node hypertrophy while processed viral antigens continue to be presented to virus‐specific CD8 T cells. We show that naïve, but not central/memory, nucleoprotein (NP)‐specific CD8 T cells recognized antigen‐bearing CD11b+ DC in the draining lymph nodes more than 30 days after infection. After these late transfers, the naïve CD8 T cells underwent an abortive proliferative response in the mediastinal lymph node (MLN), where large clusters of partially activated cells remained in the paracortex until at least a week after transfer. A majority of the endogenous NP‐specific CD8 T cells that were in the MLN between 30 and 50 days after infection also showed signs of a continuing response to antigen stimulation. A high frequency of endogenous NP‐specific CD8 T cells in the MLN indicates that late antigen presentation may help shape the epitope dominance hierarchy during reinfection.  相似文献   

8.
CD1 molecules present lipid antigens to T cells. An intriguing subset of human T cells recognize CD1‐expressing cells without deliberately added lipids. Frequency, subset distribution, clonal composition, naïve‐to‐memory dynamic transition of these CD1 self‐reactive T cells remain largely unknown. By screening libraries of T‐cell clones, generated from CD4+ or CD4?CD8? double negative (DN) T cells sorted from the same donors, and by limiting dilution analysis, we find that the frequency of CD1 self‐reactive T cells is unexpectedly high in both T‐cell subsets, in the range of 1/10–1/300 circulating T cells. These T cells predominantly recognize CD1a and CD1c and express diverse TCRs. Frequency comparisons of T‐cell clones from sorted naïve and memory compartments of umbilical cord and adult blood show that CD1 self‐reactive T cells are naïve at birth and undergo an age‐dependent increase in the memory compartment, suggesting a naïve/memory adaptive‐like population dynamics. CD1 self‐reactive clones exhibit mostly Th1 and Th0 functional activities, depending on the subset and on the CD1 isotype restriction. These findings unveil the unanticipated relevance of self‐lipid T‐cell response in humans and clarify the basic parameters of the lipid‐specific T‐cell physiology.  相似文献   

9.
IL‐15 is a pleiotropic cytokine involved in host defense as well as autoimmunity. IL‐15‐deficient mice show a decrease of memory phenotype (MP) CD8+ T cells, which develop naturally in naïve mice and whose origin is unclear. It has been shown that self‐specific CD8+ T cells developed in male H‐Y antigen‐specific TCR transgenic mice share many similarities with naturally occurring MP CD8+ T cells in normal mice. In this study, we found that H‐Y antigen‐specific CD8+ T cells in male but not female mice decreased when they were crossed with IL‐15‐deficient mice, mainly due to impaired peripheral maintenance. The self‐specific TCR transgenic CD8+ T cells developed in IL‐15‐deficient mice showed altered surface phenotypes and reduced effector functions ex vivo. Bystander activation of the self‐specific CD8+ T cells was induced in vivo during infection with Listeria monocytogenes, in which proliferation but not IFN‐γ production was IL‐15‐dependent. These results indicated important roles for IL‐15 in the maintenance and functions of self‐specific CD8+ T cells, which may be included in the naturally occurring MP CD8+ T‐cell population in naïve normal mice and participate in innate host defense responses.  相似文献   

10.
Interleukin (IL)‐7 and IL‐15 are cytokines implicated in homeostatic control of the peripheral CD8 T‐cell pool. We compared the effects of IL‐7 and IL‐15 on survival and proliferation of purified human CD8+ T‐cell subsets. Low concentrations of either cytokine reduced the spontaneous apoptosis of all subsets, and enhancement of survival corresponded to the extent of Bcl‐2 up‐regulation. Surprisingly, although minimal proliferation of naïve CD8+ T cells was observed during the first week of culture with cytokines, a marked expansion of these cells occurred at later time points, particularly in response to IL‐15. This occurred largely without phenotypic change or acquisition of effector function, indicating a dissociation of differentiation from proliferation. Notably, progression of naïve CD8+ T cells through several cell divisions resulted in up‐regulation of telomerase and the maintenance of telomere length. These data show that IL‐7 and IL‐15 induce cell proliferation and rescue from apoptosis in a concentration, time and subset‐dependent manner, and have implications for the homeostatic expansion of the naïve CD8+ T‐cell pool.  相似文献   

11.
CD8+ T‐cell responses must have at least two components, a replicative cell type that proliferates in the secondary lymphoid tissue and that is responsible for clonal expansion, and cytotoxic cells with effector functions that mediate the resolution of the infection in the peripheral tissues. To confer memory, the response must also generate replication‐competent T cells that persist in the absence of antigen after the primary infection is cleared. The current models of memory differentiation differ in regards to whether or not memory CD8+ T cells acquire effector functions during their development. In this review we discuss the existing models for memory development and the consequences that the recent finding that memory CD8+ T cells may express granzyme B during their development has for them. We propose that memory CD8+ T cells represent a self‐renewing population of T cells that may acquire effector functions but that do not lose the naïve‐like attributes of lymphoid homing, antigen‐independent persistence or the capacity for self‐renewal.  相似文献   

12.
Immunotherapies that augment antitumor T cells have had recent success for treating patients with cancer. Here we examined whether tumor‐specific CD4+ T cells enhance CD8+ T‐cell adoptive immunotherapy in a lymphopenic environment. Our model employed physiological doses of tyrosinase‐related protein 1‐specific CD4+ transgenic T cells‐CD4+ T cells and pmel‐CD8+ T cells that when transferred individually were subtherapeutic; however, when transferred together provided significant (p ≤ 0.001) therapeutic efficacy. Therapeutic efficacy correlated with increased numbers of effector and memory CD8+ T cells with tumor‐specific cytokine expression. When combined with CD4+ T cells, transfer of total (naïve and effector) or effector CD8+ T cells were highly effective, suggesting CD4+ T cells can help mediate therapeutic effects by maintaining function of activated CD8+ T cells. In addition, CD4+ T cells had a pronounced effect in the early posttransfer period, as their elimination within the first 3 days significantly (p < 0.001) reduced therapeutic efficacy. The CD8+ T cells recovered from mice treated with both CD8+ and CD4+ T cells had decreased expression of PD‐1 and PD‐1‐blockade enhanced the therapeutic efficacy of pmel‐CD8 alone, suggesting that CD4+ T cells help reduce CD8+ T‐cell exhaustion. These data support combining immunotherapies that elicit both tumor‐specific CD4+ and CD8+ T cells for treatment of patients with cancer.  相似文献   

13.
Phenotypic and functional heterogeneity is the hallmark of effector and memory T cells. Upon antigenic stimulation, naïve CD4+ T cells make choices to become effector Th1, Th2 or Th17 cells, or even Treg. In addition to differences in cytokine repertoire, effector CD4+ T cells exhibit diversity in homing, such as migration to lymph node follicles to help B cells versus migration to inflamed tissues. Upon clearance of the antigen, two major types of memory T cells remain: central memory cells, which patrol lymphoid organs, and effector memory cells that act as sentinels in peripheral tissues such as the skin and the gut. Here, we review our current understanding of CD4+ T‐cell lineage heterogeneity and flexibility, with emphasis on the human system, and propose an organization of effector and memory T cells based on distinct functional modules.  相似文献   

14.
IL‐15 and IL‐15 receptor alpha (IL‐15RA) play a significant role in multiple aspects of T‐cell biology. However, given the evidence that IL‐15RA can present IL‐15 in trans, the functional capacity of IL‐15RA expressed on CD8+ T cells to modify IL‐15 functions in cis is currently unclear. In the current study, we explore the functional consequences of IL‐15RA, expression on T cells using a novel method to transfect naive CD8+ T cells. We observed that RNA nucleofection led to highly efficient, non‐toxic, and rapid manipulation of protein expression levels in unstimulated CD8+ T cells. We found that transfection of unstimulated CD8+ T cells with IL‐15RA RNA led to enhanced viability of CD8+ T cells in response to IL‐15. Transfection with IL‐15RA enhanced IL‐15‐mediated phosphorylation of STAT5 and also promoted IL‐15‐mediated proliferation in vivo of adoptively transferred naïve CD8+ T cells. We demonstrated that IL‐15RA can present IL‐15 via cis‐presentation on CD8+ T cells. Finally, we showed that transfection with a chimeric construct linking IL‐15 to IL‐15RA cell autonomously enhances the viability and proliferation of primary CD8+ T cells and cytotoxic potential of antigen‐specific CD8+ T cells. The clinical implications of the current study are discussed.  相似文献   

15.
Background T cells have been implicated in the pathogenesis of atopic asthma. We have previously shown that memory T helper cells (CD4+CD45RO+) are preferentially activated relative to naïve T helper cells (CD4+CD45RA+) after bronchial allergen challenge. However, specific T helper subpopulations that are activated in atopy and/or asthma remain undefined. Objective To determine the T helper subpopulations and activation phenotypes relevant to acute and stable asthma that may be common with or distinct from atopy. Methods Two groups of atopic asthmatics (ten acute and nine stable asthmatics) and two non‐asthmatic groups (14 non‐asthmatic atopics and eight normal non‐atopic controls) were analysed. Ten acute asthmatics were assessed in the emergency room during an acute episode (FEV1 43.6% ± 18.4). Nine stable asthmatics were assessed during a symptom‐free period (FEV1 85% ± 6). Using multiple colour flow cytometry we analysed T cell subpopulations and the expression of IL‐2‐receptor (IL‐2R) and MHC‐class II antigens (MHC II) on naïve and memory T helper cells in the peripheral blood of asthmatic and non‐asthmatic groups. Results Atopic asthmatics (acute and stable) had an increased percentage of memory T helper cells expressing IL‐2R compared with normal non‐atopics (mean SD 16.1 ± 6%, 12.4 ± 2% and 7.7 ± 1.8%, P < 0.05) but not compared with non‐asthmatic atopics (10 ± 3.5%). Naïve T helper cells had low expression of IL‐2R and MHC II in all four groups. MHC II antigen expression was increased in memory T helper cells of asthmatics (acute and stable) compared with normal non‐atopics (13.9 ± 7.5, 10.6 ± 5 and 4.9 ± 2.5, P < 0.05) but not compared with non‐asthmatic atopics (7.92 4). A novel finding was that IL‐2R and the MHC II molecules were mainly expressed in non‐overlapping populations and coexpression was found predominantly on memory T helper cells. Asthmatics (acute and stable) had higher proportion of double positive memory T helper cells (IL‐2R+MHC II+) compared with both non‐asthmatic groups (P < 0.05). Conclusions We demonstrate a differential expression of IL‐2R+ and MCH II+ on CD45RO+ T helper cells that would suggest that there are three subsets of activated memory T helper cells in asthmatics. Two non‐overlapping IL‐2R+ or MHC II+ CD45RO+ T helper cells and a third subpopulation of activated cells that coexpress IL‐2R and MHC II (double positives). This latter subpopulation is significantly higher in asthmatics (acute or stable) compared with both non‐asthmatic groups, suggesting a specific T helper activation phenotype distinct to atopic asthmatics as compared with atopic non‐asthmatics.  相似文献   

16.
LacZ (Gal)‐reactive immune cells were transferred into athymic nu/nu mice inoculated with Gal‐expressing syngeneic tumour cells (ESbL‐Gal) in order to study tumour‐protective T‐cell memory. This transfer prevented tumour outgrowth in recipients and resulted in the persistence of a high frequency of Gal‐specific CD8+ T cells in the bone marrow and spleen. In contrast, such Ag‐specific memory CD8+ T cells were not detectable by peptide–major histocompatibility complex (MHC) multimer staining in animals that had not previously received an antigenic challenge. Even though CD44hi memory T cells from the bone marrow showed a significantly higher turnover rate, as judged by bromodeoxyuridine (BrdU) incorporation, than respective cells from spleen or lymph nodes, as well as in comparison to CD44lo naïve T cells, these findings suggest that tumour‐associated antigen (TAA) from residual dormant tumour cells are implicated in maintaining high frequencies of long‐term surviving Gal‐specific memory CD8+ T cells. Memory T cells could be recruited to the peritoneal cavity by tumour vaccination of immunoprotected nu/nu mice and exhibited ex vivo antitumour reactivity. Long‐term immune memory and tumour protection could be maintained over four successive transfers between tumour‐inoculated recipients, which involved periodic antigenic restimulation in vivo prior to reisolating the cells for adoptive transfer. Using a cell line (ESbL‐Gal‐BM) that was established from dormant tumour cells isolated from the bone marrow of immunoprotected animals, it could be demonstrated that the tumour cells had up‐regulated the expression of MHC class I molecules and down‐regulated the expression of several adhesion molecules during the in vivo passage. Our results suggest that the bone marrow microenvironment has special features that are of importance for the maintenance of tumour dormancy and immunological T‐cell memory, and that a low level of persisting antigen favours the maintenance of Ag‐specific memory T cells over irrelevant memory T cells.  相似文献   

17.
Peripheral T‐cell expansion is of major relevance for immune function after lymphopenia. In order to promote regeneration, the process should result in a peripheral T‐cell pool with a similar subpopulation structure as before lymphopenia. We investigated the repopulation of the CD8+ central‐memory T cells (TCM) and effector‐memory T cells (TEM) pools after adoptive transfer of sorted CD8+ T cells from naïve, TCM and TEM subsets into T‐cell‐deficient hosts. We show that the initial kinetics of expansion are distinct for each subset and that the contribution to the repopulation of the CD8+ T‐cell pool by the progeny of each subset is not a mere function of its initial expansion. We demonstrate that CD4+CD25+ Treg play a major role in the repopulation of the CD8+ T‐cell pool and that CD8+ T‐cell subsets impact on each other. In the absence of CD4+CD25+ Treg, a small fraction of naïve CD8+ T cells strongly proliferates, correlating with further expansion and differentiation of co‐expanding CD8+ T cells. CD4+CD25+ Treg suppress these responses and lead to controlled repopulation, contributing decisively to the maintenance of recovered TCM and TEM fractions, and leading to repopulation of each pool with progeny of its own kind.  相似文献   

18.
19.
20.
Development of T lymphocytes and their survival in the periphery are dependent on signals emanating from cytokine receptors as well as the T cell antigen receptor (TCR). These two signaling pathways play distinct and complementary roles at various stages of T cell development, maturation, survival, activation and differentiation. During immune response to foreign antigens initiated by TCR signaling, cytokines play a key role in the expansion of activated T cells. Even though the initial activation of T cells occurs via the TCR, this requirement can be overcome under certain circumstances. During lymphopenia, cytokines trigger memory CD8+ T cells to undergo antigen non-specific homeostatic expansion, whereas naïve CD8+ T cells require both cytokines and TCR signaling. Recent reports show certain combinations of cytokines can induce proliferation and effector functions of naïve CD8+ T cells without concomitant stimulation via the TCR. While such antigen non-specific stimulation of naïve T cells might significantly boost the adaptive immune response, it could also have an undesirable effect of triggering potentially autoreactive cells. Understanding the mechanisms and the regulation of cytokine-driven stimulation of naïve CD8+ T cells may lead to novel strategies of intervention for autoimmune diseases. On the other hand, in vitro expansion of naïve CD8+ T cells by certain combinations of cytokines could be used to generate tumor-specific cells with ideal properties for cellular immunotherapy of cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号