首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objective: This study was designed to evaluate the effect of surface contamination on osseointegration of dental implants surrounded by a circumferential bone defect and to compare osseointegration around Osseotite® with that around Nanotite? implants. Materials and methods: The premolars on both sides of the mandible in four beagle dogs were extracted. Following 4 months healing, two Nanotite? implants and two Osseotite® implants were partially inserted in the left side of each mandible. Some threads protruded from the tissues into the oral cavity. Following a 5 week healing period, the implants were removed and the contaminated part of each implant was cleaned. They were then installed to the full implant length on the contra lateral side of the mandibles. The coronal 5 mm of each implant was surrounded by 1 mm circumferential bone defect. Following 12 weeks of healing period, the dogs were sacrificed and biopsies were obtained. Ground sections were prepared for histomorphometric analysis. Results: All implants were associated with direct bone‐to‐implant contact on the portion of the implant surface contaminated previously and surrounded by bone defect. Nanotite? implants performed better than Osseotite® implants. Conclusions: The results demonstrated that implant surfaces, which were contaminated previously and were surrounded by bone defects, can osseointegrate. To cite this article:
Mohamed S, Polyzois I, Renvert S, Claffey N. Effect of surface contamination on osseointegration of dental implants surrounded by circumferential bone defects. Clin. Oral Impl. Res. 21 , 2010; 513–519.
doi: 10.1111/j.1600‐0501.2010.01913.x  相似文献   

2.
Objective: To evaluate morphologically and morphometrically the sequential healing and osseointegration events at moderately rough implant surfaces with and without chemical modification. Particularly the role of bone debris in initiating bone formation was emphasized. Material and methods: Solid, screw‐type cylindrical titanium implants (SSI) (n=49), 4 mm long and 2.8 mm wide, with either chemically modified (SLActive®) or sandblasted and acid‐etched (SLA®) surface configurations were surgically installed in the retromolar region of 28 human volunteers. After 7, 14, 28 and 42 days of submerged healing, the devices were retrieved with a trephine. Histologic ground sections were prepared and histomorphometrically analyzed. Linear measurements determined fractions of old bone (OBIC), new bone (NBIC), soft tissue (ST) and bone debris (BD) in contact with the SSI surfaces. Results: Healing was uneventful at all installation sites. Sixty‐one percent of all devices were suitable for morphometric analyses. All implant surfaces were partially coated with bone debris and new bone formation was observed as early as 7 days after installation. There was a gradual increase in NBIC, whereas OBIC, ST and BD progressively decreased over time. NBIC after 2 and 4 weeks was higher on SLActive® than on SLA® surfaces, albeit statistically not significant. The BD : ST ratio changed significantly from 7 to 42 days (from 50 : 50 to 10 : 90 for SLActive®; from 38: 62 to 10 : 90 for SLA®) (Fisher's exact test, P<0.01). Conclusion: Both SLActive® and SLA® devices became progressively osseointegrated, while old bone on the device surface was gradually resorbed. The decrease in BD : ST ratio suggests that bone debris, created during implant installation and adhering to moderately rough surfaces, significantly contributed to the initiation of bone deposition and mediated the connection between the old bone and the new bone on the implant surface. To cite this article:
Bosshardt DD, Salvi GE, Huynh‐Ba G, Ivanovski S, Donos N, Lang, NP. The role of bone debris in early healing adjacent to hydrophilic and hydrophobic implant surfaces in man.
Clin. Oral Impl. Res. 22 , 2011; 357–364.  相似文献   

3.
Objectives: Describe the early phases of tissue integration in implants placed into fresh extraction sockets and test whether a new implant surface nano‐topography (DCD nano‐particles, Nanotite?) promotes early osseointegration when compared with minimally rough surface implants (DAE, Osseotite®). Material and Methods: Sixteen beagle dogs received 64 test and control implants randomly installed into the distal socket of 3P3 and 4P4. Histomorphometric analysis of bone to implant contact (BIC) and bone area was performed at 4 h, 1, 2, 4 and 8 weeks. Results: Wound healing initiated with a coagulum that was substituted by a provisional matrix at 1 week. Bone formation started concomitant to a marked bone resorption. At 2 weeks, woven bone formation was evident and gradually remodelled into lamellar bone at 4 and 8 weeks. BIC increased similarly throughout the study in both groups with a tendency to higher percentages for the test devices at 2 and 4 weeks. The influence of the DCD nano‐particles was more evident at the fourth premolar site. Conclusion: Osseointegration occurred similarly at both implant groups, although the socket dimension appeared to influence bone healing. It is suggested that the enhanced nano‐topography has a limited effect in the immediate implant surgical protocol.  相似文献   

4.
Objectives: This study was designed to evaluate the effect of bone graft materials and collagen membranes in ridge splitting procedures with immediate implant placement using a dog model. Materials and methods: Mandibular premolars were extracted in five beagle dogs. After 3 months, ridge splitting and placement of three OsseoSpeed? implants were performed bilaterally. The gaps between the implants were allocated according to the following eight treatment modalities; Group 1(no graft), Group 2 (autogenous bone), Group 3 (Bio‐Oss® Collagen), Group 4 (Bio‐Oss®), Group 5 (no graft+BioGide®), Group 6 (autogenous bone+BioGide®), Group 7 (Bio‐Oss® Collagen+BioGide®), and Group 8 (Bio‐Oss®+BioGide®). The dogs were sacrificed after 8 or 12 weeks and the specimens were analyzed histologically and histometrically. Results: The gaps between the implants were filled with the newly formed bone, irrespective of which of the eight grafting techniques was used. Group 1 revealed a significantly lower percentage of bone‐to‐implant contact (BIC) than Group 5 at 8 and 12 weeks (P<0.05). Group 1 showed the most prominent marginal bone loss (MBL) at 12 weeks (P<0.05). Regarding the use of membranes, Groups 1 and 2 showed significantly more MBL than Groups 5 and 6 at 12 weeks (P<0.05). Conclusions: After ridge splitting, if the gaps between implants were grafted or covered with collagen membranes, a higher percentage of BIC was obtained. Based on our results, we suggest that the use of bone graft materials and/or collagen membranes is better for the prevention of MBL after ridge splitting procedures. To cite this article:
Han J‐Y, Shin S‐I, Herr Y, Kwon Y‐H, Chung J‐H. The effects of bone grafting material and a collagen membrane in the ridge splitting technique: an experimental study in dogs.
Clin. Oral Impl. Res. xx , 2011; 000–000
doi: 10.1111/j.1600‐0501.2010.02127.x  相似文献   

5.
Objective: To study the osseointegration of dental implants placed with a modified surgical technique in Beagle dogs and to compare it with the conventional method. Materials and methods: Dental implants were placed bilaterally in the mandible of Beagle dogs using the press‐fit as well as undersized implant bed preparation technique. Micro computer tomography (micro‐CT) and histometric methods were used to analyze the bone implant contact and bone volume (BV) around the implants. Results: The bone‐to‐implant contact percentage (BIC: expressed as %), first BIC (1st BIC: expressed in mm), sulcus depth (SD: expressed in mm) and connective tissue thickness (CT: expressed in mm) were analyzed for both groups. The BIC percentage was significantly higher for the undersized installed implants (P=0.0118). Also, a significant difference existed between the undersized and press‐fit installed implants for the first screw thread showing bone contact (P=0.0145). There were no significant differences in mucosal response (SD and CT) for both installation procedures. Also, no significant difference was found in the BV, as measured using micro‐CT, between the implants placed with an undersized technique (59.3±4.6) compared with the press‐fit implants (56.6±4.3). Conclusion: From the observations of the study, it can be concluded that an undersized implant bed can enhance the implant–bone response. To cite this article:
Al‐Marshood MM, Junker R, Al‐Rasheed A, Al Farraj Aldosari A, Jansen JA, Anil S. Study of the osseointegration of dental implants placed with an adapted surgical technique
Clin. Oral Impl. Res. 22 , 2011; 753–759
doi: 10.1111/j.1600‐0501.2010.02055.x  相似文献   

6.
Aim: To compare the influence of autologous or deproteinized bovine bone mineral as grafting material on healing of buccal dehiscence defects at implants installed immediately into the maxillary second incisor extraction socket in dogs. Material and methods: In the maxillary second incisor sockets of 12 Labrador dogs, implants were installed immediately following tooth extraction. A standardized buccal defect was created and autologous bone particles or deproteinized bovine bone mineral were used to fill the defects. A collagen membrane was placed to cover the graft material, and the flaps were sutured to fully submerge the experimental areas. Six animals were sacrificed after 2 months, and six after 4 months of healing. Ground sections were obtained for histological evaluation. Results: After 2 months of healing, all implants were osseointegrated. All buccal dehiscence defects were completely filled after 2 months irrespective of the augmentation material (autologous bone or Bio‐Oss®) applied. Bone‐to‐implant contact (BIC) on the denuded implant surfaces was within a normal range of 30–40%. However, the newly formed tissue at 2 months was partially resorbed (>50% of the area measurements) after 4 months. Conclusions: Applying either autologous bone or deproteinized bovine bone mineral to dehiscences at implants installed immediately into extraction sockets resulted in high degree of regeneration of the defects with satisfactory BIC on the denuded implant surface. To cite this article:
De Santis E, Botticelli D, Pantani F, Pereira FP, Beolchini M, Lang NP. Bone regeneration at implants placed into extraction sockets of maxillary incisors in dogs.
Clin. Oral Impl. Res. 22 , 2011; 430–437.  相似文献   

7.
Objective: This study was designed to evaluate the transmucosal healing response of implants placed with the junction of the smooth surfaces, either crestal or subcrestal, into simulated extraction defects after healing periods of 1 and 3 months. Materials and methods: A total of 23 Straumann SP ?3.3 mm NN, SLA® 10 mm implants were placed in the mandibular premolar regions of three greyhound dogs 3 months after the teeth were removed. Five control implants were placed at the crestal bone level, and test implants with surgically created peri‐implant defects of 1.25 mm wide × 5 mm depth were placed either at the crestal (nine implants) or at the 2 mm subcrestal (nine implants) bone level. Implants on the right side were placed 1 month before the dogs were sacrificed, and implants on the left side were placed 3 months before sacrifice. All dogs had daily plaque control following surgery and were sacrificed 3 months after implant placement for histological and histometric analyses. Results: Mesial–distal ground sections of the control and test implant specimens showed a greater %BIC in the coronal defect region after 3 months of healing. This healing response was incomplete for the test implants compared with the control implants after a 1‐month healing period. The histometric measurements for test implants placed at the crestal bone level or 2 mm subcrestal with surgically created peri‐implant defects were more coronal or closer to the implant margin compared with the control implants. Additionally, the degree of osseointegration between the newly formed bone and the implant surface was similar between the test implants. Conclusion: Peri‐implant defects of 1.25 mm width healed with spontaneous bone regeneration around implants placed transmucosally at crestal or 2 mm subcrestal with a high degree of osseointegration after a 3‐month healing period. To cite this article:
Tran BLT, Chen ST, Caiafa A, Davies HMS, Darby IB. Transmucosal healing around peri‐implant defects: crestal and subcrestal implant placement in dogs.
Clin. Oral Impl. Res. 21 , 2010; 794–803.
doi: 10.1111/j.1600‐0501.2010.01911.x  相似文献   

8.
Objectives: The aims of this research were to evaluate the efficacy of a bioactive glass–ceramic (Biosilicate®) and a bioactive glass (Biogran®) placed in dental sockets in the maintenance of alveolar ridge and in the osseointegration of Ti implants. Material and methods: Six dogs had their low premolars extracted and the sockets were implanted with Biosilicate®, Biogran® particles, or left untreated. After the extractions, measurements of width and height on the alveolar ridge were taken. After 12 weeks a new surgery was performed to take the final ridge measurements and to insert bilaterally three Ti implants in biomaterial‐implanted and control sites. Eight weeks post‐Ti implant placement block biopsies were processed for histological and histomorphometric analysis. The percentages of bone–implant contact (BIC), of mineralized bone area between threads (BABT), and of mineralized bone area within the mirror area (BAMA) were determined. Results: The presence of Biosilicate® or Biogran® particles preserved alveolar ridge height without affecting its width. No significant differences in terms of BIC, BAMA, and BABT values were detected among Biosilicate®, Biogran®, and the non‐implanted group. Conclusions: The results of the present study indicate that filling of sockets with either Biosilicate® or Biogran® particles preserves alveolar bone ridge height and allows osseointegration of Ti implants. To cite this article:
Roriz VM, Rosa AL, Peitl O, Zanotto ED, Panzeri H, de Oliveira PT. Efficacy of a bioactive glass–ceramic (Biosilicate®) in the maintenance of alveolar ridges and in osseointegration of titanium implants.
Clin. Oral Impl. Res. 21 , 2010; 148–155.
doi: 10.1111/j.1600‐0501.2009.01812.x  相似文献   

9.
Purpose: The aim of the present study was to evaluate bone remodeling and bone‐to‐implant contact (BIC) after immediate placement at different levels in relation to the crestal bone of Beagle dogs. Materials and methods: The mandibular bilateral second, third and fourth premolars of six Beagle dogs were extracted and six implants were immediately placed in the hemi‐arches of each dog. Randomly, three cylindrical and three tapered implants were inserted crestally (control group) and 2 mm subcrestally (experimental group). Both groups were treated with a minimal mucoperiosteal flap elevation approach. A gap from the buccal cortical wall to the implant was always left. Three dogs were allowed a 4‐week submerged healing period and the other three an 8‐week submerged healing period. The animals were sacrificed and biopsies were obtained. Biopsies were processed for ground sectioning. Histomorphometric analysis was carried out in order to compare buccal and lingual bone height loss, and BIC between the two groups. Results: All implants osseointegrated clinically and histologically. Healing patterns examined microscopically at 4 and 8 weeks for both groups (crestal and subcrestal) yielded similar qualitative bone findings. The distance from the top of the implant collar to the first BIC in the lingual crest (A–Lc) showed a significant difference (P=0.0313): 1.91 ± 0.2 mm in the control group and 1.08 ± 0.2 mm in the experimental group. There was less bone resorption in subcrestal implants than crestal implants. The mean percentage of newly formed BIC was greater with the cylindrical implant design (46.06 ± 4.09%) than with the tapered design (32.64 ± 3.72%). Conclusion: These findings suggest that apical positioning of the top of the implant does not jeopardize bone crest and peri‐implant tissue remodeling. However, less resorption of the Lc may be expected when implants are placed 2 mm subcrestally. To cite this article:
Negri B, Calvo‐Guirado JL, Pardo‐Zamora G, Ramírez‐Fernández MP, Delgado‐Ruíz RA, Muñoz‐Guzón F. Peri‐implant bone reactions to immediate implants placed at different levels in relation to crestal bone. Part I: a pilot study in dogs.
Clin. Oral Impl. Res. 23 , 2012; 228–235.
doi: 10.1111/j.1600‐0501.2011.02158.x  相似文献   

10.
Aim: The objective of this study was to evaluate the early healing of endosseous implants presenting various healing chamber configurations in a beagle dog mandible model. Methods: The four premolars of 12 beagle dogs were extracted and allowed to heal for a period of 8 weeks. Implants allowing six different healing chamber configurations were placed in each dog (three per side, six configurations per dog). The animals were sacrificed after 3 and 5 weeks in vivo (n=6 per time in vivo), and the implants were non‐decalcified processed to slides of ~30 μm thickness. Bone‐to‐implant contact (BIC) and bone area fraction occupied (BAFO) within the healing chamber were quantified. Statistical analysis was performed by a GLM ANOVA model at 5% significance level. Results: Osseointegration and healing with woven bone filling throughout all healing chambers was observed. Replacement of woven bone by lamellar bone showing primary osteonic structures was observed at 5 weeks. BIC was significantly affected by healing chamber configuration (P<0.001) and was not affected by time in vivo (P>0.42) at 3 and 5 weeks in vivo. BAFO was not affected by healing chamber configuration (P>0.14) however significantly increased over implantation time (P<0.001). Conclusion: Regardless of healing chamber design and dimensions considered, healing allowed the devices osseointegration. However, healing chamber configuration significantly affected osseointegration measurable parameters such as BIC. To cite this article:
Marin C, Granato R, Suzuki M, Gil JN, Janal, MN Coelho PG. Histomorhpologic and histomorphometric evaluation of various endosseous implant healing chamber configurations at early implantation times: a study in dogs.
Clin. Oral Impl. Res. 21 , 2010; 577–583.
doi: 10.1111/j.1600‐0501.2009.01853.x  相似文献   

11.
Background: Physical and bioceramic incorporation surface treatments at the nanometer scale showed higher means of bone‐to‐implant contact (BIC) and torque values compared with surface topography at the micrometer scale; however, the literature concerning the effect of nanometer scale parameters is sparse. Purpose: The aim of this study was to evaluate the influence of two different implant surfaces on the percentage bone‐to‐implant contact (BIC%) and bone osteocyte density in the human posterior maxilla after 2 months of unloaded healing. Materials and Methods: The implants utilized presented dual acid‐etched (DAE) surface and a bioceramic molecular impregnated treatment (Ossean®, Intra‐Lock International, Boca Raton, FL, USA) serving as control and test, respectively. Ten subjects (59 ± 9 years of age) received two implants (one of each surface) during conventional implant surgery in the posterior maxilla. After the non‐loaded period of 2 months, the implants and the surrounding tissue were removed by means of a trephine and were non‐decalcified processed for ground sectioning and analysis of BIC%, bone density in threaded area (BA%), and osteocyte index (Oi). Results: Two DAE implants were found to be clinically unstable at time of retrieval. Histometric evaluation showed significantly higher BIC% and Oi for the test compared to the control surface (p < .05), and that BA% was not significantly different between groups. Wilcoxon matched pairs test was used to compare the differences of histomorphometric variables between implant surfaces. The significance test was conducted at a 5% level of significance. Conclusion: The histological data suggest that the bioceramic molecular impregnated surface‐treated implants positively modulated bone healing at early implantation times compared to the DAE surface.  相似文献   

12.
Objective: To evaluate early osseointegration of dental implants installed with two different drilling protocols. Material and methods: Thirty‐six cylindrical shape Mozo Grau implants, with a diameter of 3.75 and 11 mm long, were placed into the distal condyle (submerged) of each femur of 18 New Zealand rabbits. In the control group, a 3.3 mm diameter drill was used as the last one prior implant installation (standard protocol). In the test group, the same procedure was carried out but an additional 3.5 mm drill was used as the final one (oversized protocol) Thus, we could obtain different primary stability at day 0 between groups. Sacrifice of the animals was after 2, 4 and 8 weeks. Histomorphometric analysis (bone‐to‐implant contact ratio [BIC%]) and implant stability quotient (ISQ) values (Ostell®) were registered at each sacrifice time. Results: The ISQ values were statistically significant different between groups at day 0 (control: 69.65; test: 64.81); and after 2 weeks (control: 77.93; test: 74). However, after 4 and 8 weeks the results were similar. BIC% showed a similar tendency, with 58.69% for the control group and 40.94% for the test group after 2 weeks, this difference being statistically significant. At 4‐ and 8‐week interval, BIC% was similar. Conclusion: At 2‐week interval (early healing), osseointegration had been influenced by different primary stability at implant installation, being slower in the oversized protocol (lower primary stability), which could be especially risky in challenging clinical situations, such as soft bone (class 3 and 4) and early/immediate loading. However, from 4 week on, these differences disappeared. Nevertheless, we have to consider that a direct transfer of the results of this animal study (time bone repair mechanisms) into clinic has to be done with caution. To cite this article:
Blanco J, Alvarez E, Muñoz F, Liñares A, Cantalapiedra A. Influence on early osseointegration of dental implants installed with two different drilling protocols: a histomorphometric study in rabbit
Clin. Oral Impl. Res. 22 , 2011; 92–99.
doi: 10.1111/j.1600‐0501.2010.02009.x  相似文献   

13.
Aim: To monitor longitudinally the development of implant stability of SLA Straumann® tissue‐level implants using resonance frequency analysis (RFA) and to determine the influence of instrument positioning, bone structure and implant length on the assessment of RFA. Material and methods: Thirty‐two healthy adult patients received either 8 mm, ?4.1 mm Straumann® Standard Plus tissue‐level implants (n=16: Group A) or 10 mm, ?4.1 mm Straumann® Standard Plus tissue‐level implants (n=16: Group B). During healing, RFA was performed on Weeks 0,1, 2, 3, 4, 5, 6, 8 and 12. The implants were restored after 10 weeks (impression taking) and 12 weeks. In addition, probing depth, presence of plaque and bleeding on probing were assessed. Implant stability quotient (ISQ) values of Groups A and B were compared using unpaired t‐tests and longitudinally applying paired t‐tests between Week 0 and the subsequent time points. Results: Positioning of the Osstell?mentor device did not affect the ISQ values. Generally, ISQ values increased continuously during healing from a mean of 65.1 (SD 16.97) to 74.7 (SD 5.17) (significantly from Week 0 to Weeks 6, 8 and 12). Lower bone density (Type III or IV) resulted in significantly lower ISQ values up to Week 8. Implant length affected the increase in ISQ values over time. While no significant increase was observed with 10 mm implants, ISQ values of 8 mm implants increased significantly from Week 0 to Weeks 6, 8 and 12. Conclusions: Using Osstell?mentor, ISQ values are reproducible irrespective of instrument positioning. ISQ values are affected by the bone structure and implant length. Hence, no predictive values can be attributed to implant stability. To cite this article:
Sim CPC, Lang NP. Factors influencing resonance frequency analysis assessed by Osstell?mentor during implant tissue integration: I. Instrument positioning, bone structure, implant length.
Clin. Oral Impl. Res. 21 , 2010; 598–604.
doi: 10.1111/j.1600‐0501.2009.01878.x  相似文献   

14.
Objective: The aim of this pilot study was to compare the early‐term osseointegration characteristics of standard (SLA) and modified sand‐blasted and acid‐etched (modSLA) implants in an experimental animal model. Material and methods: A total of 30 SLA and modSLA implants were placed to the tibiae of three sheep and the insertion torque value (ITV) and resonance frequency analysis (RFA) measurements were performed. RFA measurement was repeated on 3 and 6 weeks healed implants after which the animals were sacrificed for histomorphometric analysis. Bone‐to‐implant contact was assessed on the non‐decalcified sections. Six weeks healed implants were also subjected to the reverse torque test (RTT). Results were analyzed by the Friedman test, Kruskal–Wallis test and Spearman rank correlation test. Results: All implants reached to a strong primary stability with a mean 36.13 ± 2.47 and 35.47 ± 2.85 N/cm ITV. In the surgical stage, RFA values for SLA and modSLA implants were found to be 72.27 ± 3.17 and 71.6 ± 2.87, respectively. After 3 weeks of healing, mean BIC% (80.64 ± 13.89%) and RFA value (76.8 ± 1.14) of modSLA implants were significantly higher (P=0.0002) than that of SLA implants (64.39 ± 21.2 BIC% and 74.2 ± 4.76 RFA). However, no statistically significant difference between SLA and modSLA implants was recorded after 6 weeks of healing. Both implants revealed similar results in the RTT test (115.2 ± 4.14 and 117 ± 4.47 N/cm for SLA and modSLA implants, respectively). No correlation was found between RFA and BIC%. Conclusion: Within the limits of this pilot study, it can be concluded that modSLA implants achieve a higher bone contact and stability at earlier time points when compared with SLA implants. To cite this article:
Abdel‐Haq J, Karabuda CZ, Arιsan V, Mutlu Z, Kürkçü M. Osseointegration and stability of a modified sand‐blasted acid‐etched implant: an experimental pilot study in sheep.
Clin. Oral Impl. Res. 22 , 2011; 265–274.
doi: 10.1111/j.1600‐0501.2010.01990.x  相似文献   

15.
Objective: The aim of this study was to evaluate the effects of topical application of growth hormone (GH) on the osteointegration of dental implants in dogs at 5 and 8 weeks after surgery. Materials and methods: Mandibular premolars and molars were extracted from 12 Beagle dogs. Four screw implants were placed in each mandible. Before implant placement, 4 IU of GH were applied to the test sites (TS); no treatment was applied to control sites (CS). Morphometric parameters, bone‐to‐implant contact (BIC), peri‐implant connective tissue, interthread bone and newly formed bone were measured. The Student's t‐test for was used for statistical analysis of data obtained. Results: After 5 weeks of treatment, BIC values varied slightly between 34.33 ± 2.35% (CS) and 35.76 ± 2.96% (TS). Interthread bone tissue was 64.08 ± 8.68 at CS and 72.86 ± 2.93 at TS, with statistical significance (P<0.05). Bone neoformation was 72.53 ± 4.54 at the CS and 80.74 ± 1.65 for the GH group, these being statistically significant differences (P<0.05). After 8 weeks, BIC had slightly increased for the GH group (36.47 ± 3.09 vs. 39.61 ± 2.34). Interthread bone was 80.57 ± 2.28 at the CS and 82.58 ± 2.44 at the GH site, which was statistically significant. Bone neoformation was 88.09 ± 1.38 at CS and 91.01 ± 1.52 at TS, showing statistical significance (P<0.05). Conclusion: Topical application of 4 IU of GH like a biomimetic agent at the moment of implant placement has no significant effects on the BIC at 5 and 8 weeks, although bone neoformation and inter‐thread bone values did increase significantly. To cite this article:
Calvo‐Guirado JL, Mate‐Sanchez J, Delgado‐Ruiz R, Ramirez‐Fernández MP, Cutando‐Soriano A, Peña M. Effects of growth hormone on initial bone formation around dental implants: a dog study
Clin. Oral Impl. Res. 22 , 2011; 587–593.
doi: 10.1111/j.1600‐0501.2010.02007.x  相似文献   

16.
Objectives: To assess the influence of two barrier membranes and two bone graft substitutes on staged guided bone regeneration and osseointegration of titanium implants in dogs. Materials and methods: Saddle‐type defects were prepared in the lower jaws of 6 fox hounds and randomly filled with a natural bone mineral (NBM) and a biphasic calcium phosphate (SBC) and allocated to either an in situ gelling polyethylene glycol (PEG) or a collagen membrane (CM). At 8 weeks, modSLA titanium implants were inserted and left to heal in a submerged position. At 8+2 weeks, respectively, dissected blocks were processed for histomorphometrical analysis (e.g., mineralized tissue [MT], bone‐to‐implant contact [BIC]). Results: The mean MT values (mm2) and BIC values (%) tended to be higher in the PEG groups (MT: NBM [3.4±1.7]; SBC [4.2±2]/BIC: NBM [67.7±16.9]; SBC [66.9±17.8]) when compared with the corresponding CM groups (MT: NBM [2.5±0.8]; SBC [2.3±1.6]/BIC: NBM [54.1±22.6]; SBC [61±8.7]). These differences, however, did not reach statistical significance. Conclusion: It was concluded that all augmentation procedures investigated supported bone regeneration and staged osseointegration of modSLA titanium implants. To cite this article :
Mihatovic I, Becker J, Golubovic V, Hegewald A, Schwarz F. Influence of two barrier membranes on staged guided bone regeneration and osseointegration of titanium implants in dogs. Part 2: augmentation using bone graft substitutes.
Clin Oral Impl Res. 23 , 2012; 308–315.
doi: 10.1111/j.1600‐0501.2011.02238.x  相似文献   

17.
Purpose: To evaluate the bone healing response to different implant root shape designs in a dog model. Materials and Methods: Three by eight millimeter screw‐type short‐pitch (SP) and large‐pitch (LP) implants (Intra‐Lock International, Boca Raton, FL, USA), and 4.5 × 6 mm plateau (P) implants (Bicon LLC, Boston, MA, USA) were placed along the proximal tibia of six dogs for 2 and 4 weeks. The combination of implant design and final osteotomy drilling resulted in healing chambers for the LP and P implants. The implants were nondecalcified processed to plates of ~30‐µm thickness and were evaluated by optical microscopy for healing patterns and bone‐to‐implant contact (BIC). One‐way analysis of variance at 95% level of significance and Tukey's test were utilized for multiple comparisons among the groups' BIC. Results: Microscopy showed a ~150‐µm region of newly deposited bone along the whole perimeter of SP implants, near the edge of the LP implant threads, and plateau tips for P implants. Rapid woven bone formation and filling was observed in regions where surgery and implant design resulted in healing chambers. No significant differences in BIC were observed (p > .75). Conclusions: Different implant design/surgical protocol resulted in varied bone healing patterns. However, the BIC and bone morphology evolution between implant designs were comparable. Regardless of the combination between implant design and final osteotomy drilling, bone morphology evolution from 2 to 4 weeks was comparable.  相似文献   

18.
Objective: Recent studies have suggested that magnesium (Mg) ions exert a beneficial effect on implant osseointegration. This study assessed the osseointegration of nanoporous titanium (Ti) surface incorporating the Mg produced by hydrothermal treatment in rabbit cancellous bone to determine whether this surface would further enhance bone healing of moderately rough‐surfaced implants in cancellous bone, and compared the result with commercially available micro‐arc oxidized Mg‐incorporated implants. Material and methods: The Mg‐incorporated Ti surfaces (RBM/Mg) were obtained by hydrothermal treatment using an alkaline Mg‐containing solution on grit‐blasted moderately rough (RBM) implants. Untreated RBM and recently introduced Mg‐incorporated microporous Ti implants produced by micro‐arc oxidation (M) were used controls in this study. The surface characteristics were evaluated by scanning electron microscopy, X‐ray photoelectron spectroscopy and optical profilometry. Twenty‐four threaded implants with a length of 10 mm (eight RBM implants, eight RBM/Mg implants and eight M implants) were placed in the femoral condyles of 12 New Zealand White rabbits. Histomorphometric analysis was performed 4 weeks after implantation. Results: Hydrothermally treated and untreated grit‐blasted implants displayed almost identical surface morphologies and Ra values at the micron‐scale. The RBM/Mg implants exhibited morphological differences compared with the RBM implants at the nano‐scale, which displayed nanoporous surface structures. The Mg‐incorporated implants (RBM/Mg and M) exhibited more continuous bone apposition and a higher degree of bone‐to‐implant contact (BIC) than the untreated RBM implants in rabbit cancellous bone. The RBM/Mg implants displayed significantly greater BIC% than untreated RBM implants, both in terms of the all threads region and the total lateral length of implants (P<0.05), but no statistical differences were found between the RBM/Mg and M implants except BIC% values in total lateral length. Conclusion: These results indicate that a nanoporous Mg‐incorporated surface may be effective in enhancing the osseointegration of moderately rough grit‐blasted implants by increasing the degree of bone?implant contact in areas of cancellous bone. To cite this article :
Park J‐W, An C‐H, Jeong S‐H, Suh J‐Y. Osseointegration of commercial microstructured titanium implants incorporating magnesium: a histomorphometric study in rabbit cancellous bone.
Clin. Oral Impl. Res. 23 , 2012; 294–300.
doi: 10.1111/j.1600‐0501.2010.02144.x  相似文献   

19.
Aim: To investigate bone‐to‐implant bonding for some novel surface modifications with a hierarchic structure and to correlate the in vivo results with surface roughness parameters. Materials and methods: Newly developed implants surfaces were tested in rabbits and compared with the commercially available OsseoSpeed? (OS) implant. The blasted test samples were subjected to treatment in oxalic acid (AT‐II), followed by subsequent etching in hydrofluoric acid (AT‐I). Scanning electron microscopy and X‐ray photoelectron spectroscopy were used to characterize the surface topography and chemical composition of the implants. Biomechanical testing after 6 weeks of healing was complemented with the quantification of fluorochromes and the results were subjected to a multivariate statistical analysis. Results: The results show, both with biomechanical‐ and with histomorphometrical tests, that the AT‐I implants with different surface roughness at the micro (blasting), submicro (shallow cavities) and nanolevels (precipitates) have a greater bone tissue integration compared with the AT‐II‐ and OS implants. The 2D bone‐to‐implant contact (BIC) data were in accordance with the 3D removal torque (RTQ) results even if the former were deduced from implants located in spongeous‐type bone and the latter in cortical bone. The increase in RTQ values for the test samples AT‐I and AT‐II compared with the reference complies with the slightly higher Sa values for these surfaces. Conclusions: Using a combination of conventional methods with novel quantification of florochrome and multivariate analysis, the influence of surface roughness on different levels could be discriminated. The RTQ and BIC values show that the most hierarchical structure with submicro cavities and nanoscale precipitates possesses the most favourable osseointegration properties. To cite this article:
Johansson CB, Gretzer C, Jimbo R, Mattisson I, Ahlberg E. Enhanced implant integration with hierarchically structured implants: a pilot study in rabbits
Clin. Oral Impl. Res. 23 , 2012; 943–953
doi: 10.1111/j.1600‐0501.2011.02233.x  相似文献   

20.
Objectives: To monitor the development of the stability of Straumann® tissue‐level implants during the early phases of healing by resonance frequency analysis (RFA) and to determine the influence of implant surface modification and diameter. Material and methods: A total of twenty‐five 10 mm length implants including 12 SLA RN ?4.1 mm implants, eight SLActive RN ?4.1 mm implants and five SLA WN ?4.8 mm implants were placed. Implant stability quotient (ISQ) values were determined with Osstell?mentor at baseline, 4 days, 1, 2, 3, 4, 6, 8 and 12 weeks post‐surgery. ISQ values were compared between implant types using unpaired t‐tests and longitudinally within implant types using paired t‐tests. Results: During healing, ISQ decreased by 3–4 values after installation and reached the lowest values at 3 weeks. Following this, the ISQ values increased steadily for all implants and up to 12 weeks. No significant differences were noted over time. The longitudinal changes in the ISQ values showed the same patterns for SLA implants, SLActive implants and WB implants. At placement, the mean ISQ values were 72.6, 75.7 and 74.4, respectively. The mean lowest ISQ values, recorded at 3 weeks, were 69.9, 71.4 and 69.8, respectively. At 12 weeks, the mean ISQ values were 76.5, 78.8 and 77.8, respectively. The mean ISQ values at all observation periods did not differ significantly among the various types. Single ISQ values ranged from 55 to 84 during the entire healing period. Pocket probing depths of the implants ranged from 1 to 3 mm and bleeding on probing from 0 to 2 sites/implant post‐surgically. Conclusions: All ISQ values indicated the stability of Straumann® implants over a 12‐week healing period. All implants showed a slight decrease after installation, with the lowest ISQ values being reached at 3 weeks. ISQ values were restored 8 weeks post‐surgically. It is recommended to monitor implant stability by RFA at 3 and 8 weeks post‐surgically. However, neither implant surface modifications (SLActive) nor implant diameter were revealed by RFA. To cite this article:
Han J, Lulic M, Lang NP. Factors influencing resonance frequency analysis assessed by Osstell?mentor during implant tissue integration: II. Implant surface modifications and implant diameter.
Clin. Oral Impl. Res. 21 , 2010; 605–611.
doi: 10.1111/j.1600‐0501.2009.01909.x  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号