首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.

Introduction

Genome-wide association studies, focusing primarily on unilateral breast cancer, have identified single nucleotide polymorphisms (SNPs) in a number of genomic regions that have alleles associated with a significantly increased risk of breast cancer. In the current study we evaluate the contributions of these previously identified regions to the risk of developing contralateral breast cancer. The most strongly disease-associated SNPs from prior studies were tested for association with contralateral breast cancer. A subset of these SNPs, selected upon their main effects on contralateral breast cancer risk was further evaluated for interaction with treatment modalities and estrogen receptor (ER) status.

Methods

We genotyped 21 SNPs in 708 women with contralateral breast cancer and 1394 women with unilateral breast cancer who serve as the cases and controls in the Women's Environment, Cancer and Radiation Epidemiology (WECARE) Study. Records of treatment and ER status were available for most of WECARE Study participants. Associations of SNP genotypes and risk for contralateral breast cancer were calculated with multivariable adjusted conditional logistic regression methods.

Results

Multiple SNPs in the FGFR2 locus were significantly associated with contralateral breast cancer, including rs1219648 (per allele rate ratio (RR) = 1.25, 95%CI = 1.08-1.45). Statistically significant associations with contralateral breast cancer were also observed at rs7313833, near the PTHLH gene (per allele RR = 1.26, 95%CI = 1.08-1.47), rs13387042 (2q35) (per allele RR = 1.19, 95%CI = 1.02-1.37), rs13281615 (8q24) (per allele RR = 1.21, 95%CI = 1.04-1.40), and rs11235127 near TMEM135 (per allele RR = 1.26, 95%CI = 1.04-1.53). The A allele of rs13387042 (2q35) was significantly associated with contralateral breast cancer in ER negative first tumors while the A allele of rs11235127 (near TMEM135) was significantly associated with contralateral breast cancer in ER positive first tumors. Although some SNP genotypes appeared to modify contralateral breast cancer risk with respect to tamoxifen treatment or particular radiation doses, trend tests for such effects were not significant.

Conclusions

Our results indicate that some common risk variants associated with primary breast cancer also increase risk for contralateral breast cancer, and that these risks vary with the ER status of the first tumor.  相似文献   

3.

Introduction

Breast cancer is a heterogeneous disease and may be characterized on the basis of whether estrogen receptors (ER) are expressed in the tumour cells. ER status of breast cancer is important clinically, and is used both as a prognostic indicator and treatment predictor. In this study, we focused on identifying genetic markers associated with ER-negative breast cancer risk.

Methods

We conducted a genome-wide association analysis of 285,984 single nucleotide polymorphisms (SNPs) genotyped in 617 ER-negative breast cancer cases and 4,583 controls. We also conducted a genome-wide pathway analysis on the discovery dataset using permutation-based tests on pre-defined pathways. The extent of shared polygenic variation between ER-negative and ER-positive breast cancers was assessed by relating risk scores, derived using ER-positive breast cancer samples, to disease state in independent, ER-negative breast cancer cases.

Results

Association with ER-negative breast cancer was not validated for any of the five most strongly associated SNPs followed up in independent studies (1,011 ER-negative breast cancer cases, 7,604 controls). However, an excess of small P-values for SNPs with known regulatory functions in cancer-related pathways was found (global P = 0.052). We found no evidence to suggest that ER-negative breast cancer shares a polygenic basis to disease with ER-positive breast cancer.

Conclusions

ER-negative breast cancer is a distinct breast cancer subtype that merits independent analyses. Given the clinical importance of this phenotype and the likelihood that genetic effect sizes are small, greater sample sizes and further studies are required to understand the etiology of ER-negative breast cancers.  相似文献   

4.

Background

Expression of estrogen receptor alpha (ERα) is predictive for endocrine therapy response and an important prognostic factor in breast cancer. Overexpression of ERα can be caused by estrogen receptor 1 (ESR1) gene amplification and was originally reported to be a frequent event associated with a significantly longer survival for ER-positive women treated with adjuvant tamoxifen monotherapy, which was however questioned by subsequent studies.

Methods

This study aimed to reanalyze the frequency of ESR1 amplification by multiplex ligation-dependent probe amplification (MLPA) and fluorescence in situ hybridisation (FISH), and to assess clinicopathologic correlations. MLPA was performed in a group of 135 breast cancer patients, and gains/amplifications were subjected to FISH.

Results

True ESR1 amplification by MLPA was rare (2%) and only 6% more patients showed a modest gain of ESR1. All MLPA-detected ESR1 amplifications and nearly all ESR1 gains were also FISH amplified and gained, but not all FISH amplifications/gains were MLPA amplified/gained, leading to an overall concordance of only 60% between both techniques. All 3 MLPA and FISH ESR1 amplified cases had high ERα expression, but there was no obvious correlation between ESR1 gain and ER status by IHC. ESR1 gains/amplifications were not associated with HER2 gain/amplification, but seemed to be associated with older age. Surprisingly, ESR1 gain/amplification was not associated with low grade as reported previously, but correlated with high grade and high proliferation. Furthermore, ESR1 gain/amplification by MLPA was not associated with nodal status or tumor size (pT status).

Conclusions

ESR1 amplification as detected by MLPA is rare in breast cancer, and seems to be associated with high ERα expression, high age, high grade and high proliferation. This study confirms previous studies that showed differences in the ESR1 amplification frequencies detected by different techniques.  相似文献   

5.

Introduction

American women of African ancestry (AA) are more likely than European Americans (EA) to have estrogen receptor (ER)-negative breast cancer. 25-hydroxyvitamin D (25OHD) is low in AAs, and was associated with ER-negative tumors in EAs. We hypothesized that racial differences in 25OHD levels, as well as in inherited genetic variations, may contribute, in part, to the differences in tumor characteristics.

Methods

In a case (n = 928)-control (n = 843) study of breast cancer in AA and EA women, we measured serum 25OHD levels in controls and tested associations between risk and tag single nucleotide polymorphisms (SNPs) in VDR, CYP24A1 and CYP27B1, particularly by ER status.

Results

More AAs had severe vitamin D deficiency (< 10 ng/ml) than EAs (34.3% vs 5.9%), with lowest levels among those with the highest African ancestry. Associations for SNPs differed by race. Among AAs, VDR SNP rs2239186, associated with higher serum levels of 25OHD, decreased risk after correction for multiple testing (OR = 0.53, 95% CI = 0.31-0.79, p by permutation = 0.03), but had no effect in EAs. The majority of associations were for ER-negative breast cancer, with seven differential associations between AA and EA women for CYP24A1 (p for interaction < 0.10). SNP rs27622941 was associated with a > twofold increased risk of ER-negative breast cancer among AAs (OR = 2.62, 95% CI = 1.38-4.98), but had no effect in EAs. rs2209314 decreased risk among EAs (OR = 0.38, 95% CI = 0.20-0.73), with no associations in AAs. The increased risk of ER-negative breast cancer in AAs compared to EAs was reduced and became non-significant (OR = 1.20, 95% CI = 0.80-1.79) after adjusting for these two CYP24A1 SNPs.

Conclusions

These data suggest that genetic variants in the vitamin D pathway may be related to the higher prevalence of ER-negative breast cancer in AA women.  相似文献   

6.
7.

Purpose

Breast cancer is a heterogeneous disease, with at least five intrinsic subtypes defined by molecular characteristics. Tumors that express the estrogen receptor (ER+) have better outcomes than ER? tumors, due in part to the success of hormonal therapies that target ER+ tumors. The incidence of ER? breast cancer, and the subset of ER? cancers that are basal-like, is about twice as high among African American (AA) women as among US women of European descent (EA). This disparity appears to explain, in part, the disproportionately high mortality from breast cancer that occurs in AA women. Epidemiologic research on breast cancer in AA women lags behind research in EA women. Here, we review differences in the etiology of breast cancer subtypes among AA women and describe a new consortium of ongoing studies of breast cancer in AA women.

Methods

We combined samples and data from four large epidemiologic studies of breast cancer in AA women, two cohort and two case-control, creating the African American Breast Cancer Epidemiology and Risk consortium. Tumor tissue is obtained and stored in tissue microarrays, with assays of molecular markers carried out at a pathology core. Genotyping, carried out centrally, includes a whole exome SNP array and over 180,000 custom SNPs for fine-mapping of genome-wide association studies loci and candidate pathways.

Results

To date, questionnaire data from 5,739 breast cancer cases and 14,273 controls have been harmonized. Genotyping of the first 3,200 cases and 3,700 controls is underway, with a total of 6,000 each expected by the end of the study period.

Conclusions

The new consortium will likely have sufficient statistical power to assess potential risk factors, both genetic and non-genetic, in relation to specific subtypes of breast cancer in AA women.  相似文献   

8.

Background

Estrone (E1), the major circulating estrogen in postmenopausal women, promotes estrogen-receptor positive (ER+) breast tumor growth and proliferation. Two major reactions contribute to E1 plasma concentrations, aromatase (CYP19A1) catalyzed E1 synthesis from androstenedione and steroid sulfatase (STS) catalyzed hydrolysis of estrone conjugates (E1Cs). E1Cs have been associated with breast cancer risk and may contribute to tumor progression since STS is expressed in breast cancer where its activity exceeds that of aromatase.

Methods

We performed genome-wide association studies (GWAS) to identify SNPs associated with variation in plasma concentrations of E1Cs, E1, and androstenedione in 774 postmenopausal women with resected early-stage ER+ breast cancer. Hormone concentrations were measured prior to aromatase inhibitor therapy.

Results

Multiple SNPs in SLCO1B1, a gene encoding a hepatic influx transporter, displayed genome-wide significant associations with E1C plasma concentrations and with the E1C/E1 ratio. The top SNP for E1C concentrations, rs4149056 (p = 3.74E?11), was a missense variant that results in reduced transporter activity. Patients homozygous for the variant allele had significantly higher average E1C plasma concentrations than did other patients. Furthermore, three other SLCO1B1 SNPs, not in LD with rs4149056, were associated with both E1C concentrations and the E1C/E1 ratio and were cis-eQTLs for SLCO1B3. GWAS signals of suggestive significance were also observed for E1, androstenedione, and the E1/androstenedione ratio.

Conclusion

These results suggest a mechanism for genetic variation in E1C plasma concentrations as well as possible SNP biomarkers to identify ER+ breast cancer patients for whom STS inhibitors might be of clinical value.
  相似文献   

9.

Introduction

Seven SNPs in five genomic loci were recently found to confer a mildly increased risk of breast cancer.

Methods

We have investigated the correlations between disease characteristics and the patient genotypes of these SNPs in an unselected prospective cohort of 1,267 consecutive patients with primary breast cancer.

Results

Heterozygote carriers and minor allele homozygote carriers for SNP rs889312 in the MAP3K1 gene were less likely to be lymph node positive at breast cancer diagnosis (P = 0.044) relative to major allele homozygote carriers. Heterozygote carriers and minor allele homozygote carriers for SNP rs3803662 near the TNCR9 gene were more likely to be diagnosed before the age of 60 years (P = 0.025) relative to major allele homozygote carriers. We also noted a correlation between the number of minor alleles of rs2981582 in FGFR2 and the average number of first-degree and second-degree relatives with breast cancer and/or ovarian cancer (P = 0.05). All other disease characteristics, including tumour size and grade, and oestrogen or progesterone receptor status, were not significantly associated with any of these variants.

Conclusion

Some recently discovered genomic variants associated with a mildly increased risk of breast cancer are also associated with breast cancer characteristics or family history of breast cancer and ovarian cancer. These findings provide interesting new clues for further research on these low-risk susceptibility alleles.  相似文献   

10.

Introduction

Certain rare, familial mutations in the ATM, BRCA1, BRCA2, CHEK2 or TP53 genes increase susceptibility to breast cancer but it has not, until now, been clear whether common polymorphic variants in the same genes also increase risk.

Methods

We have attempted a comprehensive, single nucleotide polymorphism (SNP)- and haplotype-tagging association study on each of these five genes in up to 4,474 breast cancer cases from the British, East Anglian SEARCH study and 4,560 controls from the EPIC-Norfolk study, using a two-stage study design. Nine tag SNPs were genotyped in ATM, together with five in BRCA1, sixteen in BRCA2, ten in CHEK2 and five in TP53, with the aim of tagging all other known, common variants. SNPs generating the common amino acid substitutions were specifically forced into the tagging set for each gene.

Results

No significant breast cancer associations were detected with any individual or combination of tag SNPs.

Conclusion

It is unlikely that there are any other common variants in these genes conferring measurably increased risks of breast cancer in our study population.  相似文献   

11.

Introduction

Oxidative stress can modify estrogen receptor (ER) structure and function, including induction of progesterone receptor (PR), altering the biology and clinical behavior of endocrine responsive (ER-positive) breast cancer.

Methods

To investigate the impact of oxidative stress on estrogen/ER-regulated gene expression, RNA was extracted from ER-positive/PR-positive MCF7 breast cancer cells after 72 hours of estrogen deprivation, small-interfering RNA knockdown of ER-α, short-term (8 hours) exposure to various oxidant stresses (diamide, hydrogen peroxide, and menadione), or simultaneous ER-α knockdown and oxidant stress. RNA samples were analyzed by high-throughput expression microarray (Affymetrix), and significance analysis of microarrays was used to define gene signatures responsive to estrogen/ER regulation and oxidative stress. To explore the association of these signatures with breast cancer biology, microarray data were analyzed from 394 ER-positive primary human breast cancers pooled from three independent studies. In particular, an oxidant-sensitive estrogen/ER-responsive gene signature (Ox-E/ER) was correlated with breast cancer clinical parameters and disease-specific patient survival (DSS).

Results

From 891 estrogen/ER-regulated probes, a core set of 75 probes (62 unique genes) responsive to all three oxidants were selected (Ox-E/ER signature). Ingenuity pathway analysis of this signature highlighted networks involved in development, cancer, and cell motility, with intersecting nodes at growth factors (platelet-derived growth factor-BB, transforming growth factor-β), a proinflammatory cytokine (tumor necrosis factor), and matrix metalloproteinase-2. Evaluation of the 394 ER-positive primary breast cancers demonstrated that Ox-E/ER index values correlated negatively with PR mRNA levels (r p = -0.2; P = 0.00011) and positively with tumor grade (r p = 0.2; P = 9.741 × e-5), and were significantly higher in ER-positive/PR-negative versus ER-positive/PR-positive breast cancers (t-test, P = 0.0008). Regardless of PR status, the Ox-E/ER index associated with reduced DSS (n = 201; univariate Cox, P = 0.078) and, using the optimized cut-point, separated ER-positive cases into two significantly different DSS groups (log rank, P = 0.0009).

Conclusion

An oxidant-sensitive subset of estrogen/ER-responsive breast cancer genes linked to cell growth and invasion pathways was identified and associated with loss of PR and earlier disease-specific mortality, suggesting that oxidative stress contributes to the development of an aggressive subset of primary ER-positive breast cancers.  相似文献   

12.

Introduction

Although approximately 25 common genetic susceptibility loci have been identified to be independently associated with breast cancer risk through genome-wide association studies (GWAS), the genetic risk variants reported to date only explain a small fraction of the heritability of breast cancer. Furthermore, GWAS-identified loci were primarily identified in women of European descent.

Methods

To evaluate previously identified loci in Korean women and to identify additional novel breast cancer susceptibility variants, we conducted a three-stage GWAS that included 6,322 cases and 5,897 controls.

Results

In the validation study using Stage I of the 2,273 cases and 2,052 controls, seven GWAS-identified loci [5q11.2/MAP3K1 (rs889312 and rs16886165), 5p15.2/ROPN1L (rs1092913), 5q12/MRPS30 (rs7716600), 6q25.1/ESR1 (rs2046210 and rs3734802), 8q24.21 (rs1562430), 10q26.13/FGFR2 (rs10736303), and 16q12.1/TOX3 (rs4784227 and rs3803662)] were significantly associated with breast cancer risk in Korean women (P trend < 0.05). To identify additional genetic risk variants, we selected the most promising 17 SNPs in Stage I and replicated these SNPs in 2,052 cases and 2,169 controls (Stage II). Four SNPs were further evaluated in 1,997 cases and 1,676 controls (Stage III). SNP rs13393577 at chromosome 2q34, located in the Epidermal Growth Factor Receptor 4 (ERBB4) gene, showed a consistent association with breast cancer risk with combined odds ratios (95% CI) of 1.53 (1.37-1.70) (combined P for trend = 8.8 × 10-14).

Conclusions

This study shows that seven breast cancer susceptibility loci, which were previously identified in European and/or Chinese populations, could be directly replicated in Korean women. Furthermore, this study provides strong evidence implicating rs13393577 at 2q34 as a new risk variant for breast cancer.  相似文献   

13.
14.
15.

Introduction

Previous studies have demonstrated that common breast cancer susceptibility alleles are differentially associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers. It is currently unknown how these alleles are associated with different breast cancer subtypes in BRCA1 and BRCA2 mutation carriers defined by estrogen (ER) or progesterone receptor (PR) status of the tumour.

Methods

We used genotype data on up to 11,421 BRCA1 and 7,080 BRCA2 carriers, of whom 4,310 had been affected with breast cancer and had information on either ER or PR status of the tumour, to assess the associations of 12 loci with breast cancer tumour characteristics. Associations were evaluated using a retrospective cohort approach.

Results

The results suggested stronger associations with ER-positive breast cancer than ER-negative for 11 loci in both BRCA1 and BRCA2 carriers. Among BRCA1 carriers, single nucleotide polymorphism (SNP) rs2981582 (FGFR2) exhibited the biggest difference based on ER status (per-allele hazard ratio (HR) for ER-positive = 1.35, 95% CI: 1.17 to 1.56 vs HR = 0.91, 95% CI: 0.85 to 0.98 for ER-negative, P-heterogeneity = 6.5 × 10-6). In contrast, SNP rs2046210 at 6q25.1 near ESR1 was primarily associated with ER-negative breast cancer risk for both BRCA1 and BRCA2 carriers. In BRCA2 carriers, SNPs in FGFR2, TOX3, LSP1, SLC4A7/NEK10, 5p12, 2q35, and 1p11.2 were significantly associated with ER-positive but not ER-negative disease. Similar results were observed when differentiating breast cancer cases by PR status.

Conclusions

The associations of the 12 SNPs with risk for BRCA1 and BRCA2 carriers differ by ER-positive or ER-negative breast cancer status. The apparent differences in SNP associations between BRCA1 and BRCA2 carriers, and non-carriers, may be explicable by differences in the prevalence of tumour subtypes. As more risk modifying variants are identified, incorporating these associations into breast cancer subtype-specific risk models may improve clinical management for mutation carriers.  相似文献   

16.

Introduction

Breast tumors lacking the estrogen receptor-α (ER-α) have increased incidence of resistance to therapy and poorer clinical prognosis.

Methods

Whole tissue sections from 16 cryopreserved breast cancer tumors that were either positive or negative for the ER (eight ER positive and eight ER negative) were differentially analyzed by multiplex imaging of two-dimensional PAGE gels using 54 cm isoelectric focusing. Differentially detected spots of Progesterone Receptor Membrane Component 1 (PGRMC1) were shown to differ in phosphorylation status by differential two dimensional polyacrylamide gel electrophoresis of phosphatase-treated tumor proteins. Site directed mutagenesis was used to create putative phosphorylation site point mutants in PGRMC1. Stable transfectants of these mutants in MCF7 cells were assayed for their survival after oxidative stress, and for AKT kinase phosphorylation. Immune fluorescence using anti-PGRMC1 monoclonal antibody 5G7 was performed on breast cancer tissue microarrays.

Results

Proteins significantly differentially abundant between estrogen receptor negative and estrogen receptor positive tumors at the 0.1% level were consistent with published profiles, suggesting an altered keratin pool, and increased inflammation and wound responses in estrogen receptor negative tumors. Two of three spots of PGRMC1 were more abundant in estrogen receptor negative tumors. Phosphatase treatment of breast tumor proteins indicated that the PGRMC1 isoforms differed in their phosphorylation status. Simultaneous mutation of PGRMC1 serine-56 and serine-181 fully abrogated the sensitivity of stably transfected MCF7 breast cancer cells to peroxide-induced cell death. Immune fluorescence revealed that PGRMC1 was primarily expressed in ER-negative basal epithelial cells of mammary ductules. Even in advanced tumors, high levels of ER or PGRMC1 were almost mutually exclusive in individual cells. In five out of five examined ductal in situ breast cancers of comedo type, PGRMC1 was expressed in glucose transporter 1 negative or positive poorly oxygenated cells surrounding the necrotic core, surrounded by a more distal halo of ER-positive cells.

Conclusions

PGRMC1 phosphorylation may be involved in the clinical differences that underpin breast tumors of differing ER status.  相似文献   

17.
18.

Introduction

Several in vitro studies have suggested the effects of adipokines and insulin resistance on breast cancer cell proliferation and survival. However, little is known about the clinical significance of these findings.

Methods

We examined associations between breast cancer recurrence and adiponectin, leptin, insulin resistance, and metabolic syndrome (MetS) in a cohort of 747 patients from 2001 to 2004.

Results

Adjusted hazard ratios showed an inverse trend across the quartiles for serum adiponectin concentration in estrogen receptor (ER)/progesterone receptor (PR) -negative patients (P for trend = 0.027) but not in ER/PR-positive patients. Compared to the highest quartile for adiponectin level, the lowest quartile showed a hazard ratio of 2.82 (1.03 to 7.68). Homeostasis model assessment for insulin resistance (HOMA-IR) showed a positive trend for recurrence in the ER/PR-negative group (P for trend = 0.087) and a negative trend in the ER/PR-positive group (P for trend = 0.081). Leptin did not show any associations (P for trend >0.05). A linear trend was observed with the number of components of MetS in ER/PR-negative patients (P for trend = 0.044). This association disappeared when adjusted for adiponectin and HOMA-IR.

Conclusions

Adiponectin and HOMA-IR have prognostic significance in breast cancer recurrence and interventions related to these factors may protect against recurrence in ER/PR-negative patients. These findings were not observed in the case of ER/PR-positive patients. Further evaluation of these insignificant associations is needed because it might be biased by adjuvant chemotherapy or other confounders.  相似文献   

19.
20.

Purpose

An increasing number of long intergenic non-coding RNAs (lincRNAs) appear to play critical roles in cancer development and progression. To assess the association between SNPs that reside in regions of lincRNAs and breast cancer risk, we performed a large case-control study in China.

Methods

We carried out a two-stage case-control study including 2881 breast cancer cases and 3220 controls. In stage I, we genotyped 17 independent (r2?<?0.5) SNPs located in 6 tumor-related lincRNAs by using the TaqMan platform. In stage II, SNPs potentially associated with breast cancer risk were replicated in an independent population. Quantitative real-time PCR was used to measure H19 levels in tissues from 228 breast cancer patients with different genotypes.

Results

We identified 2 SNPs significantly associated with breast cancer risk in stage I (P?<?0.05), but not significantly replicated in stage II. We combined the data from stage I and stage II, and found that, compared with the rs2071095 CC genotype, AA and CA?+?AA genotypes were associated with significantly decreased risk of breast cancer (adjusted OR 0.83, 95% CI 0.69–0.99; adjusted OR 0.88, 95% CI 0.80–0.98, respectively). Stratified analyses showed that rs2071095 was associated with breast cancer risk in estrogen receptor (ER)-positive patients (P?=?0.002), but not in ER-negative ones (P?=?0.332). Expression levels of H19 in breast cancer cases with AA genotype were significantly lower than those with CC genotype.

Conclusions

We identified that rs2071095 may contribute to the susceptibility of breast cancer in Chinese women via affecting H19 expression. The mechanisms underlying the association remain to be investigated.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号