首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RFID technology is increasingly used in applications that require tracking, identification, and authentication. It attaches RFID-readable tags to objects for identification and execution of specific RFID-enabled applications. Recently, research has focused on the use of grouping-proofs for preserving privacy in RFID applications, wherein a proof of two or more tags must be simultaneously scanned. In 2010, a privacy-preserving grouping proof protocol for RFID based on ECC in public-key cryptosystem was proposed but was shown to be vulnerable to tracking attacks. A proposed enhancement protocol was also shown to have defects which prevented proper execution. In 2012, Lin et al. proposed a more efficient RFID ECC-based grouping proof protocol to promote inpatient medication safety. However, we found this protocol is also vulnerable to tracking and impersonation attacks. We then propose a secure privacy-preserving RFID grouping proof protocol for inpatient medication safety and demonstrate its resistance to such attacks.  相似文献   

2.
Several papers were proposed in which symmetric cryptography was used to design RFID grouping-proof for medication safety in the Journal of Medical Systems. However, if we want to ensure privacy, authentication and protection against the tracking of RFID-tags without losing system scalability, we must design an asymmetric cryptography-based RFID. This paper will propose a new ECC-based grouping-proof for RFID. Our ECC-based grouping-proof reduces the computation of tags and prevents timeout problems from occurring in n-party grouping-proof protocol. Based on asymmetric cryptography, the proposed scheme is practical, secure and efficient for medication applications.  相似文献   

3.
Radio Frequency Identification (RFID) technology not only offers tracking capability to locate equipment, supplies and people in real time, but also provides efficient and accurate access to medical data for health professionals. However, the reality of RFID adoption in healthcare is far behind earlier expectation. This study reviews literature on the use of RFID in healthcare/hospitals following a formal innovation-decision framework. We aim to identify the common applications, potential benefits, barriers, and critical success factors. Our study facilitates quick assessment and provides guidance for researchers and practitioners in adopting RFID in medical arenas. Many earlier adopters in healthcare found RFID to be functional and useful in such areas as asset tracking and patient identification. Major barriers to adoption include technological limitations, interference concerns, prohibitive costs, lack of global standards and privacy concerns. Better designed RFID systems with low cost and privacy issues addressed are needed to increase acceptance of RFID in healthcare.  相似文献   

4.
Radio Frequency Identification (RFID) technology is playing a crucial role for item-level tracing systems in healthcare scenarios. The pharmaceutical supply chain is a fascinating application context, where RFID can guarantee transparency in the drug flow, supporting both suppliers and consumers against the growing counterfeiting problem. In such a context, the choice of the most adequate RFID tag, in terms of shape, frequency, size and reading range, is crucial. The potential presence of items containing materials hostile to the electromagnetic propagation exasperates the problem. In addition, the peculiarities of the different RFID-based checkpoints make even more stringent the requirements for the tag. In this work, the performance of several commercial UHF RFID tags in each step of the pharmaceutical supply chain has been evaluated, confirming the expected criticality. On such basis, a guideline for the electromagnetic design of new high-performance tags capable to overcome such criticalities has been defined. Finally, driven by such guidelines, a new enhanced tag has been designed, realized and tested. Due to patent pending issues, the antenna shape is not shown. Nevertheless, the optimal obtained results do not lose their validity. Indeed, on the one hand they demonstrate that high performance item level tracing systems can actually be implemented also in critical operating conditions. On the other hand, they encourage the tag designer to follow the identified guidelines so to realize enhanced UHF tags.  相似文献   

5.
Two RFID-based Solutions to Enhance Inpatient Medication Safety   总被引:1,自引:0,他引:1  
Owing to the low cost and convenience of identifying an object without physical contact, Radio Frequency Identification (RFID) systems provide innovative, promising and efficient applications in many domains. An RFID grouping protocol is a protocol that allows an off-line verifier to collect and verify the evidence of two or more tags simultaneously present. Recently, Huang and Ku (J. Med. Syst, 2009) proposed an efficient grouping protocol to enhance medication safety for inpatients based on low-cost tags. However, the Huang–Ku scheme is not secure; an attacker can easily make up fake grouping records to cheat the verifier. This weakness would seriously endanger the safety of inpatient medication safety. This paper will show the weaknesses, and then propose two RFID-based solutions to enhance medication safety for two different scenarios. The proposed schemes are practical, secure and efficient for medication applications.  相似文献   

6.
One of the most important factors that directly affects the quality of health care is patient safety. Minimize the occurrence of adverse events is one of the main challenges for health professionals. This requires continuous tracking of the patient by different areas and services, a process known as traceability and proper patient identification and medication prescribed. This article presents an information system for patient tracking and drugs developed for the Emergency Department of Hospital A Coru?a. The systems use RFID technology to perform various tasks: (1) locate patients in different areas; (2) measure patient care times and waiting times; (3) identify unitary doses of medication; and (4) ensure the correct matching between the patient and the medication prescribed by the doctor. The hardware infrastructure as well as the optimal configuration of devices interconnected via a wireless network was determined by conducting a detailed coverage study. To support all the functionality needed, specific tools were designed and integrated with proprietary software applications. The RFID system was evaluated positively by staff from different professional profiles involved in its development or subsequent implementation.  相似文献   

7.
RFID technology is widely used in healthcare environments to ensure patient safety. Therefore, the testing of RFID tags, such as performance tests and security evaluations, is necessary to ensure inter-operational functional compatibility with standards. A survey of the literature shows that while standards that are around RFID performance tests have been addressed, but the same is not true for security evaluations. Therefore, in this paper, we introduce the Common Criteria security evaluation methodology, also known as ISO/IEC 15408, for the security evaluation of RFID tags and propose a framework as a minimal requirement for RFID tags to improve security assurance.  相似文献   

8.
Many research works have attempted to introduce passive RFID technology into medical systems to reduce medical errors. However, most of these proposed works focused on identifying patients and objects. If an RFID based medical system is only good for identifying patients and medical objects but not capable of halting any medical process immediately, then it is not possible to prevent medical errors from happening. Our research focuses on a mechanism to detect and to avoid medical harm before it occurs to patients. In this paper, we propose to incorporate multiple-constraints into the authorization scheme and used this scheme as a basis for implementing a medical management system avoiding medical errors to assist medical staff. Specifically, our scheme ensures that a medical operation is if and only if enabled when the constraints are being satisfied that an “identified patient” is being treated by a “certified medical staff member” within an “authorized area”. In practical environments, our authorization scheme can be applied to various healthcare applications, and we develop a prototype system and test it in three applications: X-ray control, specimen collection, and blood transfusion management. The experimental results show that the system can be used to enable X-ray when the X-ray is in authorized location and operated by authorized operator. For the specimen collection and blood transfusion, the logs showing which medical staff has done specimen or blood transfusion on which patient at authorized location are correctly recorded into Hospital Information System (HIS). The locating process can be performed within 10 to 20 seconds, and the locating error is less than 2 meters.  相似文献   

9.
This paper studies quantitative methods for evaluating the potential benefits of introducing new advanced tracking technologies in the pharmaceutical industry with special reference to radio frequency identification (RFID). RFID technology is an effective way for increasing the quality of the data that are used to generate production schedules, but there is a lack of scientific research to quantify the return on investment that can be achieved in practice. In this work, we distinguish two major sources of data unreliability: one is the inherent stochasticity of operations, which cannot be reduced by RFID, and the other one is the data estimation error, which can be significantly reduced by RFID. We focus on the marginal contribution of the latter quantity to the productivity of the packaging department of a pharmaceutical plant, propose a systematic method for assessing this impact and discuss its implementation in a practical test case. Our results confirm that advanced tracking technologies in combination with effective scheduling procedures show a significant potential for improving productivity. Extensions to other production environments and their issues associated with scheduling problems are also discussed.  相似文献   

10.
An Institute of Medicine Report stated there are 98,000 people annually who die due to medication related errors in the United States, and hospitals and other medical institutions are thus being pressed to use technologies to reduce such errors. One approach is to provide a suitable protocol that can cooperate with low cost RFID tags in order to identify patients. However, existing low cost RFID tags lack computational power and it is almost impossible to equip them with security functions, such as keyed hash function. To address this issue, a so a real lightweight binding proof protocol is proposed in this paper. The proposed protocol uses only logic gates (e.g. AND, XOR, ADD) to achieve the goal of proving that two tags exist in the field simultaneously, without the need for any complicated security algorithms. In addition, various scenarios are provider to explain the process of adopting this binding proof protocol with regard to guarding patient safety and preventing medication errors.  相似文献   

11.
A well-managed healthcare system improves the quality of the patient experience. However, many small healthcare clinics have suboptimal systems for scheduling and locating patients and medical staff, delaying the relay of information and creating poor resource and room utilization. This paper proposes a Radio Frequency Identification (RFID)-based Real-Time Tracking (R-RTT) System for optimizing small healthcare facility operations, enabling further optimization of throughput time, room utilization, and patient flow. In the proposed scenario, RFID readers were equipped in strategic locations throughout the facility. Patients and medical staff were issued personalized RFID tags. When they pass through the reader's interrogation zone, it reads their RFID tag and sends the information to a central computer equipped with software capable of filtering the RFID data into useable information. A Visual Basic Application (VBA) program uses the information received from the ID tags to display the location of the patients and staff as they move throughout the facility. This increases their visibility within the facility by allowing medical staff to determine where their colleagues and patients are at all times. The VBA program was also able to record the data in order to track the time each stage of the appointment process takes to complete. The recorded time data can be broken into processes, making it easier to determine if it adds value. This data can then be transformed into a value stream map for further analysis and improvement.  相似文献   

12.
Radio frequency identification (RFID) technology has been implemented in a wide variety of industries. Health care is no exception. This article explores implementations and limitations of RFID in several health care domains: authentication, medication safety, patient tracking, and blood transfusion medicine. Each domain has seen increasing utilization of unique applications of RFID technology. Given the importance of protecting patient and data privacy, potential privacy and security concerns in each domain are discussed. Such concerns, some of which are inherent to existing RFID hardware and software technology, may limit ubiquitous adoption. In addition, an apparent lack of security standards within the RFID domain and specifically health care may also hinder the growth and utility of RFID within health care for the foreseeable future. Safeguarding the privacy of patient data may be the most important obstacle to overcome to allow the health care industry to take advantage of the numerous benefits RFID technology affords.  相似文献   

13.
A RFID Grouping Proof Protocol for Medication Safety of Inpatient   总被引:1,自引:0,他引:1  
In order to provide enhanced medication safety for inpatients, the medical mechanism which adopts the modified grouping proof protocol is proposed in this paper. By using the grouping proof protocol, the medical staffs could confirm the authentication and integrity of a group of Radio-Frequency Identification (RFID) tags which are embedded on inpatient bracelets and the containers of drugs. This mechanism is designed to be compatible with EPCglobal Class-1 Generation-2 standard which is the most popular specification of RFID tags. Due to the light-weight computational capacity of passive tags, only the pseudo-random number generator (PRNG) and cyclic redundancy code (CRC) are allowed to be used in the communication protocol. Furthermore, a practical scenario of using this proposed mechanism in hospital to examine the medication safety is also presented.  相似文献   

14.
Healthcare services are complex and life-critical. One mistake in any procedure may lead to irremediable consequences; numerous researchers, thus, introduce information and communication technology to improve quality of services and enhance patient safety by reducing the medical errors. Radio frequency identification (RFID) is considered as one of the emerging tool assist in meeting the challenges of the present situation. In recent years, RFID has been applied in medical organizations for the purpose of managing and tracking medical equipment, monitoring and identifying patients, ensuring that the right medication is given to the right patient, and preventing the use of counterfeit medicine. However, most of the existing literature focuses on demonstrating how RFID can benefit the healthcare industry, whereas little attention has been given to the management issues involved in constructing an RFID project in medical organizations. In this paper, an exploratory case study is conducted in a medical organization to illustrate the development framework and critical issues that should be taken into consideration in the preparation, implementation and maintenance stage of constructing such a project. All the experiences and results discussed in this paper offer valuable and useful insights to steer those who would like to start their journey using RFID in medical organizations.  相似文献   

15.
Applications utilising 3D Camera technologies for the measurement of health outcomes in the health and wellness sector continues to expand. The Intel® RealSense? is one of the leading 3D depth sensing cameras currently available on the market and aligns itself for use in many applications, including robotics, automation, and medical systems. One of the most prominent areas is the production of interactive solutions for rehabilitation which includes gait analysis and facial tracking. Advancements in depth camera technology has resulted in a noticeable increase in the integration of these technologies into portable platforms, suggesting significant future potential for pervasive in-clinic and field based health assessment solutions. This paper reviews the Intel RealSense technology’s technical capabilities and discusses its application to clinical research and includes examples where the Intel RealSense camera range has been used for the measurement of health outcomes. This review supports the use of the technology to develop robust, objective movement and mobility-based endpoints to enable accurate tracking of the effects of treatment interventions in clinical trials.  相似文献   

16.
Radio frequency identification (RFID) is a form of wireless communication that is used to identify assets and people. RFID has significant benefits to the medical environment. However, serious security threats are present in RFID systems that must be addressed in a medical environment. Of particular interest are threats to patient privacy and safety based on interception of messages, interruption of communication, modification of data, and fabrication of messages and devices. This paper presents an overview of these security threats present in RFID systems in a medical environment and provides guidance on potential solutions to these threats. This paper provides a roadmap for researchers and implementers to address the security issues facing RFID in the medical space.  相似文献   

17.
Public health faces unprecedented challenges in its efforts to control COVID-19 through a national vaccination campaign. Addressing these challenges will require fundamental changes to public health data systems. For example, of the core data systems for immunization campaigns is the immunization information system (IIS); however, IISs were designed for tracking the vaccinated, not finding the patients who are high risk and need to be vaccinated. Health systems have this data in their electronic health records (EHR) systems and often have a greater capacity for outreach. Clearly, a partnership is needed. However, successful collaborations will require public health to change from its historical hierarchical information supply chain model to an ecosystem model with a peer-to-peer exchange with population health providers. Examples of the types of informatics innovations necessary to support such an ecosystem include a national patient identifier, population-level data exchange for immunization data, and computable electronic quality measures. Rather than think of these components individually, a comprehensive approach to rapidly adaptable tools for collaboration is needed.  相似文献   

18.
The study aims to provide an ease-of-use approach for senior patients to utilize remote healthcare systems. An ease-of-use remote healthcare system (RHS) architecture using RFID (Radio Frequency Identification) and networking technologies is developed. Specifically, the codes in RFID tags are used for authenticating the patients' ID to secure and ease the login process. The patient needs only to take one action, i.e. placing a RFID tag onto the reader, to automatically login and start the RHS and then acquire automatic medical services. An ease-of-use emergency monitoring and reporting mechanism is developed as well to monitor and protect the safety of the senior patients who have to be left alone at home. By just pressing a single button, the RHS can automatically report the patient's emergency information to the clinic side so that the responsible medical personnel can take proper urgent actions for the patient. Besides, Web services technology is used to build the Internet communication scheme of the RHS so that the interoperability and data transmission security between the home server and the clinical server can be enhanced. A prototype RHS is constructed to validate the effectiveness of our designs. Testing results show that the proposed RHS architecture possesses the characteristics of ease to use, simplicity to operate, promptness in login, and no need to preserve identity information. The proposed RHS architecture can effectively increase the willingness of senior patients who act slowly or are unfamiliar with computer operations to use the RHS. The research results can be used as an add-on for developing future remote healthcare systems.  相似文献   

19.
In recent years interest in the application of Wireless Body Area Network (WBAN) for patient monitoring applications has grown significantly. A WBAN can be used to develop patient monitoring systems which offer flexibility to medical staff and mobility to patients. Patients monitoring could involve a range of activities including data collection from various body sensors for storage and diagnosis, transmitting data to remote medical databases, and controlling medical appliances, etc. Also, WBANs could operate in an interconnected mode to enable remote patient monitoring using telehealth/e-health applications. A WBAN can also be used to monitor athletes’ performance and assist them in training activities. For such applications it is very important that a WBAN collects and transmits data reliably, and in a timely manner to a monitoring entity. In order to address these issues, this paper presents WBAN design techniques for medical applications. We examine the WBAN design issues with particular emphasis on the design of MAC protocols and power consumption profiles of WBAN. Some simulation results are presented to further illustrate the performances of various WBAN design techniques.  相似文献   

20.
RFID technology, an automatic identification and data capture technology to provide identification, tracing, security and so on, was widely applied to healthcare industry in these years. Employing HEPA ventilation system in hospital is a way to ensure healthful indoor air quality to protect patients and healthcare workers against hospital-acquired infections. However, the system consumes lots of electricity which cost a lot. This study aims to apply the RFID technology to offer a unique medical staff and patient identification, and reacting HEPA air ventilation system in order to reduce the cost, save energy and prevent the prevalence of hospital-acquired infection. The system, reacting HEPA air ventilation system, contains RFID tags (for medical staffs and patients), sensor, and reacting system which receives the information regarding the number of medical staff and the status of the surgery, and controls the air volume of the HEPA air ventilation system accordingly. A pilot program was carried out in a unit of operation rooms of a medical center with 1,500 beds located in central Taiwan from Jan to Aug 2010. The results found the air ventilation system was able to function much more efficiently with less energy consumed. Furthermore, the indoor air quality could still keep qualified and hospital-acquired infection or other occupational diseases could be prevented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号