首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PHOSPHO1 is a phosphatase highly expressed in bone. We studied its functional involvement in mineralization through the use of novel small molecule inhibitors. PHOSPHO1 expression was present within matrix vesicles, and inhibition of enzyme action caused a decrease in the ability of matrix vesicles to calcify. INTRODUCTION: The novel phosphatase, PHOSPHO1, belongs to the haloacid dehalogenase superfamily of hydrolases and is capable of cleaving phosphoethanolamine (PEA) and phosphocholine to generate inorganic phosphate. Our aims in this study were to examine the expression of PHOSPHO1 in murine mineralizing cells and matrix vesicles (MV) and to screen a series of small-molecule PHOSPHO1-specific inhibitors for their ability to pharmacologically inhibit the first step of MV-mediated mineralization. MATERIALS AND METHODS: q-PCR and immunohistochemistry were used to study the expression and localization profiles of PHOSPHO1. Inhibitors of PHOSPHO1's PEA hydrolase activity were discovered using high-throughput screening of commercially available chemical libraries. To asses the efficacy of these inhibitors to inhibit MV mineralization, MVs were isolated from TNAP-deficient (Akp2(-/-)) osteoblasts and induced to calcify in their presence. RESULTS: q-PCR revealed a 120-fold higher level of PHOSPHO1 expression in bone compared with a range of soft tissues. The enzyme was immunolocalized to the early hypertrophic chondrocytes of the growth plate and to osteoblasts of trabecular surfaces and infilling primary osteons of cortical bone. Isolated MVs also contained PHOSPHO1. PEA hydrolase activity was observed in sonicated MVs from Akp2(-/-) osteoblasts but not intact MVs. Inhibitors to PHOSPHO1 were identified and characterized. Lansoprazole and SCH202676 inhibited the mineralization of MVs from Akp2(-/-) osteoblasts by 56.8% and 70.7%, respectively. CONCLUSIONS: The results show that PHOSPHO1 localization is restricted to mineralizing regions of bone and growth plate and that the enzyme present within MVs is in an active state, inhibition of which decreases the capacity of MVs to mineralize. These data further support our hypothesis that PHOSPHO1 plays a role in the initiation of matrix mineralization.  相似文献   

2.
PHOSPHO1 is one of principal proteins involved in initiating bone matrix mineralisation. Recent studies have found that Phospho1 KO mice (Phospho1-R74X) display multiple skeletal abnormalities with spontaneous fractures, bowed long bones, osteomalacia and scoliosis. These analyses have however been limited to young mice and it remains unclear whether the role of PHOSPHO1 is conserved in the mature murine skeleton where bone turnover is limited. In this study, we have used ex-vivo computerised tomography to examine the effect of Phospho1 deletion on tibial bone architecture in mice at a range of ages (5, 7, 16 and 34 weeks of age) to establish whether its role is conserved during skeletal growth and maturation. Matrix mineralisation has also been reported to influence terminal osteoblast differentiation into osteocytes and we have also explored whether hypomineralised bones in Phospho1 KO mice exhibit modified osteocyte lacunar and vascular porosity. Our data reveal that Phospho1 deficiency generates age-related defects in trabecular architecture and compromised cortical microarchitecture with greater porosity accompanied by marked alterations in osteocyte shape, significant increases in osteocytic lacuna and vessel number. Our in vitro studies examining the behaviour of osteoblast derived from Phospho1 KO and wild-type mice reveal reduced levels of matrix mineralisation and modified osteocytogenic programming in cells deficient in PHOSPHO1. Together our data suggest that deficiency in PHOSPHO1 exerts modifications in bone architecture that are transient and depend upon age, yet produces consistent modification in lacunar and vascular porosity. It is possible that the inhibitory role of PHOSPHO1 on osteocyte differentiation leads to these age-related changes in bone architecture. It is also intriguing to note that this apparent acceleration in osteocyte differentiation evident in the hypomineralised bones of Phospho1 KO mice suggests an uncoupling of the interplay between osteocytogenesis and biomineralisation. Further studies are required to dissect the molecular processes underlying the regulatory influences exerted by PHOSPHO1 on the skeleton with ageing.  相似文献   

3.
4.
5.
6.
BACKGROUND: Prostate cancer cells produce a large amount of prostate-specific antigen (PSA), which is widely used as a marker for this cancer. Even though it is widely used in the diagnosis of prostate cancer, many aspects of the pathophysiologic role of PSA in bone metastasis remain obscure. The receptor activator of nuclear factor-kappaB ligand (RANKL) is essential for the activation of osteoclasts, while osteoprotegerin (OPG) neutralizes the action of RANKL. Various substances that act on bone have been shown to modulate the production of RANKL and OPG by osteoblasts. METHODS: In this study, we investigated the effect of PSA on the expression of OPG and RANKL mRNA and on protein production in human osteoblast-like cells. RESULTS: After addition of PSA and culture for 72 h, OPG mRNA expression and protein secretion by MG-63 and SaOS-2 cells showed a concentration-dependent increase. When osteoblasts were incubated with PSA (100 ng/ml), OPG mRNA expression and protein secretion increased with the passage of time. alpha1 -antichymotrypsin (ACT), which inactivates the serine protease activity of PSA, inhibited the increase of OPG mRNA expression and protein production in response to PSA, and this effect of PSA was also inhibited by anti-transforming growth factor-beta antibody. CONCLUSIONS: Based on our findings, PSA acts on human osteoblast-like cells via its own serine protease activity and promotes osteoblast differentiation. In addition, PSA stimulates OPG production and inhibits RANKL expression of osteoblasts, and inhibits bone resorption by osteoclasts, suggesting that it contributes to the characteristic osteoblastic features of bone metastases of prostate cancer.  相似文献   

7.
Yamamoto T  Kambe F  Cao X  Lu X  Ishiguro N  Seo H 《BONE》2007,40(2):354-359
To understand the molecular basis underlying the anabolic action of parathyroid hormone (PTH) on bone, the anti-apoptotic action of PTH on osteoblast-like cells was investigated. Since Akt is a key protein kinase for cell survival, we focused on a possible involvement of Akt in the anti-apoptotic action of PTH. Human osteoblast-like MG-63 cells cultured without serum were treated with PTH. Western blot analysis revealed that PTH rapidly phosphorylated Akt and induced its nuclear translocation. The phosphorylation of pro-apoptotic protein Bad was also increased by PTH, leading to its inactivation. The PTH-dependent activation of Akt was also detected in other osteoblastic cell lines, SaOS-2 and ROS 17/2.8. The pretreatment of MG-63 cells with either one of inhibitors for phosphoinositide 3-kinase (PI3K), wortmannin or LY294002 prevented Akt and Bad phosphorylation. Furthermore, co-immunoprecipitation analysis revealed that PTH receptor (PTH-1R) directly interacted with p85, a regulatory subunit of PI3K, in a PTH-dependent manner. Serum withdrawal induced the apoptosis of MG-63 cells, and PTH prevented the apoptosis, which was inhibited by PI3K inhibitors. These results demonstrate the presence of a novel PTH/PTH receptor signaling cascade consisting of PTH-1R, PI3K, Akt and Bad and that this cascade can work as an anti-apoptotic signaling pathway in osteoblast-like cells.  相似文献   

8.
Summary The role of vitamin D in early skeletal development was studied by measuring serum calcium and phosphorus, osseous tissue quantity and mineralization, and endochondral bone elongation in rat fetuses and pups from vitamin D-replete and vitamin D-deficient mothers. At the 20th day of pregnancy there was a slight, yet significant, increase in the amount of osteoid on trabecular bone surfaces in fetuses from vitamin D-deficient mothers. The fetal bones otherwise appeared normal in spite of severe skeletal changes in the vitamin D-deficient mothers. After parturition, the importance of vitamin D in skeletal development becomes progressively more obvious. Serum calcium levels were slightly, yet significantly, lower in vitamin D-deficient than in vitamin D-replete pups and these levels continued to fall in the vitamin D-deficient pups through lactation and after weaning. At 3 days postpartum, there was a small, yet significant, increase in the amount of osteoid on bone surfaces of the vitamin D-deficient pups. The relative amounts of osteoid in the vitamin D-deficient pups continued to increase through lactation and after weaning when compared with vitamin D-replete pups. By the 14th day of lactation and at later periods, there were significant reductions in metaphyseal mineralized tissues in the vitamin D-deficient pups when compared with the vitamin D-replete pups. At weaning and after weaning, there were substantial increases in growth plate thickness and decreases in longitudinal bone growth in the vitamin D-deficient pups when compared with the vitamin D-replete pups. The results from this study indicate that vitamin D does not appear to play a major role in fetal skeletal development. However, after birth, vitamin D becomes progressively more important with age for normal bone development, mineralization, and endochondral growth.  相似文献   

9.
10.
11.
NF1 is a heritable disease with multiple osseous lesions. The expression of the NF1 gene was studied in embryonic and adult rodent skeleton and in NF1-deficient embryos. The NF1 gene was expressed intensely in the cartilage and the periosteum. Impaired NF1 expression may lead to inappropriate development and dynamics of bones and ultimately to the osseous manifestations of the disease. INTRODUCTION: Neurofibromatosis type 1 is caused by mutations in the NF1 gene encoding the Ras GTPase activating protein (Ras-GAP) neurofibromin. Skeletal ailments such as short stature, kyphoscoliosis, and tibial bowing and pseudarthrosis are common osseous manifestations of NF1. These symptoms are congenital, implying a role for neurofibromin in proper bone growth. However, little is known about its expression in skeletal tissues during their development. MATERIALS AND METHODS: The expression of the NF1 gene was studied in normal and NF1+/- mouse fetuses at embryonic days 12.5-15.5 and in skeletal tissues of adult mice and rats. In situ hybridization, immunohistochemistry, and Western blot analysis were used to identify the NF1 gene expression profile. RESULTS: NF1 mRNA and protein were elevated in resting, maturation, and hypertrophic chondrocytes at the growth plate. Parallel studies on NF1+/- embryos showed expression patterns identical to wildtype. The periosteum, including osteoblasts and osteoclasts, and osteocytes of the cortical bone of adult mice were also intensely labeled for NF1 protein and mRNA. Western transfer analysis detected NF1 protein in the respective rat tissues. Phosphorylation of p42 and p44 MAP kinases, the downstream consequence of Ras activation, was elevated in hypertrophic chondrocytes of NF1+/- embryos. CONCLUSIONS: The results suggest that neurofibromin may act as a Ras-GAP in skeletal cells to attenuate Ras transduced growth signals and thus play a role during ossification and dynamics of bone. Loss of NF1 function may therefore lead to dysplastic bone growth, thereby causing the debilitating osseous symptoms of NF1.  相似文献   

12.
The Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) is a hematopoietic growth factor that regulates the in vitro and in vivo proliferation and differentiation of hematopoietic cells through the interaction with a specific heterodimeric receptor complex (GM-CSFR), consisting of an alpha and a beta chain with molecular weights of 80 and 120 KDa, respectively. We have studied the expression of the GM-CSFR (alpha chain) on the surface of the human osteosarcoma cell line SaOS-2 and the in vitro effects of different concentrations (10, 100, and 200 ng/ml) of GM-CSF on GM-CSFR expression and the biological activity of SaOS-2 cells. Our data show that SaOS-2 cells express GM-CSFR and that GM-CSF can down-regulate the expression of its own receptor on these cells. Furthermore, to evaluate the biological effects of GM-CSF on SaOS-2 cells, we have investigated cell proliferation and differentiation of these cells treated with different doses of the growth factor through: (1) a morphological analysis of typical osteoblast differentiation markers such as osteopontin and BSP-II; (2) measurement of alkaline phosphatase (ALP) activity; (3) production of bone ECM components (collagen I, fibronectin, tenascin, and laminin); (4) production of interleukin-6 (IL-6) and osteocalcin in the culture medium. The results show that the in vitro treatment of SaOS-2 cells with recombinant human GM-CSF causes a decreased cell proliferation and an increased production of osteopontin, BSP-II, ALP, IL-6, and most but not all ECM components. These findings suggest that GM-CSF can regulate proliferation and differentiation of osteoblast-like SaOS-2 cells and could also play an unexpected role in the maturation of bone tissue.  相似文献   

13.
PHOSPHO1 is a phosphoethanolamine/phosphocholine phosphatase that has previously been implicated in generating inorganic phosphate (P(i)) for matrix mineralization. In this study, we have investigated PHOSPHO1 mRNA expression during embryonic development in the chick. Whole-mount in situ hybridization indicated that PHOSPHO1 expression occurred prior to E6.5 and was initially restricted to the bone collar within the mid-shaft of the diaphysis of long bones but by E11.5 expression was observed over the entire length of the diaphysis. Alcian blue/alizarin red staining revealed that PHOSPHO1 expression seen in the primary regions of ossification preceded the deposition of mineral, suggesting that it is involved in the initial events of mineral formation. We isolated MVs from growth plate chondrocytes and confirmed the presence of high levels of PHOSPHO1 by immunoblotting. Expression of PHOSPHO1, like TNAP activity, was found to be up-regulated in MVs isolated from chondrocytes induced to differentiate by the addition of ascorbic acid. This suggests that both enzymes may be regulated by similar mechanisms. These studies provide for the first time direct evidence that PHOSPHO1 is present in MVs, and its developmental expression pattern is consistent with a role in the early stages of matrix mineralization.  相似文献   

14.
15.
It is unclear how mechanical stress influences bone cells. Mechanical stress causes fluid shear stress (FSS) in the bone. Osteoblast lineage cells are thought to sense FSS and regulate bone remodeling. We therefore investigated the effects of FSS on human osteoblast-like osteosarcoma cells: SaOS-2 cells in vitro. The conditioned medium of the SaOS-2 cells after 24 h of FSS (24 h-FSS CM) showed such osteoclastic phenotype inductions as significantly increasing the number of tartrate-resistant acid phosphatase (TRAP) positive multinuclear cells in rat bone marrow cells and TRAP-positive cells in human preosteoclastic cells: FLG 29.1 cells. An enzyme-linked immunosorbent assay showed interleukin-11 (IL-11) protein to increase 7-fold in the 24 h-FSS CM. A Northern analysis showed that IL-11 mRNA increased 4-fold in the SaOS-2 cells after 6 h-FSS; however, no IL-6 mRNA expression was detected. Furthermore, the anti-human IL-11 antibody significantly neutralized the osteoclastic phenotype induction of the 24 h-FSS CM. The IL-11 mRNA up-regulation in SaOS-2 cells by the 6 h-FSS was not inhibited by the anti-human transforming growth factor-beta1 antibody, but it was significantly inhibited by indomethacin. An enzymeimmunoassay showed prostaglandin E2 to increase 7-fold in the 1 h-FSS CM. These findings thus suggest that FSS induces osteoblasts to produce IL-11 (mediated by prostaglandins) and thus stimulates bone remodeling.  相似文献   

16.
Mechanical stress is an important regulator of bone metabolism. Fluid shear stress caused by mechanical load in bone tissue has been shown to be important to both the bone structure and function through its effects on osteocytes and osteoblasts. We explored the effects of the fluid shear stress on the expression of growth factors and cytokines in human osteoblast-like SaOS-2 cells with a purpose-built cone-plate viscometer. We showed that the physiological level (1.7–2.0 Pascal) of fluid shear stress increased the mRNA expression of TGF-β1 about threefold after 3 hours and also increased TGF-β1 protein about threefold after 24 hours in the SaOS-2 cells. However, no mRNA expression of PDGF-A, IGF-I, IGF-II, or IL-6 was detected. To explore the mechanism of up-regulation of TGF-β1 expression, we examined the effects of a stretch activated cation nonselective (SA-cat) channel blockade with gadolinium and a voltage-dependent L-type Ca2+ channel blockade with verapamil on the TGF-β1 expression at the mRNA levels. The fluid shear stress-induced increase in the TGF-β1 mRNA levels was significantly inhibited by both gadolinium and verapamil. These findings suggest that the physiological level of fluid shear stress induces the production of TGF-β1 by the SaOS-2 cells via the cation channel function and, as a result, may therefore promote bone formation. Received: 15 October 1997 / Accepted: 8 April 1998  相似文献   

17.
Fibrillin-containing microfibrils are structural components of extracellular matrices of a diverse range of tissues, including bone. Their importance in bone biology is illustrated by the skeletal abnormalities manifest in the congenital disorder, Marfan syndrome, which results from mutations in the fibrillin-1 gene. We investigated the expression of fibrillins and other microfibril-associated proteins in human bone and bone-derived osteoblasts. Analysis of RNA extracted from cancellous bone showed expression of mRNAs encoding fibrillin-1 and -2, MAGP-1 and -2, LTBP-2, and MP78/70 (Big-h3). In demineralized normal mature bone, fibrillin-1 was immunolocalized to fibrils within the bone matrix and pericellularly to cells lining the endosteal surfaces of trabecular bone, some osteocytes, and cells associated with blood vessels. LTBP-2 was also identified at the endosteal surface and within the bone matrix in a lamellar fashion. In addition, primary osteoblast-like cells cultured from human trabecular bone (obtained from patients at joint replacement surgery) were found to express abundant mRNA for fibrillins and associated glycoproteins. Moreover, using western blot analysis, fibrillin-1 protein was shown to be secreted into the medium and to be deposited into the cell layer. Immunofluorescence staining of the cell layer visualized fibrillin-1 in the matrix as a three-dimensional network of fine filaments. Expression of fibrillin-1 by osteoblast-like cells was constitutive, and a number of skeletally active agents had little effect on mRNA or protein levels. These results show that human osteoblasts from mature bone express fibrillins and other microfibril-associated proteins, and suggest a role for these molecules in adult human bone.  相似文献   

18.
Cadherins are a family of cell surface adhesion molecules that play an important role in tissue differentiation. A limited repertoire of cadherins has been identified in osteoblasts, and the role of these molecules in osteoblast function remains to be elucidated. We recently cloned an osteoblast-derived N-cadherin gene from a rat osteoblast complementary DNA library. After in situ hybridization of rat bone and immunohistochemistry of human osteophytes, N-cadherin expression was localized prominently in well-differentiated (lining) osteoblasts. Northern blot hybridization in primary cultures of fetal rat calvaria and in human SaOS-2 and rat ROS osteoblast-like cells showed a relationship between N-cadherin messenger RNA expression and cell-to-cell adhesion, morphological differentiation, and alkaline phosphatase and osteocalcin gene expression. Treatment with a synthetic peptide containing the His-Ala-Val (HAV) adhesion motif of N-cadherin significantly decreased bone nodule formation in primary cultures of fetal rat calvaria and inhibited cell-to-cell contact in rat osteoblastic TRAB-11 cells. HAV peptide also regulated the expression of specific genes such as alkaline phosphatase and the immediate early gene zif268 in SaOS-2 cells. Transient transfection of SaOS-2 cells with a dominant-negative N-cadherin mutant (NCADdeltaC) significantly inhibited their morphological differentiation. In addition, aggregation of NCTC cells derived from mouse connective tissue stably transfected with osteoblast-derived N-cadherin was inhibited by either treatment with HAV or transfection with NCADdeltaC. Together, these results strongly support a role for N-cadherin, in concert with other previously identified osteoblast cadherins, in the late stages of osteoblast differentiation.  相似文献   

19.
Because DIF-1 has been shown to affect Wnt/beta-catenin signaling pathway, the effects of DIF-1 on osteoblast-like cell lines, SaOS-2 and MC3T3-E1, were examined. We found that DIF-1 inhibited this pathway, resulting in the suppression of ALP promoter activity through the TCF/LEF binding site. INTRODUCTION: Differentiation-inducing factor-1 (DIF-1), a morphogen of Dictyostelium, inhibits cell proliferation and induces cell differentiation in several mammalian cells. Previous studies showed that DIF-1 activated glycogen synthase kinase-3beta, suggesting that this chemical could affect the Wnt/beta-catenin signaling pathway. This pathway has been shown to be involved in bone biology. MATERIALS AND METHODS: We studied the effects of DIF-1 on SaOS-2 and MC3T3-E1, osteosarcoma cell lines widely used as a model system for ostoblastic cells and murine osteoblast-like cell line, respectively. Reporter gene assays were also carried out to examine the effect of DIF-1 on the Wnt/beta-catenin signaling pathway. RESULTS: DIF-1 inhibited SaOS-2 proliferation and reduced alkaline phosphatase (ALP) activity in a concentration- and a time-dependent manner. The expression of ALP was markedly suppressed by DIF-1-treatment in protein and mRNA levels. DIF-1 also suppressed the expression of other osteoblast differentiation markers, including core binding factor alpha1, type I collagen, and osteocalcin, in protein and mRNA levels and inhibited osteoblast-mediated mineralization. Subsequently, we examined the effect of DIF-1 on the Wnt/beta-catenin signaling pathway. We found that DIF-1 suppressed the expression of beta-catenin protein and the activity of the reporter gene containing T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) consensus binding sites. We examined the effect of DIF-1 on a reporter gene driven by the human ALP promoter and found that DIF-1 significantly reduced the ALP reporter gene activity through the TCF/LEF binding site (-1023/-1017 bp). Furthermore, the effect of DIF-1 on MC3T3-E1, a murine osteoblast-like cell line, was examined, and it was found that DIF-1 suppressed ALP mRNA expression by the reduction of the ALP reporter gene activity through the TCF/LEF binding site. CONCLUSIONS: Our data suggest that DIF-1 inhibits Wnt/beta-catenin signaling, resulting in the suppression of ALP promoter activity. To our knowledge, this is the first report to analyze the role of the TCF/LEF binding site (-1023/-1017 bp) of the ALP gene promoter in osteoblast-like cell lines.  相似文献   

20.
Sulfate conjugation is an important pathway in the metabolism of many drugs, xenobiotic compounds, and hormones. Sulfotransferases (SULTs) catalyze these reactions and have been detected and characterized in various human tissues including the liver and small intestine. Substrates for SULTs that include estrogen and thyroid hormones have well-established roles affecting skeletal integrity and disease processes. We performed the following studies to determine the presence of SULTs in human osteoblast-like cells, and to compare their characteristics to SULTs expressed in other human tissues. Four osteosarcoma cell lines (SaOS-2, U2-OS, PR, and HOS-TE85) were screened for the presence of four different SULT activities. Predominant activities were found for SULT1A1 in SaOS-2 cells, and SULT-1A3 in HOS-TE85 cells. Several biochemical properties of each enzyme that included apparent Km values, thermal stabilities, and responses to the inhibitors 2,6-dichloro-4-nitrophenol and NaCl were used to further characterize the SULT activities. High-performance liquid chromatography (HPLC) of the reaction products confirmed the known products of SULT1A1 and SULT1A3. When the mature human osteoblast HOB-03-CE6 cell line was tested for activity alone, the predominant activity was SULT1A3, with minimal SULT1A1. The results indicate that SULT1A1 and SULT1A3 are present in human osteosarcoma and mature osteoblast cell lines, and that the characteristics of the osteosarcoma cell SULTs are similar to those expressed in other human tissues. SULTs may have regulatory roles in the deactivation of thyroid hormones or estrogenic compounds in bone, and thus may affect hormone action and bone responses in the human skeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号