首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Natural killer cell cytotoxicity is decreased in patients with acute myeloid leukemia in comparison to that in normal controls. Tumor-derived microvesicles present in patients’ sera exert detrimental effects on immune cells and may influence tumor progression.

Design and Methods

We investigated the microvesicle protein level, molecular profile and suppression of natural killer cell activity in patients with newly diagnosed acute myeloid leukemia.

Results

The patients’ sera contained higher levels of microvesicles compared to the levels in controls (P<0.001). Isolated microvesicles had a distinct molecular profile: in addition to conventional microvesicle markers, they contained membrane-associated transforming growth factor-β1, MICA/MICB and myeloid blasts markers, CD34, CD33 and CD117. These microvesicles decreased natural killer cell cytotoxicity (P<0.002) and down-regulated expression of NKG2D in normal natural killer cells (P<0.001). Sera from patients with acute myeloid leukemia contained elevated levels of transforming growth factor-β, and urea-mediated dissociation of microvesicles further increased the levels of this protein. Neutralizing anti-transforming growth factor-β1 antibodies inhibited microvesicle-mediated suppression of natural killer cell activity and NKG2D down-regulation. Interleukin-15 protected natural killer cells from adverse effects of tumor-derived microvesicles.

Conclusions

We provide evidence for the existence in acute myeloid leukemia of a novel mechanism of natural killer cell suppression mediated by tumor-derived microvesicles and for the ability of interleukin-15 to counteract this suppression.  相似文献   

2.

Background

Several studies of pediatric acute myeloid leukemia have described the various type-I or type-II aberrations and their relationship with clinical outcome. However, there has been no recent comprehensive overview of these genetic aberrations in one large pediatric acute myeloid leukemia cohort.

Design and Methods

We studied the different genetic aberrations, their associations and their impact on prognosis in a large pediatric acute myeloid leukemia series (n=506). Karyotypes were studied, and hotspot regions of NPM1, CEPBA, MLL, WT1, FLT3, N-RAS, K-RAS, PTPN11 and KIT were screened for mutations of available samples. The mutational status of all type-I and type-II aberrations was available in 330 and 263 cases, respectively. Survival analysis was performed in a subset (n=385) treated on consecutive acute myeloid leukemia Berlin-Frankfurt-Munster Study Group and Dutch Childhood Oncology Group treatment protocols.

Results

Genetic aberrations were associated with specific clinical characteristics, e.g. significantly higher diagnostic white blood cell counts in MLL-rearranged, WT1-mutated and FLT3-ITD-positive acute myeloid leukemia. Furthermore, there was a significant difference in the distribution of these aberrations between children below and above the age of two years. Non-random associations, e.g. KIT mutations with core-binding factor acute myeloid leukemia, and FLT3-ITD with t(15;17)(q22;q21), NPM1- and WT1-mutated acute myeloid leukemia, respectively, were observed. Multivariate analysis revealed a ‘favorable karyotype’, i.e. t(15;17)(q22;q21), t(8;21)(q22;q22) and inv(16)(p13q22)/t(16;16)(p13;q22). NPM1 and CEBPA double mutations were independent factors for favorable event-free survival. WT1 mutations combined with FLT3-ITD showed the worst outcome for 5-year overall survival (22±14%) and 5-year event-free survival (20±13%), although it was not an independent factor in multivariate analysis.

Conclusions

Integrative analysis of type-I and type-II aberrations provides an insight into the frequencies, non-random associations and prognostic impact of the various aberrations, reflecting the heterogeneity of pediatric acute myeloid leukemia. These aberrations are likely to guide the stratification of pediatric acute myeloid leukemia and may direct the development of targeted therapies.  相似文献   

3.

Background

Both the multi-kinase inhibitor sorafenib and the small molecule inhibitor of the MDM2/p53 interaction, nutlin-3, used alone, have shown promising anti-leukemic activity in acute myeloid leukemia cells. Thus, in this study we investigated the effect of the combination of sorafenib plus nutlin-3 in acute myeloid leukemia.

Design and Methods

Primary acute myeloid leukemia blasts (n=13) and FLT3wild-type/p53wild-type (OCI-AML3), FLT3mutated/p53wild-type (MOLM), FLT3mutated/p53mutated (MV4-11), FLT3wild-type/p53deleted (HL60) or FLT3wild-type/p53mutated (NB4) acute myeloid cell lines were exposed to sorafenib, used alone or in association with nutlin-3 at a 1:1 ratio, in a range of clinically achievable concentrations (1-10 μM). Induction of apoptosis and autophagy was evaluated by transmission electron microscopy and by specific flow cytometry analyses. The levels of Mcl-1, p53 and Bak proteins were analyzed by western blotting. Knock-down of Bax and Bak gene expression was performed in transfection experiments with specific short interfering RNA.

Results

The sorafenib+nutlin-3 drug combination exhibits synergistic cytotoxicity in primary acute myeloid leukemia blasts and in acute myeloid leukemia cell lines with maximal cytotoxicity in FLT3mutated MV4-11 and MOLM, followed by the FLT3wild-type OCI-AML3, HL60 and NB4 cell lines. The cytotoxic activity of sorafenib+nutlin-3 was characterized by an increase of both apoptosis and autophagy. Moreover, Bax and Bak showed prominent roles in mediating the decrease of cell viability in response to the drug combination in p53wild-type OCI-AML3 and p53deleted HL-60 cells, respectively, as demonstrated in transfection experiments performed with specific short interfering RNA.

Conclusions

Our data demonstrate that acute myeloid leukemia cells show a variable but overall good susceptibility to the innovative therapeutic combination of sorafenib+nutlin-3, which differentially involves the pro-apoptotic Bcl-2 family members Bax and Bak in p53wild-type and p53deleted cells.Key words: sorafenib, nutlin-3, acute myeloid leukemia, p53, apoptosis, autophagy  相似文献   

4.

Background

Pediatric acute myeloid leukemia is a heterogeneous disease characterized by non-random genetic aberrations related to outcome. The genetic subtype is currently detected by different diagnostic procedures which differ in success rate and/or specificity.

Design and Methods

We examined the potential of gene expression profiles to classify pediatric acute myeloid leukemia. Gene expression microarray data of 237 children with acute myeloid leukemia were collected and a double-loop cross validation approach was used to generate a subtype-predictive gene expression profile in the discovery cohort (n=157) which was then tested for its true predictive value in the independent validation cohort (n=80). The classifier consisted of 75 probe sets, representing the top 15 discriminating probe sets for MLL-rearranged, t(8;21)(q22;q22), inv(16)(p13q22), t(15;17)(q21;q22) and t(7;12)(q36;p13)-positive acute myeloid leukemia.

Results

These cytogenetic subtypes represent approximately 40% of cases of pediatric acute myeloid leukemia and were predicted with 92% and 99% accuracy in the discovery and independent validation cohort, respectively. However, for NPM1, CEBPA, MLL(-PTD), FLT3(-ITD), KIT, PTPN11 and N/K-RAS gene expression signatures had limited predictive value. This may be caused by a limited frequency of these mutations and by underlying cytogenetics. This latter is exemplified by the fact that different gene expression signatures were discovered for FLT3-ITD in patients with normal cytogenetics and in those with t(15;17)(q21;q22)-positive acute myeloid leukemia, which pointed to HOXB-upregulation being specific for FLT3-ITD+ cytogenetically normal acute myeloid leukemia.

Conclusions

In conclusion, gene expression profiling correctly predicted the most prevalent cytogenetic subtypes of pediatric acute myeloid leukemia with high accuracy. In clinical practice, this gene expression signature may replace multiple diagnostic tests for approximately 40% of pediatric acute myeloid leukemia cases whereas only for the remaining cases (predicted as ‘acute myeloid leukemia-other’) are additional tests indicated. Moreover, the discriminative genes reveal new insights into the biology of acute myeloid leukemia subtypes that warrants follow-up as potential targets for new therapies.  相似文献   

5.

Background

Fms-like tyrosine kinase-3 (FLT3) gene mutations are frequent in acute promyelocytic leukemia but their prognostic value is not well established.

Design and Methods

We evaluated FLT3-internal tandem duplication and FLT3-D835 mutations in patients treated with all-trans retinoic acid and anthracycline-based chemotherapy enrolled in two subsequent trials of the Programa de Estudio y Tratamiento de las Hemopatías Malignas (PETHEMA) and Hemato-Oncologie voor Volwassenen Nederland (HOVON) groups between 1996 and 2005.

Results

FLT3-internal tandem duplication and FLT3-D835 mutation status was available for 306 (41%) and 213 (29%) patients, respectively. Sixty-eight (22%) and 20 (9%) patients had internal tandem duplication and D835 mutations, respectively. Internal tandem duplication was correlated with higher white blood cell and blast counts, lactate dehydrogenase, relapse-risk score, fever, hemorrhage, coagulopathy, BCR3 isoform, M3 variant subtype, and expression of CD2, CD34, human leukocyte antigen-DR, and CD11b surface antigens. The FLT3-D835 mutation was not significantly associated with any clinical or biological characteristic. Univariate analysis showed higher relapse and lower survival rates in patients with a FLT3-internal tandem duplication, while no impact was observed in relation to FLT3-D835. The prognostic value of the FLT3-internal tandem duplication was not retained in the multivariate analysis.

Conclusions

FLT3-internal tandem duplication mutations are associated with several hematologic features in acute promyelocytic leukemia, in particular with high white blood cell counts, but we were unable to demonstrate an independent prognostic value in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline-based regimens.  相似文献   

6.
7.

Background

Inhibitors of nicotinamide phosphoribosyltransferase have recently been validated as therapeutic targets in leukemia, but the mechanism of leukemogenic transformation downstream of this enzyme is unclear.

Design and Methods

Here, we evaluated whether nicotinamide phosphoribosyltransferase’s effects on aberrant proliferation and survival of myeloid leukemic cells are dependent on sirtuin and delineated the downstream signaling pathways operating during this process.

Results

We identified significant upregulation of sirtuin 2 and nicotinamide phosphoribosyltransferase levels in primary acute myeloid leukemia blasts compared to in hematopoietic progenitor cells from healthy individuals. Importantly, specific inhibition of nicotinamide phosphoribosyltransferase or sirtuin 2 significantly reduced proliferation and induced apoptosis in human acute myeloid leukemia cell lines and primary blasts. Intriguingly, we found that protein kinase B/AKT could be deacetylated by nicotinamide phosphoribosyltransferase and sirtuin 2. The anti-leukemic effects of the inhibition of nicotinamide phosphoribosyltransferase or sirtuin 2 were accompanied by acetylation of protein kinase B/AKT with subsequent inhibition by dephosphorylation. This leads to activation of glycogen synthase kinase-3 β via diminished phosphorylation and, ultimately, inactivation of β-catenin by phosphorylation.

Conclusions

Our results provide strong evidence that nicotinamide phosphoribosyltransferase and sirtuin 2 participate in the aberrant proliferation and survival of leukemic cells, and suggest that the protein kinase B/AKT/ glycogen synthase kinase-3 β/β-catenin pathway is a target for inhibition of nicotinamide phosphoribosyltransferase or sirtuin 2 and, thereby, leukemia cell proliferation.  相似文献   

8.

Background

About 70–80 percent of patients with acute myeloid leukemia enter complete remission, but at least half of these patients who achieve remission go on to relapse. Improved treatment is likely to come from increasing the time to relapse, especially for younger patients. With the vastly increasing number of targeted therapies there is a strong need for short-term end-points to efficiently test such therapies for further pursuance. Minimal residual disease assessment may offer such an end-point since it is a strong independent prognostic factor. As proof of principle we examined this concept for FLT3-ITD status at diagnosis.

Design and Methods

We determined FLT3-ITD status in bone marrow samples from 196 patients with newly diagnosed acute myeloid leukemia. The frequencies of residual leukemic cells of these 196 patients were assessed in 267 follow-up bone marrow samples using immunophenotypic assessment of minimal residual disease.

Results

The median frequency of residual leukemic cells after the first cycle of chemotherapy was 8.5-fold higher in patients with FLT3-ITD than in those with wild type FLT3. Such a difference translates into differences in survival, even if other potentially outcome-modulating mutations, such as NPM1, KIT, NRAS, KRAS, FLT3-exon 20 and PTPN11 are included in the analysis.

Conclusions

This study shows that it could be possible to study the efficacy of FLT3 inhibitors using the level of minimal residual disease as a short-term end-point.  相似文献   

9.
10.

Background

The hypocellular variant of acute myeloid leukemia accounts for less than 10% of all cases of adult acute myeloid leukemia. It is defined by having less than 20 percent of cellular bone marrow in a biopsy at presentation. It is unclear in the literature whether the outcome of hypocellular acute myeloid leukemia differs from that of non-hypocellular acute myeloid leukemia.

Design and Methods

We retrospectively analyzed all the cases reported to be hypocellular acute myeloid leukemia between 2000 and 2009. A second pathology review was conducted and the diagnosis was confirmed in all cases.

Results

One hundred twenty-three (9%) patients were identified: patients with hypocellular acute myeloid leukemia were older than those with non-hypocellular acute myeloid leukemia (P=0.009) and more frequently presented with cytopenias (P<0.001). Forty-one patients with hypocellular acute myeloid leukemia had an antecedent hematologic disorder and 11 patients had received prior chemo-radiotherapy for non-hematopoietic neoplasms. On multivariate analysis, overall survival, remission duration and event-free survival were comparable to those of other patients with acute myeloid leukemia.

Conclusions

The outcome of hypocellular acute myeloid leukemia does not differ from that of non-hypocellular acute myeloid leukemia.  相似文献   

11.

Background

The role of allogeneic stem cell transplantation in post-remission management of children with high-risk acute myeloid leukemia remains controversial. In the multi-center AML-BFM 98 study we prospectively evaluated the impact of allogeneic stem cell transplantation in children with high-risk acute myeloid leukemia in first complete remission.

Design and Methods

HLA-typed patients with high-risk acute myeloid leukemia, who achieved first complete remission (n=247), were included in this analysis. All patients received double induction and consolidation. Based on the availability of a matched-sibling donor, patients were allocated by genetic chance to allogeneic stem cell transplantation (n=61) or chemotherapy-only (i.e. intensification and maintenance therapy; n=186). The main analysis was done on an intention-to-treat basis according to this allocation.

Results

Intention-to-treat analysis did not show a significantly different 5-year disease-free survival (49±6% versus 45±4%, Plog rank=0.44) or overall survival (68±6% versus 57±4%, Plog rank=0.17) between the matched-sibling donor and no-matched-sibling donor groups, whereas late adverse effects occurred more frequently after allogeneic stem cell transplantation (72.5% versus 31.8%, PFischer<0.01). These results were confirmed by as-treated analysis corrected for the time until transplantation (5-year overall survival: 72±8% versus 60±4%, PMantel-Byar 0.21). Subgroup analysis demonstrated improved survival rates for patients with 11q23 aberrations allocated to allogeneic stem cell transplantation (5-year overall survival: 94±6% versus 52±7%, Plog-rank=0.01; n=18 versus 49) in contrast to patients without 11q23 aberrations (5-year overall survival: 58±8% versus 55±5%, Plog-rank=0.66).

Conclusions

Our analyses defined a genetic subgroup of children with high-risk acute myeloid leukemia who benefited from allogeneic stem cell transplantation in the prospective multi-center AML-BFM 98 study. For the remainder of the pediatric high-risk acute myeloid leukemia patients the prognosis was not improved by allogeneic stem cell transplantation, which was, however, associated with a higher rate of late sequelae.  相似文献   

12.

Background

Dysfunctioning of CCAAT/enhancer binding protein α (C/EBPα) in acute myeloid leukemia can be caused, amongst others, by mutations in the encoding gene (CEBPA) and by promoter hypermethylation. CEBPA-mutated acute myeloid leukemia is associated with a favorable outcome, but this may be restricted to the case of double mutations in CEBPA in adult acute myeloid leukemia. In pediatric acute myeloid leukemia, data on the impact of these mutations are limited to one series, and data on promoter hypermethylation are lacking. Our objective was to investigate the characteristics, gene expression profiles and prognostic impact of the different CEBPA aberrations in pediatric acute myeloid leukemia.

Design and Methods

We screened a large pediatric cohort (n=252) for CEBPA single and double mutations by direct sequencing, and for promoter hypermethylation by methylation-specific polymerase chain reaction. Furthermore, we determined the gene-expression profiles (Affymetrix HGU133 plus 2.0 arrays) of this cohort (n=237).

Results

Thirty-four mutations were identified in 20 out of the 252 cases (7.9%), including 14 double-mutant and 6 single-mutant cases. CEBPA double mutations conferred a significantly better 5-year overall survival compared with single mutations (79% versus 25%, respectively; P=0.04), and compared with CEBPA wild-type acute myeloid leukemia excluding core-binding factor cases (47%; P=0.07). Multivariate analysis confirmed that the double mutations were an independent favorable prognostic factor for survival (hazard ratio 0.23, P=0.04). The combination of screening for promoter hypermethylation and gene expression profiling identified five patients with silenced CEBPA, of whom four cases relapsed. All cases characteristically expressed T-lymphoid markers. Moreover, unsupervised clustering of gene expression profiles showed a clustering of CEBPA double-mutant and silenced cases, pointing towards a common hallmark of abrogated C/EBPα-functioning in these acute myeloid leukemias.

Conclusions

We showed the independent favorable outcome of patients with CEBPA double-mutant acute myeloid leukemia in a large pediatric series. This molecular marker may, therefore, improve risk-group stratification in pediatric acute myeloid leukemia. For the first time, CEBPA-silenced cases are suggested to confer a poor outcome in pediatric acute myeloid leukemia, indicating that further investigation of this aberration is needed. Furthermore, clustering of gene expression profiles provided insight into the biological similarities and diversities of the different aberrations in CEBPA in pediatric acute myeloid leukemia.  相似文献   

13.

Background

High white blood cell count at presentation is an unfavorable prognostic factor for treatment outcome in intermediate cytogenetic risk acute myeloid leukemia. Since the impact of white blood cell count on outcome of subgroups defined by the molecular markers NPMc+ and FLT3-internal tandem duplication (ITD) is unknown, we addressed this issue.

Design and Methods

We studied the effect of white blood cell count on outcome in a clinically and molecularly well-defined cohort of 525 patients with acute myeloid leukemia using these molecular markers. In addition, since an increased white blood cell count has been associated with an increased FLT3-ITD/FLT3 (wild-type) ratio, we investigated whether the effect of white blood cell count on outcome could be explained by the FLT3-ITD/FLT3 ratio.

Results

This analysis revealed that white blood cell count had no impact on outcome in patients with the genotypic combinations ‘NPMc+ without FLT3-ITD’ and ‘NPM1 wild-type with or without FLT3-ITD’. In contrast, white blood cell count had a significant impact on complete remission rate (P=0.034), event-free survival (P=0.009) and overall survival (P<0.001) in patients with the genotypic combination ‘NPMc+ with FLT3-ITD’. A FLT3-ITD/FLT3 ratio greater than 1 was also associated with a reduced complete remission rate (P=0.066) and significantly reduced event-free survival (P= 0.001) and overall survival (P=0.001) in patients with the genotypic combination ‘NPMc+ with FLT3-ITD’. Multivariable analysis revealed that white blood cell count and FLT3-ITD/FLT3 ratio were independent prognostic indicators for outcome in the subgroup with the genotypic combination ‘NPMc+ with FLT3-ITD’.

Conclusions

Our results demonstrate that both high white blood cell count and FLT3-ITD/FLT3 ratio are prognostic factors in patients with acute myeloid leukemia with the genotypic combination ‘NPMc+ with FLT3-ITD''.  相似文献   

14.

Background/Aims

We aimed to investigate the correlation between a disintegrin and metalloprotease with thrombospondin motif 2 (ADAMTS-2) and transforming growth factor-β1 (TGF-β1) in clinical human cirrhotic tissues.

Methods

The liver tissues of 24 patients (16 cases with cirrhotic portal hypertension as the cirrhosis group and eight cases with healthy livers as the normal group) were collected. Immunohistochemistry and Western blots were performed to evaluate the protein expression levels of ADAMTS-2 and TGF-β1. Western blots for other key mediators of cirrhotic progression, including SMAD2, SMAD3, TGF-β receptor II (TGFβRII), matrix metalloproteinases 2 (MMP2), and tissue inhibitor of matrix metalloproteinases 2 (TIMP2), were also performed.

Results

Cirrhotic tissues showed higher percentages of collagen. The protein expression levels of ADAMTS-2 and TGF-β1 were significantly higher in the cirrhotic group as compared to the matched normal group (p<0.05), and there was a positive correlation between these two proteins (r=0.862, p<0.01). The protein expressions of MMP2, TIMP2, and TGFβRII, as well as the phosphorylated forms of SMAD2 and SMAD3, were significant higher in the cirrhotic group (p<0.01 or p<0.05).

Conclusions

These findings suggested that ADAMTS-2 and TGF-β1 may play important roles in the pathogenesis of human cirrhosis; specifically, TGF-β1 may induce the expression of ADAMTS-2 through the TGFβ/SMAD pathway.  相似文献   

15.

Background

Vγ9Vδ2 T lymphocytes are regarded as promising mediators of cancer immunotherapy due to their capacity to eliminate multiple experimental tumors, particularly within those of hematopoietic origin. However, Vγ9Vδ2 T-cell based lymphoma clinical trials have suffered from the lack of biomarkers that can be used as prognostic of therapeutic success.

Design and Methods

We have conducted a comprehensive study of gene expression in acute lymphoblastic leukemias and non-Hodgkin’s lymphomas, aimed at identifying markers of susceptibility versus resistance to Vγ9Vδ2 T cell-mediated cytotoxicity. We employed cDNA microarrays and quantitative real-time PCR to screen 20 leukemia and lymphoma cell lines, and 23 primary hematopoietic tumor samples. These data were analyzed using state-of-the-art bioinformatics, and gene expression patterns were correlated with susceptibility to Vγ9Vδ2 T cell mediated cytolysis in vitro.

Results

We identified a panel of 10 genes encoding cell surface proteins that were statistically differentially expressed between “γδ-susceptible” and “γδ-resistant” hematopoietic tumors. Within this panel, 3 genes (ULBP1, TFR2 and IFITM1) were associated with increased susceptibility to Vγ9Vδ2 T-cell cytotoxicity, whereas the other 7 (CLEC2D, NRP2, SELL, PKD2, KCNK12, ITGA6 and SLAMF1) were enriched in resistant tumors. Furthermore, some of these candidates displayed a striking variance of expression among primary follicular lymphomas and T-cell acute lymphoblastic leukemias.

Conclusions

Our results suggest that hematopoietic tumors display a highly variable repertoire of surface proteins that can impact on Vγ9Vδ2 cell-mediated immunotargeting. The prognostic value of the proposed markers can now be evaluated in upcoming Vγ9Vδ2 T cell-based lymphoma/leukemia clinical trials.  相似文献   

16.

Background

Cytokine-induced killer cells are ex vivo-expanded cells with potent antitumor activity. The infusion of cytokine-induced killer cells in patients with acute myeloid leukemia relapsing after allogeneic hematopoietic stem cell transplant is well tolerated, but limited clinical responses have been observed. To improve their effector functions against acute myeloid leukemia, we genetically modified cytokine-induced killer cells with chimeric receptors specific for the CD33 myeloid antigen.

Design and Methods

SFG-retroviral vectors coding for anti-CD33-ζ and anti-CD33-CD28-OX40-ζ chimeric receptors were used to transduce cytokine-induced killer cells. Transduced cells were characterized in vitro for their ability to lyse leukemic targets (4-hour 51chromium-release and 6-day co-cultures assays on human stromal mesenchymal cells), to proliferate (3H-thymidine-incorporation assay) and to secrete cytokines (flow cytomix assay) after contact with acute myeloid leukemia cells. Their activity against normal CD34+ hematopoietic progenitor cells was evaluated by analyzing the colony-forming unit capacity after co-incubation.

Results

Cytokine-induced killer cells were efficiently transduced with the anti-CD33 chimeric receptors, maintaining their native phenotype and functions and acquiring potent cytotoxicity (up to 80% lysis after 4-hour incubation) against different acute myeloid leukemia targets, as also confirmed in long-term killing experiments. Moreover, introduction of the anti-CD33 chimeric receptors was accompanied by prominent CD33-specific proliferative activity, with the release of high levels of immunostimulatory cytokines. The presence of CD28-OX40 in chimeric receptor endodomain was associated with a significant amelioration of the anti-leukemic activity of cytokine-induced killer cells. Importantly, even though the cytokine-induced killer cells transduced with anti-CD33 chimeric receptors showed toxicity against normal hematopoietic CD34+ progenitor cells, residual clonogenic activity was preserved.

Conclusions

Our results indicate that anti-CD33 chimeric receptors strongly enhance anti-leukemic cytokine-induced killer cell functions, suggesting that cytokine-induced killer cells transduced with these molecules might represent a promising optimized tool for acute myeloid leukemia immunotherapy.  相似文献   

17.

Background

Acute myeloid leukemia is a clonal hematopoietic malignant disease; about 45–50% of cases do not have detectable chromosomal abnormalities. Here, we identified hidden genomic alterations and novel disease-related regions in normal karyotype acute myeloid leukemia/myelodysplastic syndrome samples.

Design and Methods

Thirty-eight normal karyotype acute myeloid leukemia/myelodysplastic syndrome samples were analyzed with high-density single-nucleotide polymorphism microarray using a new algorithm: allele-specific copy-number analysis using anonymous references (AsCNAR). Expression of mRNA in these samples was determined by mRNA microarray analysis.

Results

Eighteen samples (49%) showed either one or more genomic abnormalities including duplication, deletion and copy-number neutral loss of heterozygosity. Importantly, 12 patients (32%) had copy-number neutral loss of heterozygosity, causing duplication of either mutant FLT3 (2 cases), JAK2 (1 case) or AML1/RUNX1 (1 case); and each had loss of the normal allele. Nine patients (24%) had small copy-number changes (< 10 Mb) including deletions of NF1, ETV6/TEL, CDKN2A and CDKN2B. Interestingly, mRNA microarray analysis showed a relationship between chromosomal changes and mRNA expression levels: loss or gain of chromosomes led, respectively, to either a decrease or increase of mRNA expression of genes in the region.

Conclusions

This study suggests that at least one half of cases of normal karyotype acute myeloid leukemia/myelodysplastic syndrome have readily identifiable genomic abnormalities, as found by our analysis; the high frequency of copy-number neutral loss of heterozygosity is especially notable.  相似文献   

18.

Background

Several genetic aberrations with prognostic impact in first-line therapy have been described in patients with acute myeloid leukemia and normal karyotype. However, little is known about the influence of these aberrations on outcome after relapse. This study aimed to identify clinical and molecular risk factors for patients with relapsed acute myeloid leukemia with normal karyotype.

Design and Methods

We analyzed 94 patients with acute myeloid leukemia and normal karyotype after first relapse for clinical and molecular risk factors for survival. All patients had received first-line treatment and follow-up within two prospective, multicenter trials. Leukemic blasts were analyzed at diagnosis for genetic aberrations in the FLT3, NPM1, CEBPA, WT1, IDH1 and IDH2 genes by polymerase chain reaction and/or direct sequencing.

Results

A second complete remission was achieved in 52% of patients who received re-induction therapy. The presence of an FLT3-internal tandem duplication, duration of first complete remission less than 6 months and age above the median of 47 years were associated with a significantly lower rate of second complete remission. The median survival after relapse was 11 months and the 6-year survival rate was 28%. In multivariate analysis, FLT3-internal tandem duplication and age above the median were the only independent negative prognostic factors for survival. The 6-year survival rate of patients with none of these factors was 56%, whereas it was significantly inferior in patients with one or both of these factors (15% and 6%, respectively). This was also true for patients who underwent allogeneic stem cell transplantation after relapse.

Conclusions

FLT3-internal tandem duplication and age are the major prognostic factors in patients with relapsed acute myeloid leukemia with a normal karyotype. Patients with at least one of these risk factors have a dismal outcome and might be considered for investigational treatment approaches after relapse. (ClinicalTrials.gov Identifier: NCT00209833)  相似文献   

19.

Background

The redox-active isoflavene anti-cancer drug, phenoxodiol, has previously been shown to inhibit plasma membrane electron transport and cell proliferation and promote apoptosis in a range of cancer cell lines and in anti-CD3/anti-CD28-activated murine splenocytes but not in non-transformed WI-38 cells and human umbilical vein endothelial cells.

Design and Methods

We determined the effects of phenoxodiol on plasma membrane electron transport, MTT responses and viability of activated and resting human T cells. In addition, we evaluated the effect of phenoxodiol on the viability of leukemic cell lines and primary myeloid and lymphoid leukemic blasts.

Results

We demonstrated that phenoxodiol inhibited plasma membrane electron transport and cell proliferation (IC50 46 μM and 5.4 μM, respectively) and promoted apoptosis of rapidly proliferating human T cells but did not affect resting T cells. Phenoxodiol also induced apoptosis in T cells stimulated in HLA-mismatched allogeneic mixed lymphocyte reactions. Conversely, non-proliferating T cells in the mixed lymphocyte reaction remained viable and could be restimulated in a third party mixed lymphocyte reaction, in the absence of phenoxodiol. In addition, we demonstrated that leukemic blasts from patients with primary acute myeloid leukemia (n=22) and acute lymphocytic leukemia (n=8) were sensitive to phenoxodiol. The lymphocytic leukemic blasts were more sensitive than the myeloid leukemic blasts to 10 μM phenoxodiol exposure for 24h (viability of 23±4% and 64±5%, respectively, p=0.0002).

Conclusions

The ability of phenoxodiol to kill rapidly proliferating lymphocytes makes this drug a promising candidate for the treatment of pathologically-activated lymphocytes such as those in acute lymphoid leukemia, or diseases driven by T-cell proliferation such as auto-immune diseases and graft-versus-host disease.  相似文献   

20.

Background

Allogeneic stem cell transplantation is associated with a powerful ‘graft-versus-leukemia’ effect that is generally considered to result from an alloreactive T-cell immune response. However, disease remission can also be observed after syngeneic transplantation and we investigated whether a T-cell immune response to cancer-testis antigens can be detected in patients in the post-transplant period.

Design and Methods

The T-cell immune response against cancer-testis antigens was studied in a cohort of 41 patients who underwent allogeneic stem cell transplantation for the management of acute myeloid leukemia or multiple myeloma. The cytokine secretion assay was combined with magnetic selection to allow detection of an interferon-γ-secreting T-cell response to a panel of cancer-testis antigen peptides.

Results

A cancer-testis antigen-specific CD8+ T-cell immune response was observed in the peripheral blood of five patients with an average magnitude of 0.045% of the CD8+ T-cell repertoire. Four of these patients had undergone reduced intensity conditioning transplantation with alemtuzumab for the treatment of acute myeloid leukemia and three remain in long-term remission. T-cell immunity was focused against peptides derived from MAGE proteins and was markedly increased within the bone marrow.

Conclusions

Functional cancer-testis antigen-specific CD8+ T-cell immune responses develop in the early period following reduced intensity allogeneic stem cell transplantation and are preferentially localized to bone marrow. These immune responses are likely to contribute to the cellular basis of the graft-versus-leukemia effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号