首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Clinically available thrombolysis techniques are limited by either slow reperfusion (drugs) or invasiveness (catheters) and carry significant risks of bleeding. In this study, the feasibility of using histotripsy as an efficient and noninvasive thrombolysis technique was investigated. Histotripsy fractionates soft tissue through controlled cavitation using focused, short, high-intensity ultrasound pulses. In vitro blood clots formed from fresh canine blood were treated by histotripsy. The treatment was applied using a focused 1-MHz transducer, with five-cycle pulses at a pulse repetition rate of 1 kHz. Acoustic pressures varying from 2 to 12 MPa peak negative pressure were tested. Our results show that histotripsy can perform effective thrombolysis with ultrasound energy alone. Histotripsy thrombolysis only occurred at peak negative pressure ≥6 MPa when initiation of a cavitating bubble cloud was detected using acoustic backscatter monitoring. Blood clots weighing 330 mg were completely broken down by histotripsy in 1.5 to 5 min. The clot was fractionated to debris with >96% weight smaller than 5 μm diameter. Histotripsy thrombolysis treatment remained effective under a fast, pulsating flow (a circulatory model) as well as in static saline. Additionally, we observed that fluid flow generated by a cavitation cloud can attract, trap and further break down clot fragments. This phenomenon may provide a noninvasive method to filter and eliminate hazardous emboli during thrombolysis. (E-mail: adamdm@umich.edu)  相似文献   

2.
Histotripsy is a focused ultrasound therapy for non-invasive tissue ablation. Unlike thermally ablative forms of therapeutic ultrasound, histotripsy relies on the mechanical action of bubble clouds for tissue destruction. Although acoustic bubble activity is often characterized as chaotic, the short-duration histotripsy pulses produce a unique and consistent type of cavitation for tissue destruction. In this review, the action of histotripsy-induced bubbles is discussed. Sources of bubble nuclei are reviewed, and bubble activity over the course of single and multiple pulses is outlined. Recent innovations in terms of novel acoustic excitations, exogenous nuclei for targeted ablation and histotripsy-enhanced drug delivery and image guidance metrics are discussed. Finally, gaps in knowledge of the histotripsy process are highlighted, along with suggested means to expedite widespread clinical utilization of histotripsy.  相似文献   

3.
Osteosarcoma (OS) is a primary bone tumor affecting both dogs and humans. Histotripsy is a non-thermal, non-invasive focused ultrasound method using controlled acoustic cavitation to mechanically disintegrate tissue. In this study, we investigated the feasibility of treating primary OS tumors with histotripsy using a 500-kHz transducer on excised canine OS samples harvested after surgery at the Veterinary Teaching Hospital at Virginia Tech. Samples were embedded in gelatin tissue phantoms and treated with the 500-kHz histotripsy system using one- or two-cycle pulses at a pulse repetition frequency of 250 Hz and a dosage of 4000 pulses/point. Separate experiments also assessed histotripsy effects on normal canine bone and nerve using the same pulsing parameters. After treatment, histopathological evaluation of the samples was completed. To determine the feasibility of treating OS through intact skin/soft tissue, additional histotripsy experiments assessed OS with overlying tissues. Generation of bubble clouds was achieved at the focus in all tumor samples at peak negative pressures of 26.2 ± 4.5 MPa. Histopathology revealed effective cell ablation in treated areas for OS tumors, with no evidence of cell death or tissue damage in normal tissues. Treatment through tissue/skin resulted in generation of well-confined bubble clouds and ablation zones inside OS tumors. Results illustrate the feasibility of treating OS tumors with histotripsy.  相似文献   

4.
Hepatocellular carcinoma (HCC), or liver cancer, is one of the fastest growing cancers in the United States. Current liver ablation methods are thermal based and share limitations resulting from the heat sink effect of blood flow through the highly vascular liver. In this study, we explore the feasibility of using histotripsy for non-invasive liver ablation in the treatment of liver cancer. Histotripsy is a non-thermal ablation method that fractionates soft tissue through the control of acoustic cavitation. Twelve histotripsy lesions ∼1 cm3 were created in the livers of six pigs through an intact abdomen and chest in vivo. Histotripsy pulses of 10 cycles, 500-Hz pulse repetition frequency (PRF), and 14- to 17-MPa estimated in situ peak negative pressure were applied to the liver using a 1-MHz therapy transducer. Treatments were performed through 4–6 cm of overlying tissue, with 30%–50% of the ultrasound pathway covered by the rib cage. Complete fractionation of liver parenchyma was observed, with sharp boundaries after 16.7-min treatments. In addition, two larger volumes of 18 and 60 cm3 were generated within 60 min in two additional pigs. As major vessels and gallbladder have higher mechanical strength and are more resistant to histotripsy, these remained intact while the liver surrounding these structures was completely fractionated. This work shows that histotripsy is capable of non-invasively fractionating liver tissue while preserving critical anatomic structures within the liver. Results suggest histotripsy has potential for the non-invasive ablation of liver tumors.  相似文献   

5.
After the collapse of a cavitation bubble cloud, residual microbubbles can persist for up to seconds and function as weak cavitation nuclei for subsequent pulses in a phenomenon known as cavitation memory effect. In histotripsy, the cavitation memory effect can cause bubble clouds to repeatedly form at the same discrete set of sites. This effect limits the efficacy of histotripsy-based tissue fractionation. Our previous studies have indicated that low-amplitude bubble-coalescing (BC) ultrasound sequences interleaved with high-amplitude histotripsy pulses can coalesce the residual bubbles into one large bubble quickly. This reduces the cavitation memory effect and may increase treatment efficacy. Histotripsy has been investigated for thrombolysis by breaking up clots into debris smaller than red blood cells. However, this treatment has low efficacy for aged or retracted clots. In this study, we investigate the use of histotripsy with BC to improve the efficacy of treatment of retracted clots. An integrated histotripsy and bubble-coalescing (HBC) transducer system with specialized electronic driving system was built in-house. One high-amplitude (32 MPa), one-cycle histotripsy pulse followed by 36 low-amplitude (2.4 MPa), one-cycle BC pulses formed one HBC sequence. Results indicate that HBC sequences successfully generated a flow channel through the retracted clots at scan speeds of 0.2–0.5 mm/s. The channel size created using the HBC sequence was 128% to 480% larger than that created using histotripsy alone. The clot debris particles generated during HBC treatments were within the tolerable range. These results illustrate the concept that BC improves the treatment efficacy of histotripsy thrombolysis for retracted clots.  相似文献   

6.
Cavitation memory effects occur when remnants of cavitation bubbles (nuclei) persist in the host medium and act as seeds for subsequent events. In pulsed cavitational ultrasound therapy, or histotripsy, this effect may cause cavitation to repeatedly occur at these seeded locations within a target volume, producing inhomogeneous tissue fractionation or requiring an excess number of pulses to completely homogenize the target volume. We hypothesized that by removing the cavitation memory, i.e., the persistent nuclei, the cavitation bubbles could be induced at random locations in response to each pulse; therefore, complete disruption of a tissue volume may be achieved with fewer pulses. To test the hypothesis, the cavitation memory was passively removed by increasing the intervals between successive pulses, ?t, from 2, 10, 20, 50 and 100, to 200 ms. Histotripsy treatments were performed in red blood cell tissue phantoms and ex vivo livers using 1-MHz ultrasound pulses of 10 cycles at P−/P+ pressure of 21/59 MPa. The phantom study allowed for direct visualization of the cavitation patterns and the lesion development process in real time using high-speed photography; the ex vivo tissue study provided validation of the memory effect in real tissues. Results of the phantom study showed an exponential decrease in the correlation coefficient between cavitation patterns in successive pulses from 0.5 ± 0.1 to 0.1 ± 0.1 as ?t increased from 2–200 ms; correspondingly, the lesion was completely fractionated with significantly fewer pulses for longer ?ts. In the tissue study, given the same number of therapy pulses, complete and homogeneous tissue fractionation with well-defined lesion boundaries was achieved only for ?t ≥ 100 ms. These results indicated that the removal of the cavitation memory resulted in more efficient treatments and homogeneous lesions.  相似文献   

7.
Uterine fibroids (leiomyomas), the most common benign tumors in women of reproductive age, are a frequent cause of abnormal vaginal bleeding and other reproductive complaints among women. This study investigates the feasibility of using histotripsy, a non-invasive, non-thermal focused ultrasound ablation method, to ablate uterine fibroids. Human fibroid samples (n = 16) were harvested after hysterectomy or myomectomy procedures at Carilion Memorial Hospital. Histotripsy was applied to ex vivo fibroids in two sets of experiments using a 700-kHz clinical transducer to apply multicycle histotripsy pulses and a prototype 500-kHz transducer to apply single-cycle histotripsy pulses. Ultrasound imaging was used for real-time treatment monitoring, and post-treatment ablation was quantified histologically using hematoxylin and eosin and Masson trichrome stains. Results revealed that multicycle histotripsy generated diffuse cavitation in targeted fibroids, with minimal cellular ablative changes after treatment with 2000 pulses/point. Single-cycle pulsing generated well-confined bubble clouds with evidence of early coagulative necrosis on histological assessment in samples treated with 2000 pulses/point, near-complete ablation in samples treated with 4000 pulses/point and complete tissue destruction in samples treated with 10,000 pulses/point. This study illustrates that histotripsy is capable of fibroid ablation under certain pulsing parameters and warrants further investigation as an improved non-invasive ablation method for the treatment of leiomyomas.  相似文献   

8.
Histotripsy is a non-invasive ultrasonic ablation method that uses cavitation to mechanically fractionate tissue into acellular debris. With a sufficient number of pulses, histotripsy can completely fractionate tissue into a liquid-appearing homogenate with no cellular structures. The location, shape and size of lesion formation closely match those of the cavitation cloud. Previous work has led to the hypothesis that the rapid expansion and collapse of histotripsy bubbles fractionate tissue by inducing large stress and strain on the tissue structures immediately adjacent to the bubbles. In the work described here, the histotripsy bulk tissue fractionation process is visualized at the cellular level for the first time using a custom-built 2-MHz transducer incorporated into a microscope stage. A layer of breast cancer cells were cultured within an optically transparent fibrin-based gel phantom to mimic cells inside a 3-D extracellular matrix. To test the hypothesis, the cellular response to single and multiple histotripsy pulses was investigated using high-speed optical imaging. Bubbles were always generated in the extracellular space, and significant cell displacement/deformation was observed for cells directly adjacent to the bubble during both bubble expansion and collapse. The largest displacements were observed during collapse for cells immediately adjacent to the bubble, with cells moving more than 150–300 μm in less than 100 μs. Cells often underwent multiple large deformations (>150% strain) over multiple pulses, resulting in the bisection of cells multiple times before complete removal. To provide theoretical support to the experimental observations, a numerical simulation was conducted using a single-bubble model, which indicated that histotripsy exerts the largest strains and cell displacements in the regions immediately adjacent to the bubble. The experimental and simulation results support our hypothesis, which helps to explain the formation of the sharp lesions formed in histotripsy therapy localized to the regions directly exposed to the bubbles.  相似文献   

9.
Histotripsy is a non-invasive, non-thermal ablation technique that uses high-amplitude, focused ultrasound pulses to fractionate tissue via acoustic cavitation. The goal of this study was to illustrate the potential of histotripsy with electronic focal steering to achieve rapid ablation of a tissue volume at a rate matching or exceeding those of current clinical techniques (~1–2 mL/min). Treatment parameters were established in tissue-mimicking phantoms and applied to ex vivo tissue. Six-microsecond pulses were delivered by a 250-kHz array. The focus was electrically steered to 1000 locations at a pulse repetition frequency of 200 Hz (0.12% duty cycle). Magnetic resonance imaging and histology of the treated tissue revealed a distinct region of necrosis in all samples. Mean lesion volume was 35.6 ± 4.3 mL, generated at 0.9–3.3 mL/min, a speed faster than that of any current ablation method for a large volume. These results suggest that histotripsy has the potential to achieve non-invasive, rapid, homogeneous ablation of a tissue volume.  相似文献   

10.
Our recent studies have shown that high-intensity pulsed ultrasound can achieve mechanical tissue fragmentation, a process we call histotripsy. Histotripsy has many medical applications where noninvasive tissue removal or significant tissue disruption is needed (e.g., cancer therapy). The primary aim of this study is to investigate tissue regions treated by histotripsy and to characterize the boundary between the treated and untreated zones using transmission electron microscopy (TEM). The nature of the tissue disruption suggests many clinical applications and provides insights on the physical mechanism of histotripsy. Fresh ex vivo porcine kidney tissues were treated using histotripsy. A 1 MHz 100 mm diameter focused transducer was used to deliver 15 cycle histotripsy pulses at a peak negative pressure of 17 MPa and a pulse repetition frequency (PRF) of 100 Hz. Each lesion was produced by a 3 × 3 (lateral) × 4 (axial) grid with 2 mm between adjacent lateral and 3 mm between axial exposure points using mechanical scanning. Two thousand pulses were applied to each exposure point to achieve tissue fragmentation. After treatment, the tissue was processed and examined using TEM. Extensive fragmentation of the tissues treated with histotripsy was achieved. TEM micrographs of the tissue treated by histotripsy, showing no recognizable cellular features and little recognizable subcellular structures, demonstrates the efficacy of this technique in ablating the targeted tissue regions. A boundary, or transition zone, of a few microns separated the affected and unaffected areas, demonstrating the precision of histotripsy tissue targeting. TEM micrographs of the tissue treated by histotripsy showed no discernable cellular structure within the treated region. Histotripsy can minimize fragmentation of the adjoining nontargeted tissues because, as a nonlinear threshold phenomenon, damage can be highly localized. The potential for high lesion precision is evident in the TEM micrographs. (E-mail: fwinterr@umich.edu)  相似文献   

11.
Histotripsy is a non-invasive ablation method that mechanically fractionates tissue by controlling acoustic cavitation. Previous work has revealed that tissue mechanical properties play a significant role in the histotripsy process, with stiffer tissues being more resistant to histotripsy-induced tissue damage. In this study, we propose a thermal pretreatment strategy to precondition tissues before histotripsy. We hypothesize that a thermal pretreatment can be used to alter tissue stiffness by modulating collagen composition, thus changing tissue susceptibility to histotripsy. More specifically, we hypothesize that tissues will soften and become more susceptible to histotripsy when preheated at ∼60°C because of collagen denaturation, but that tissues will rapidly stiffen and become less susceptible to histotripsy when preheated at ∼90°C because of collagen contraction. To test this hypothesis, a controlled temperature water bath was used to heat various ex vivo bovine tissues (tongue, artery, liver, kidney medulla, tendon and urethra). After heating, the Young's modulus of each tissue sample was measured using a tissue elastometer, and changes in tissue composition (i.e., collagen structure/density) were analyzed histologically. The susceptibility of tissues to histotripsy was investigated by treating the samples using a 750-kHz histotripsy transducer. Results revealed a decrease in stiffness and an increase in susceptibility to histotripsy for tissues (except urethra) preheated to 58°C. In contrast, preheating to 90°C increased tissue stiffness and reduced susceptibility to histotripsy for all tissues except tendon, which was significantly softened due to collagen hydrolysis into gelatin. On the basis of these results, a final set of experiments were conducted to determine the feasibility of using high-intensity focused ultrasound to provide the thermal pretreatment. Overall, the results of this study indicate the initial feasibility of a thermal pretreatment strategy to precondition tissue mechanical properties and alter tissue susceptibility to histotripsy. Future work will aim to optimize this thermal pretreatment strategy to determine if this approach is practical for specific clinical applications in vivo without causing unwanted damage to surrounding or overlying tissue.  相似文献   

12.
Histotripsy is a developing focused ultrasound procedure that uses cavitation bubbles to mechanically homogenize soft tissue. To better understand the mechanics of tissue damage, a numerical model of single-bubble dynamics was used to calculate stress, strain and strain rate fields produced by a cavitation bubble exposed to a tensile histotripsy pulse. The explosive bubble growth and its subsequent collapse were found to depend on the properties of the surrounding material and on the histotripsy pulse. Stresses far greater than gigapascals were observed close to the bubble wall, but attenuated by four to six orders of magnitude within 50 μm from the bubble wall, with at least two orders of magnitude attenuation occurring within the first 10 μm from the bubble. Elastic stresses were found to dominate close to the bubble wall, whereas viscous stresses tended to persist farther into the surroundings. A non-dimensional parameter combining tissue, waveform and bubble properties was identified that dictates the dominant stress (viscous vs. elastic) as a function of distance from the bubble nucleus. In a cycle of bubble growth and collapse, characteristic times at which mechanical damage is likely to occur and dominant mechanisms acting at each time were identified.  相似文献   

13.
外科治疗理念及科技的革新推动外科手术向微无创发展,近年来,涌现出多种微无创治疗方式;其中,组织摧毁术因具有非热损伤、非入侵式、刺激免疫系统等特点而被逐渐关注。组织摧毁术使用微秒至毫秒级的高峰值负压脉冲超声,使靶区瞬时产生空化泡,空化泡的膨胀和坍塌使靶区组织粉碎成亚细胞碎片;根据空化泡的产生方式,可分为空化云型和沸腾型组织摧毁术。目前,组织摧毁术已被广泛应用于前列腺增生、前列腺癌、肝肾肿瘤、骨肉瘤、胰腺癌、心血管病变、血栓等多种疾病。本文主要综述了组织摧毁术的原理、特点以及离体实验、动物研究和临床试验的最新结果。  相似文献   

14.
Large-volume soft tissue hematomas are a serious clinical problem, which, if untreated, can have severe consequences. Current treatments are associated with significant pain and discomfort. It has been reported that in an in vitro bovine hematoma model, pulsed high-intensity focused ultrasound (HIFU) ablation, termed histotripsy, can be used to rapidly and non-invasively liquefy the hematoma through localized bubble activity, enabling fine-needle aspiration. The goals of this study were to evaluate the efficiency and speed of volumetric histotripsy liquefaction using a large in vitro human hematoma model. Large human hematoma phantoms (85 cc) were formed by recalcifying blood anticoagulated with citrate phosphate dextrose/saline–adenine–glucose–mannitol solution. Typical boiling histotripsy pulses (10 or 2 ms) or hybrid histotripsy pulses using higher-amplitude and shorter pulses (0.4 ms) were delivered at 1% duty cycle while continuously translating the HIFU focus location. Histotripsy exposures were performed under ultrasound guidance with a 1.5-MHz transducer (8-cm aperture, F# = 0.75). The volume of liquefied lesions was determined by ultrasound imaging and gross inspection. Untreated hematoma samples and samples of the liquefied lesions aspirated using a fine needle were analyzed cytologically and ultrastructurally with scanning electron microscopy. All exposures resulted in uniform liquid-filled voids with sharp edges; liquefaction speed was higher for exposures with shorter pulses and higher shock amplitudes at the focus (up to 0.32, 0.68 and 2.62 mL/min for 10-, 2- and 0.4-ms pulses, respectively). Cytological and ultrastructural observations revealed completely homogenized blood cells and fibrin fragments in the lysate. Most of the fibrin fragments were less than 20 μm in length, but a number of fragments were up to 150 μm. The lysate with residual debris of that size would potentially be amenable to fine-needle aspiration without risk for needle clogging in clinical implementation.  相似文献   

15.
Many useful therapeutic bio-effects can be generated using ultrasound-induced cavitation. However, cavitation is also capable of causing unwanted cellular and vascular damage, which should be monitored to ensure treatment safety. In this work, the unique opportunity provided by passive acoustic mapping (PAM) to quantify cavitation dose across an entire volume of interest during therapy is utilised to provide setup-independent measures of spatially localised cavitation dose. This spatiotemporally quantifiable cavitation dose is then related to the level of cellular damage generated. The cavitation-mediated destruction of equine red blood cells mixed with one of two types of cavitation nuclei at a variety of concentrations is investigated. The blood is placed within a 0.5-MHz ultrasound field and exposed to a range of peak rarefactional pressures up to 2 MPa, with 50 to 50,000 cycle pulses maintaining a 5% duty cycle. Two co-planar linear arrays at 90° to each other are used to generate 400-µm-resolution frequency domain robust capon beamforming PAM maps, which are then used to generate estimates of cavitation dose. A relationship between this cavitation dose and the levels of haemolysis generated was found which was comparable regardless of the applied acoustic pressure, pulse length, cavitation agent type or concentration used. PAM was then used to monitor cellular damage in multiple locations within a tissue phantom simultaneously, with the damage–cavitation dose relationship being similar for the two experimental models tested. These results lay the groundwork for this method to be applied to other measures of safety, allowing for improved ultrasound monitoring of cavitation-based therapies.  相似文献   

16.
Extensive mechanical tissue fractionation can be achieved using successive high intensity ultrasound pulses (“histotripsy”). Histotripsy has many potential medical applications where noninvasive tissue removal is desired (e.g., tumor ablation). There is a concern that debris generated by histotripsy-induced tissue fractionation might be an embolization hazard. The aim of this study is to measure the size distribution of these tissue debris particles. Histotripsy pulses were produced by a 513-element 1 MHz array transducer, an 18-element 750 kHz array transducer and a 788 kHz single element transducer. Peak negative pressures of 11 to 25 MPa, pulse durations of 3 to 50 cycles, pulse repetition frequencies of 100 Hz to 2 kHz were used. Tissue debris particles created by histotripsy were collected and measured with a particle sizing system. In the resulting samples, debris <6 μm in diameter constituted >99% of the total number of tissue particles. The largest particle generated by one of the parameter sets tested was 54 μm in diameter, which is smaller than the clinic filter size (100 μm) used to prevent embolization. The largest particles generated using other parameter sets were larger than 60 μm but the value could not be specified using our current setup. Exposures with shorter pulses produced lower percentages of large tissue debris (>30 μm) in comparison to longer pulses. These results suggest that the tissue debris particle size distribution is adjustable by altering acoustic parameters if necessary. (E-mail: zhenx@umich.edu)  相似文献   

17.
The aim of boiling histotripsy is to mechanically fractionate tissue as an alternative to thermal ablation for therapeutic applications. In general, the shape of a lesion produced by boiling histotripsy is tadpole like, consisting of a head and a tail. Although many studies have demonstrated the efficacy of boiling histotripsy for fractionating solid tumors, the exact mechanisms underpinning this phenomenon are not yet well understood, particularly the interaction of a boiling vapor bubble with incoming incident shockwaves. To investigate the mechanisms involved in boiling histotripsy, a high-speed camera with a passive cavitation detection system was used to observe the dynamics of bubbles produced in optically transparent tissue-mimicking gel phantoms exposed to the field of a 2.0-MHz high-intensity focused ultrasound (HIFU) transducer. We observed that boiling bubbles were generated in a localized heated region and cavitation clouds were subsequently induced ahead of the expanding bubble. This process was repeated with HIFU pulses and eventually resulted in a tadpole-shaped lesion. A simplified numerical model describing the scattering of the incident ultrasound wave by a vapor bubble was developed to help interpret the experimental observations. Together with the numerical results, these observations suggest that the overall size of a lesion induced by boiling histotripsy is dependent on the sizes of (i) the heated region at the HIFU focus and (ii) the backscattered acoustic field by the original vapor bubble.  相似文献   

18.
Histotripsy is a focused ultrasound ablation therapy being developed for the treatment of liver tumors. A recent study investigating the feasibility of using histotripsy for the ablation of cholangiocarcinoma (CC), bile duct cancer that is difficult to treat with current therapies because of its location near critical structures and fibrous tissue, reported the feasibility of treating CC in an acute mouse model. Here, we investigate histotripsy for the in vivo ablation of CC in a chronic study using a 1-MHz transducer at an applied dose of 500 pulses/point. A pilot study determined that treating the CC tumors plus a 1- to 2-mm margin induced significant injuries to intestinal tissues, thus precluding the use of this strategy. Next, histotripsy was applied to CCs (n = 6) with the treatment contained to the tumor. Post-treatment, the ablation was visualized using ultrasound, and subjects were monitored over time. Histotripsy achieved an average of 73% reduction of tumor diameter 26 d after treatment, with no significant adverse events. Notably, three of six treated tumors were undetectable after 2.5 wk. The treated animals were found to have significantly increased tumor progression-free and overall survival. Overall, results indicate that histotripsy can be used as a safe and effective method for treating CC.  相似文献   

19.
Physiologically relevant phantoms with high reliability are essential for extending the therapeutic applications of high-intensity therapeutic ultrasound. Here we describe a tissue-mimicking phantom capable of quantifying temperature changes and observing non-thermal phenomena by high-intensity therapeutic ultrasound. Using polydiacetylene liposomes, we fabricated agar-based polydiacetylene hydrogel phantoms (PHPs) that not only respond to temperature, but also have acoustic properties similar to those of human liver tissue. The color of PHPs changed from blue to red depending on the temperature in the range 40°C–70°C, where the red/blue ratio of PHP had a good linearity of 99.06% for the temperature changes. Furthermore, repeated high-intensity focused ultrasound led to histotripsy on the PHP with liquefied and damaged areas measuring 0.7 and 4.0 cm2, respectively, at the signal generator amplitude setting voltage of 80 mV. Our results indicate not only the usability of the thermochromic phantom, but also its potential for evaluating non-thermal phenomena in various high-intensity focused ultrasound therapies.  相似文献   

20.
Infected abscesses are walled-off collections of pus and bacteria. They are a common sequela of complications in the setting of surgery, trauma, systemic infections and other disease states. Current treatment is typically limited to antibiotics with long-term catheter drainage, or surgical washout when inaccessible to percutaneous drainage or unresponsive to initial care efforts. Antibiotic resistance is also a growing concern. Although bacteria can develop drug resistance, they remain susceptible to thermal and mechanical damage. In particular, short pulses of focused ultrasound (i.e., histotripsy) generate mechanical damage through localized cavitation, representing a potential new paradigm for treating abscesses non-invasively, without the need for long-term catheterization and antibiotics. In this pilot study, boiling and cavitation histotripsy treatments were applied to subcutaneous and intramuscular abscesses developed in a novel porcine model. Ultrasound imaging was used to evaluate abscess maturity for treatment monitoring and assessment of post-treatment outcomes. Disinfection was quantified by counting bacteria colonies from samples aspirated before and after treatment. Histopathological evaluation of the abscesses was performed to identify changes resulting from histotripsy treatment and potential collateral damage. Cavitation histotripsy was more successful in reducing the bacterial load while having a smaller treatment volume compared with boiling histotripsy. The results of this pilot study suggest focused ultrasound may lead to a technology for in situ treatment of acoustically accessible abscesses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号