首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glutathione (in the form of GSH) is transported out of cultured human lymphoid cells at rates proportional to the intracellular glutathione levels. Inhibition of glutathione synthesis by buthionine sulfoximine, a potent selective inhibitor of gamma-glutamylcysteine synthetase, leads to exponential decrease in intracellular glutathione, a large fraction of which appears extracellularly, indicating that glutathione turnover is associated with its export. Although cells with 0.09 mM glutathione (4% of controls) were 85% viable, further decrease was associated with marked loss of viability. Cells with 4-5% of control glutathione levels were much more sensitive than control cells to the effects of gamma radiation and of 5,5'-dithiobis(2-nitrobenzoate). Depletion of glutathione by use of buthionine sulfoximine has advantages over other reagents (such as diamide, other oxidizing agents, and diethylmaleate, which affect other cellular components and may increase glutathione disulfide levels) and therefore has potential usefulness in sensitizing cells to the effects of radiation and to therapeutic agents that are detoxified by reactions involving glutathione.  相似文献   

2.
In recent years, mitochondria have emerged as important targets of agonist-dependent increases in cytosolic Ca(2+) concentration. Here, we analyzed the significance of Ca(2+) signals for the modulation of organelle function by directly measuring mitochondrial and cytosolic ATP levels ([ATP](m) and [ATP](c), respectively) with specifically targeted chimeras of the ATP-dependent photoprotein luciferase. In both HeLa cells and primary cultures of skeletal myotubes, stimulation with agonists evoking cytosolic and mitochondrial Ca(2+) signals caused increases in [ATP](m) and [ATP](c) that depended on two parameters: (i) the amplitude of the Ca(2+) rise in the mitochondrial matrix, and (ii) the availability of mitochondrial substrates. Moreover, the Ca(2+) elevation induced a long-lasting priming that persisted long after agonist washout and caused a major increase in [ATP](m) upon addition of oxidative substrates. These results demonstrate a direct role of mitochondrial Ca(2+) in driving ATP production and unravel a form of cellular memory that allows a prolonged metabolic activation in stimulated cells.  相似文献   

3.
A mixed-sequence synthetic oligodeoxynucleotide probe was used to identify clones within the Escherichia coli genomic library of Clarke and Carbon having an extrachromosomal copy of iron superoxide dismutase. Plasmids pLC13-47 and pLC18-11 were shown to contain the structural gene of the iron superoxide dismutase and to overproduce this protein under conditions of chloramphenicol amplification of plasmid copy number. The activities of both manganese and iron proteins were measured in extracts of host cells and plasmid-bearing cells grown over a wide range of oxygenation. The results confirm previous demonstrations that the manganese protein is repressed under anaerobic conditions and induced in the presence of oxygen. Induction of the manganese protein with increasing oxygenation was quantitatively similar in cells differing approximately equal to 7-fold in iron superoxide dismutase, suggesting that the intracellular concentration of superoxide might not be responsible for regulating synthesis of the manganese-containing superoxide dismutase.  相似文献   

4.
5.
The multifunctional protein that initiates de novo pyrimidine biosynthesis in mammalian cells carries carbamoylphosphate synthetase, aspartate transcarbamylase (aspartate carbamoyltransferase), and dihydro-orotase activities on a single 215,000-dalton polypeptide chain. Kinetic studies of the controlled proteolysis of the molecule by elastase showed that the protein was not attacked at random by the protease but rather was successively cleaved into at least six well-defined proteolytic fragments. The initial cleavage converted the intact molecule into a 190,000-dalton species which appeared to retain all of the catalytic and regulatory functions of the native protein. This species was subsequently cleaved into two fragments, 150,000 and 40,000 daltons. The 40,000-dalton species, which carried the aspartate transcarbamylase activity, was resistant to further proteolysis; the 150,000-dalton polypeptide, which carried carbamoyl-phosphate synthetase and dihydro-orotase activities, underwent further digestion to 140,000 daltons. Continued proteolysis produced two species, 79,000 and 45,000 daltons; like the 40,000-dalton species, these were stable against further elastase digestion. The aspartate transcarbamylase and dihydro-orotase activities and the regulatory functions were preserved throughout the course of digestion; the carbamoylphosphate synthetase activity was more labile. By using sucrose gradient centrifugation and ion exchange chromatography, the 40,000- and 45,000-dalton species have been isolated. The 40,000-dalton fragment was found to have only aspartate transcarbamylase activity; the 45,000-dalton fragment has only dihydro-orotase activity. These experiments showed that this multifunctional protein is organized as discrete structural domains in which regions of the polypeptide chain are autonomously folded into separate functional units.  相似文献   

6.
Myocardial A1 adenosine receptor (A1AR) overexpression protects hearts from ischemia-reperfusion injury; however, the effects during anoxia are unknown. We evaluated responses to anoxia-reoxygenation in wild-type (WT) and transgenic (Trans) hearts with ∼200-fold overexpression of A1ARs. Langendorff perfused hearts underwent 20 min anoxia followed by 30 min reoxygenation. In WT hearts peak diastolic contracture during anoxia was 45 ± 3 mmHg, diastolic pressure remained elevated at 18 ± 3 mmHg after reoxygenation, and developed pressure recovered to 52 ± 4 % of pre-anoxia. A1AR overexpression reduced hypoxic contracture to 29 ± 4 mmHg, and improved recovery of diastolic pressure to 8 ± 1 mmHg and developed pressure to 76 ± 3 % of pre-anoxia. Mitochondrial KATP blockade with 100 μM 5-hydroxydecanoate (5-HD) increased hypoxic contracture to 73 ± 6 mmHg in WT hearts, reduced post-hypoxic recoveries of both diastolic (40 ± 5 mmHg) and developed pressures (33 ± 3 %). In contrast, 5-HD had no effect on hypoxic contracture (24 ± 8 mmHg), or post-hypoxic diastolic (10 ± 2 mmHg) and developed pressures (74 ± 3 %) in Trans hearts. In summary, (i) A1AR overexpression improves myocardial tolerance to anoxia-reoxygenation, (ii) intrinsic mitochondrial KATP channel activation decreases hypoxic contracture and improves functional recovery in wild-type hearts, and (iii) mitochondrial KATP channels do not appear to play a major role in the functional protection from anoxia afforded by A1AR overexpression. Received: 5 February 2001, Returned for 1. revision: 21 February 2001, 1. Revision received: 20 August 2001, Returned for 2. revision: 3 September 2001, 2. Revision received: 24 October 2001, Accepted: 25 October 2001  相似文献   

7.
8.
The 5'-3' exoribonucleases Xrn1p and Xrn2p/Rat1p function in the degradation and processing of several classes of RNA in Saccharomyces cerevisiae. Xrn1p is the main enzyme catalyzing cytoplasmic mRNA degradation in multiple decay pathways, whereas Xrn2p/Rat1p functions in the processing of rRNAs and small nucleolar RNAs (snoRNAs) in the nucleus. Much less is known about the XRN-like proteins of multicellular eukaryotes; however, differences in their activities could explain differences in mRNA degradation between multicellular and unicellular eukaryotes. One such difference is the lack in plants and animals of mRNA decay intermediates like those generated in yeast when Xrn1p is blocked by poly(G) tracts that are inserted within mRNAs. We investigated the XRN-family in Arabidopsis thaliana and found it to have several novel features. First, the Arabidopsis genome contains three XRN-like genes (AtXRNs) that are structurally similar to Xrn2p/Rat1p, a characteristic unique to plants. Furthermore, our experimental results and sequence database searches indicate that Xrn1p orthologs may be absent from higher plants. Second, the lack of poly(G) mRNA decay intermediates in plants cannot be explained by the activity of the AtXRNs, because they are blocked by poly(G) tracts. Finally, complementation of yeast mutants and localization studies indicate that two of the AtXRNs likely function in the nucleus, whereas the third acts in the cytoplasm. Thus, the XRN-family in plants is more complex than in other eukaryotes, and, if an XRN-like enzyme plays a role in mRNA decay in plants, the likely participant is a cytoplasmic Xrn2p/Rat1p ortholog, rather than an Xrn1p ortholog.  相似文献   

9.
Primary human hepatocytes were used to elucidate the effect of individual bile acids on bile acid formation in human liver. Hepatocytes were treated with free as well as glycine-conjugated bile acids. Bile acid formation and messenger RNA (mRNA) levels of key enzymes and the nuclear receptor short heterodimer partner (SHP) were measured after 24 hours. Glycochenodeoxycholic acid (GCDCA; 100 micromol/L) significantly decreased formation of cholic acid (CA) to 44% +/- 4% of controls and glycodeoxycholic acid (GDCA) decreased formation of CA to 67% +/- 11% of controls. Glycoursodeoxycholic acid (GUDCA; 100 micromol/L) had no effect. GDCA or glycocholic acid (GCA) had no significant effect on chenodeoxycholic acid (CDCA) synthesis. Free bile acids had a similar effect as glycine-conjugated bile acids. Addition of GCDCA, GDCA, and GCA (100 micromol/L) markedly decreased cholesterol 7alpha-hydroxylase (CYP7A1) mRNA levels to 2% +/- 1%, 2% +/- 1%, and 29% +/- 11% of controls, respectively, whereas GUDCA had no effect. Addition of GDCA and GCDCA (100 micromol/L) significantly decreased sterol 12alpha-hydroxylase (CYP8B1) mRNA levels to 48% +/- 5% and 61% +/- 4% of controls, respectively, whereas GCA and GUDCA had no effect. Addition of GCDCA and GDCA (100 micromol/L) significantly decreased sterol 27-hydroxylase (CYP27A1) mRNA levels to 59% +/- 3% and 60% +/- 7% of controls, respectively, whereas GUDCA and GCA had no significant effect. Addition of both GCDCA and GDCA markedly increased the mRNA levels of SHP to 298% +/- 43% and 273% +/- 30% of controls, respectively. In conclusion, glycine-conjugated and free bile acids suppress bile acid synthesis and mRNA levels of CYP7A1 in the order CDCA > DCA > CA > UDCA. mRNA levels of CYP8B1 and CYP27A1 are suppressed to a much lower degree than CYP7A1.  相似文献   

10.
Members of a large family of small GTP-binding proteins, termed Rabs in mammalian cells or Ypt and Sec4 in yeast, regulate vesicular traffic in all eukaryotic cells. These proteins are able to bind to membranes because they are modified by the type II geranylgeranyltransferase (GGTase-II), a multisubunit complex. Component A, encoded by the choroideremia gene in humans, is an escort protein that brings Rabs to component B, the catalytic alpha/beta heterodimer. Mutations in the catalytic subunits of the yeast GGTase-II (Bet2p/Mad2p) disrupt the membrane attachment of Ypt1p and Sec4p and this in turn blocks membrane traffic. In mammalian cells, deletions in choroideremia lead only to retinal degeneration, even though GGTase-II activity is defective. The yeast MRS6 gene encodes a protein that is approximately 30% identical to the choroideremia gene product. Here we show that the addition of recombinant Mrs6p to bacterially expressed Bet2p (beta subunit) and Mad2p (alpha subunit) reconstitutes GGTase-II activity in vitro, demonstrating that Mrs6p is yeast component A. Like Bet2p and Mad2p, Mrs6p is required for the membrane attachment of Ypt1p and Sec4p in vivo. In contrast to what has been observed before for the loss of function of the choroideremia gene, the depletion of Mrs6p from yeast cells blocks vesicular transport. Thus, these findings suggest that there is one essential escort protein in yeast, while more than one may exist in mammalian cells.  相似文献   

11.
The HIV-1 matrix protein p17, excised proteolytically from the N terminus of the Gag polyprotein, forms a protective shell attached to the inner surface of the plasma membrane of the virus. During the late stages of the HIV-1 replication cycle, the N-terminally myristoylated p17 domain targets the Gag polyprotein to the host-cell membrane for particle assembly. In the early stages of HIV-1 replication, however, some p17 molecules dissociate from the viral membrane to direct the preintegration complex to the host-cell nucleus. These two opposing targeting functions of p17 require that the protein be capable of reversible membrane interaction. It is postulated that a significant structural change in p17 triggered by proteolytic cleavage of the Gag polyprotein sequesters the N-terminal myristoyl group, resulting in a weaker membrane binding by the matrix protein than the Gag precursor. To test this "myristoyl switch" hypothesis, we obtained highly purified synthetic HIV-1 p17 of 131 amino acid residues and its N-myristoylated form in large quantity. Both forms of p17 were characterized by circular dichroism spectroscopy, protein chemical denaturation, and analytical centrifugal sedimentation. Our results indicate that although N-myristoylation causes no spectroscopically discernible conformational change in p17, it stabilizes the protein by 1 kcal/mol and promotes protein trimerization in solution. These findings support the premise that the myristoyl switch in p17 is triggered not by a structural change associated with proteolysis, but rather by the destabilization of oligomeric structures of membrane-bound p17 in the absence of downstream Gag subdomains.  相似文献   

12.
D Sugden  A K Ho  A L Sugden  D C Klein 《Endocrinology》1988,123(3):1425-1432
alpha 1-Adrenergic stimulation of the pinealocyte translocates protein kinase-C, which, in turn, has an important positive effect on pineal cell function; translocation amplifies beta-adrenergic stimulation of both cAMP and cGMP. In the present report negative feedback effects of protein kinase-C are described, including inhibition of alpha 1-adrenergically induced increases in cytosolic Ca2+ ([Ca2+]i), phosphatidylinositol hydrolysis, and cGMP in beta-adrenergically stimulated cells. Time-course studies of cGMP and [Ca2+]i responses indicated that the onset of inhibition by the protein kinase-C activator 4 beta-phorbol 12-myristate 13-acetate (PMA) is rapid (less than 5 min). In contrast, PMA has no inhibitory effect on norepinephrine stimulation of cAMP accumulation or the induction of arylalkylamine N-acetyltransferase activity, a cAMP-dependent enzyme. This is consistent with the finding that PMA substitutes for the positive effect of alpha 1-activation and directly potentiates beta-adrenergic stimulation of cAMP production. Although PMA does inhibit alpha 1-adrenergic potentiation of cGMP in beta-adrenergically treated cells, it does not inhibit the potentiation of the cGMP response in beta-adrenergically stimulated cells produced by high K+, A23187, and ouabain, agents that translocate protein kinase-C secondary to elevation of [Ca2+]i. This suggests that translocation of protein kinase-C does not block an effect of Ca2+, but probably blocks an earlier step in adrenergic activation, presumably the alpha 1-adrenergic stimulation of [Ca2+]i. Finally, pretreatment of cells with an alpha 1-agonist markedly reduced cAMP and cGMP responses to subsequent beta-adrenergic stimulation. The data indicate that the following negative feedback mechanism is present in the pinealocyte: alpha 1-adrenoceptor-dependent elevation of [Ca2+]i----protein kinase-C translocation----inhibition of alpha 1-adrenergic dependent elevation of [Ca2+]i. This mechanism appears to function physiologically to provide a negative feedback signal which limits adrenergic responses that are dependent on an increase in [Ca2+]i, including the cAMP and cGMP increases.  相似文献   

13.
Oxidized glutathione (GSSG) (0.02-0.5 mM) inhibits reticulocyte lysates by a mechanism similar to that observed in heme deficiency. Incubation of hemin-supplemented postribosomal supernates with GSSG results in the activation of a translational inhibitor [I(GSSG)]. The activation of I(GSSG) is enhanced by the presence of an energy-regenerating system. The simultaneous addition of 1 mM dithiothreitol blocks the activation of the GSSG-induced inhibitor; however, once inhibitor is formed, its activity is not affected by 1 mM dithiothreitol. GSSG-treated postribosomal supernates and partially purified preparations of I(GSSG) inhibit protein synthesis in hemin-supplemented lysates with biphasic kinetics. Inhibition by I(GSSG) is blocked by cyclic AMP (2-10 mM) and is potentiated by ATP (2 mM). The inhibition is also blocked or reversed by eukaryotic initiation factor eIF-2. The activation of I(GSSG) is accompanied by an increased cyclic AMP-independent protein kinase activity which phosphorylates the 38,000-dalton component (alpha subunit) of eIF-2; however, GSSG treatment of supernates does not alter the activity of the cyclic AMP-independent protein kinase activity that phosphorylates the 49,000-dalton polypeptide component (beta subunit) of eIF-2. These data indicate that GSSG treatment of reticulocyte lysates results in the activation of a protein kinase with inhibitory and phosphorylation properties similar to those of the heme-regulated cyclic AMP-independent protein kinase which is activated in heme deficiency.  相似文献   

14.
15.
Because the ability to make triglycerides is essential for the accumulation of adipose tissue, inhibition of triglyceride synthesis may ameliorate obesity and its related medical consequences. Acyl coenzyme A (CoA):diacylglycerol acyltransferase 1 (DGAT1) is 1 of 2 DGAT enzymes that catalyze the final reaction in the known pathways of mammalian triglyceride synthesis. Mice lacking DGAT1 are resistant to obesity and have increased sensitivity to insulin and leptin. DGAT1-deficient mice are also resistant to diet-induced hepatic steatosis. The effects of DGAT1 deficiency on energy and glucose metabolism result in part from the altered secretion of adipocyte-derived factors. Although complete DGAT1 deficiency causes alopecia and impairs development of the mammary gland, these abnormalities are not observed in mice with partial DGAT1 deficiency. These findings suggest that pharmacological inhibition of DGAT1 may be a feasible therapeutic strategy for human obesity and type 2 diabetes.  相似文献   

16.
In addition to the essential regulatory proteins Rex and Tax, the HTLV-1 genome encodes several accessory proteins of yet undefined function. One of these "orphan" proteins, named p13(II), was recently shown to be selectively targeted to mitochondria and to induce specific changes in mitochondrial morphology suggestive of altered inner membrane permeability and swelling. This represented the first report of a retroviral gene product targeted to mitochondria, and suggested that p13(II)-induced alterations in the function of this organelle may play a role in HTLV-1 replication and/or pathogenesis. The more recent findings that both Vpr and Tat of HIV-1 are targeted to mitochondria reinforces the proposed relevance of mitochondrial metabolism to the life cycle of retroviruses. Thus, p13(II), Vpr, and Tat can be added to the growing list of mitochondrial proteins produced by clinically important human viruses, including Epstein-Barr virus, human cytomegalovirus, and hepatitis B virus. Mitochondria are known to play a critical role by providing an amplification loop required for the execution of signaling pathways leading to programmed cell death. The functional consequences of the interactions between viral proteins and mitochondria described so far have been attributed to either the positive or negative control of apoptotic responses mediated by this organelle. Further analysis of the effects of p13(II) on mitochondrial function is likely to add to our understanding of the mechanisms underlying the development of HTLV-1-associated diseases.  相似文献   

17.
Human plasma contains a factor Xa-dependent inhibitor of tissue factor/factor VIIa complex termed lipoprotein-associated coagulation inhibitor (LACI). The present study examines the site(s) of LACI synthesis. In this study, cultured hepatocytes isolated from normal human liver were found to be essentially negative in LACI mRNA as revealed by Northern blot analysis using a full-length LACI cDNA as probe. The conditioned media from these cultures were also essentially negative for LACI activity. Similarly, poly(A)+ RNA obtained from normal human liver did not contain detectable LACI mRNA. In contrast, cultured human umbilical vein endothelial cells and human lung tissue (rich in endothelium) both contained abundant amounts of LACI mRNA. Moreover, erythrocyte lysates and culture media from normal monocytes, lymphocytes, or neutrophils did not contain measurable LACI activity; these cells were also negative for LACI mRNA. Platelets, however, contained LACI activity. The likely source of platelet LACI is the megakaryocyte cell since a megakaryocyte cell line (MEG-01) was found to contain LACI mRNA and to secrete small amounts of LACI activity. Additionally, human vascular smooth muscle cells and lung fibroblasts were also found to synthesize only small amounts of LACI. From these observations, we conclude that normal liver does not synthesize LACI and that endothelium is the principal source of plasma LACI. The undegraded LACI synthesized by endothelial cells had a molecular weight of approximately 41,000.  相似文献   

18.
The growth rate of Morris Hepatoma No. 44 (generation time, 6 mo) was inhibited after the induction of hypothyroidism by Propylthiouracil (PTU) (0.1% in Purina Chow), I131 (1 mCi/100 g body wt i.p.), or surgical thyroidectomy. After 11 wk of treatment, hepatoma weight was 66%, 87%, and 75% (after correction for total body wt) relative to controls in PTU-fed, I131 injected, and thyroidectomized rats, respectively. In each case, exogenous thyroxine (T4) (8 microgram/kg body wt i.p.) reversed these inhibitory effects, while T4 administered to euthyroid rats stimulated hepatoma growth. The degree of growth-inhibition achieved with PTU was not observed in pair-fed rats. In addition, after correction for differences in body weight, the sex of the tumor-bearing rats did not influence the response to PTU. Pretreatment with PTU for 2 wk before implantation did not give any added advantage over the effects of PTU administered approximately 10 days after implantation. Serum levels of triiodothyronine (T3) and T4, as well as the concentration of various biochemic parameters, were determined at the time of death. These results suggest that the growth rate of Morris Hepatoma No. 44 is thyroid hormone dependent.  相似文献   

19.
The atrial natriuretic peptide (ANP) is a cardiovascular hormone possessing antiinflammatory potential due to its inhibitory action on the production of inflammatory mediators, such as tumor necrosis factor-alpha (TNF-alpha). The aim of this study was to determine whether ANP is able to attenuate inflammatory effects of TNF-alpha on target cells. Human umbilical vein endothelial cells (HUVECs) were treated with TNF-alpha in the presence or absence of ANP. Changes in permeability, cytoskeletal alterations, phosphorylation of p38 MAPK and HSP27, and expression of MKP-1 were determined by macromolecule permeability assay, fluorescence labeling, RT-PCR, and immunoblotting. Antisense studies were done by transfecting cells with MKP-1 antisense oligonucleotides. Activation of HUVECs with TNF-alpha lead to a significant increase of macromolecule permeability and formation of stress fibers. Treatment of cells with ANP (10(-8) to 10(-6) mol/L) significantly reduced the formation of stress fibers and elevated permeability. Both TNF-alpha-induced effects were shown to be mediated via the activation of p38 using SB203580, a specific inhibitor of p38. ANP significantly reduced the TNF-alpha-induced activation of p38 and attenuated the phosphorylation of HSP27, a central target downstream of p38. ANP showed no effect on p38 upstream kinases MKK3/6. However, a significant induction of the MAPK phosphatase MKP-1 mRNA and protein could be observed in ANP-treated cells. Antisense experiments proved a causal role for MKP-1 induction in the ANP-mediated inhibition of p38. These data show the inhibitory action of ANP on TNF-alpha-induced changes in endothelial cytoskeleton and macromolecule permeability involving an MKP-1-induced inactivation of p38 MAPK. These effects point to an antiinflammatory and antiatherogenic potential of this cardiovascular hormone.  相似文献   

20.
The N,N'-diacetyllactosediamine (lacdiNAc) pathway of complex-type oligosaccharide synthesis is controlled by a UDP-GalNAc:GlcNAc beta-R beta 1-->4-N-acetylgalac-tesaminyltransferase (beta 4-GalNAcT) that acts analogously to the common UDP-Gal:GlcNAc beta-R beta 1-->4-galactosyltransferase (beta 4-GalT). LacdiNAc-based chains particularly occur in invertebrates and cognate beta 4-GalNAcTs have been identified in the snail Lymnaea stagnalis, in two schistosomal species, and in several lepldopteran insect cell lines. Because of the similarity in reactions catalyzed by both enzymes, we investigated whether L. stagnalis albumen gland beta 4-GalNAcT would share with mammalian beta 4-GalT the property of interacting with alpha-lactalbumin (alpha-LA), a protein that only occurs in the lactating mammary gland, to form a complex in which the specificity of the enzyme is changed. It was found that, under conditions where beta 4-GalT forms the lactose synthase complex with alpha-LA, the snail beta 4-GalNAcT was induced by this protein to act on Glc with a > 100-fold increased efficiency, resulting in the formation of the lactose analog GalNAc beta 1-->4Glc. This forms the second example of a glycosyltransferase, the specificity of which can be altered by a modifier protein. So far, however, no protein fraction could be isolated from L. stagnalis that could likewise interact with the beta 4-GalNAcT. Neither had lysozyme c, a protein that is homologous to alpha-LA, an effect on the specificity of the enzyme. These results raise the question of how the capability to interact with alpha-LA has been conserved in the snail enzyme during evolution without any apparent selective pressure. They also suggest that snail beta 4-GalNAcT and mammalian beta 4-GalT show similarity at a molecular level and allows the identification of the beta 4-GalNAcT as a candidate member of the beta 4-GalT family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号