首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of osteopontin (OPN) and one of its ligands, CD44, was studied in the spinal cord of rats with experimental autoimmune encephalomyelitis (EAE). Western blot analysis showed that osteopontin significantly increased at the early and peak stage of EAE and slightly declined thereafter. Osteopontin was constitutively expressed in some astrocytes adjacent to pia mater and neurons in normal rats, and was shown to be increased in the same cells and also in some inflammatory cells including macrophages at the early and peak stage of EAE. CD44, a ligand for osteopontin, was constitutively expressed in astrocytes in normal and control spinal cords and was also expressed in inflammatory cells, as well as increased expression in astrocytes in EAE. These findings suggest that inflammatory cells as well as reactive astrocytes are major sources of osteopontin in rat EAE, and osteopontin may interact with its ligand CD44 on astrocytes and inflammatory cells in EAE, possibly mediating autoimmune central nervous system (CNS) diseases in rats.  相似文献   

2.
Previous studies have shown that Ninjurin-1 participates in cell trafficking and axonal growth following central and peripheral nervous system neuroinflammation.But its precise roles in these processes and involvement in spinal cord injury pathophysiology remain unclear.Western blot assay revealed that Ninjurin-1 levels in rats with spinal cord injury exhibited an upregulation until day 4 post-injury and slightly decreased thereafter compared with sham controls.Immunohistochemistry analysis revealed that Ninjurin-1 immunoreactivity in rats with spinal cord injury sharply increased on days 1 and 4 post-injury and slightly decreased on days 7 and 21 post-injury compared with sham controls.Ninjurin-1 immunostaining was weak in vascular endothelial cells, ependymal cells, and some glial cells in sham controls while it was relatively strong in macrophages, microglia, and reactive astrocytes.These findings suggest that a variety of cells, including vascular endothelial cells, macrophages, and microglia, secrete Ninjurin-1 and they participate in the pathophysiology of compression-induced spinal cord injury.All experimental procedures were approved by the Care and Use of Laboratory Animals of Jeju National University(approval No.2018-0029) on July 6, 2018.  相似文献   

3.
Ciliary neurotrophic factor (CNTF) was originally identified as a potent survival factor for a variety of neuronal cell types in vitro and in vivo and in particular in spinal motor neurons of embryonic chick and rat. Using a monoclonal antibody against CNTF (clone 4–68) we analysed the expression of CNTF in paraffin sections of seven human brains and spinal cords immunocytochemically using the ABC method and compared these results with sections of the spinal cords of patients suffering from amyotrophic lateral sclerosis (ALS). In normal human tissue of the central nervous system CNTF immunoreactivity was found in most of the motor neurons of the motor cortex and ventral horn, neurons of the nucleus oculomotorius, intermediolateralis, thoracicus, ependymal cells as well as in smooth muscle cells and endothelial cells of small arteries. A reduced number of astrocytes showed a positive immunocytochemical reaction. In peripheral nerves and nerve roots of the spinal cord we also found a positive staining of Schwann cells and some axons. These immunoreactions could be confirmed by Western blot analyses. Next we analysed postmortem paraffin sections of the spinal cord of seven patients suffering from ALS (age range 30–76 years, median age 46 years, female/male = 4:3). We found CNTF immunoreactivity in most of the motor neurons of the ventral horn in 5 cases. In two cases the number of positively stained motor neurons was less. From these results we conclude that CNTF is expressed in a high number of upper and lower motor neurons in the human CNS and that its expression is maintained in ALS patients.  相似文献   

4.
Choroid plexus epithelial cells represent a continuation of, and have the same origin as, ventricular ependymal cells, and are regarded as modified ependymal cells. To extend previous studies of the use of choroid plexus ependymal cell (CPEC) grafting for nerve regeneration in the spinal cord, we investigated the capacity of cultured choroid plexus ependymal cells to differentiate into other types of glial cells in the spinal cord tissue. The choroid plexuses were excised from the fourth ventricle of green fluorescent protein (GFP)-transgenic mice and the cells were dissociated and cultured for 4-6 weeks. CPECs were harvested from the monolayer cultures and injected into the pre-lesioned spinal cords of wild-type mice of the same strain using a Hamilton syringe. One week after injection, some GFP-positive transplanted cells became immunohistochemically positive for glial fibrillary acidic protein (GFAP) but negative for neurofilament and myelin basic protein. All the GFAP-positive transplanted cells were negative for vimentin. Two weeks after grafting, immunoelectron microscopy showed that the GFP-positive transplanted cells that had gained GFAP immunoreactivity contained numerous bundles of intermediate filaments, a morphological characteristic similar to that of astrocytes, and were in close contact with adjacent host tissue. These results indicate that, when grafted into the spinal cord, at least some cultured choroid plexus ependymal cells have the capacity to differentiate into astrocytes.  相似文献   

5.
In acute experimental allergic encephalomyelitis (EAE), astrocytes in spinal cord tissue hypertrophy and stain intensely with antibody to the glial fibrillary acidic protein (GFAP). We attempted to determine if this activation is a result solely of hypertrophy of existing astrocytes or if astrocyte division might also occur. Lewis rats in various stages of acute EAE were injected with [3H]thymidine, the spinal cord sections were prepared, immunostained for GFAP and processed for radioautography. In spinal cords from rats administered thymidine on days 11–15 after sensitization a large number of mononuclear cells showed radioactive label. Many of these labeled cells, most likely monocytes and lymphocytes, were associated with inflammatory lesions, but others were located in the CNS parenchyma at great distances from the lesions. Most cells staining for the GFAP were hypertrophied with greatly extended cell processes, and the nuclei of some of these cells identified as astrocytes were overlaid with silver grains, indicating uptake of [3H]thymidine. In addition a few ependymal cells appeared to be labeled. No GFAP-stained cells from the Freund's adjuvant controls contained radioactive label. Similar studies using SJL/J mice with chronic relapsing EAE yielded very few labeled inflammatory cells or astrocytes. This study indicates that division takes place in some astrocytes in acute EAE, but occurs much less frequently in chronic EAE. Probably most of the increase in GFAP-stained material is a result of hypertrophy of astrocytes rather than of massive cell division.  相似文献   

6.

Background and Purpose

Erythropoietin (Epo), originally recognized for its central role in erythropoiesis, has been shown to improve the outcomes in patients with various neurological disorders. The aim of this study was to elucidate the Epo expression pattern in the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis (EAE) and to assess the systemic effect of Epo during the course of EAE.

Methods

We used an EAE model induced in Lewis rats by immunization with myelin basic protein. Immunized rats were given recombinant human Epo (rhEpo) intraperitoneally at a dose of 5,000 U/kg for 7 consecutive days, either starting on day 3 post-immunization (five rats) or on the day of clinical symptom onset (score ≥1, five rats). After immunization, the rats were observed daily for clinical signs of EAE. Epo expression was investigated by Western blot analysis and immunohistochemistry.

Results

Western blot analysis showed that, Epo expression was significantly elevated relative to control in the rat spinal cord during the peak stage of EAE (p<0.05), and then decreased thereafter. Immunohistochemistry demonstrated that Epo was expressed in some neurons and glial cells. Epo immunoreactivity was detected in ED1-positive macrophages and astrocytes in EAE lesions. Furthermore, we found that the intraperitoneal administration of rhEpo reduced both the disease severity and duration of paralysis in EAE rats, and reduced macrophage activity and increased Epo activity.

Conclusions

Based on these findings, we postulate that Epo expression begins to increase at the start of EAE and that rhEpo administration leads to functional recovery from EAE paralysis.  相似文献   

7.
In acute experimental allergic encephalomyelitis (EAE), astrocytes in spinal cord tissue hypertrophy and stain intensely with antibody to the glial fibrillary acidic protein (GFAP). We attempted to determine if this activation is a result solely of hypertrophy of existing astrocytes or if astrocyte division might also occur. Lewis rats in various stages of acute EAE were injected with [3H]thymidine, the spinal cord sections were prepared, immunostained for GFAP and processed for radioautography. In spinal cords from rats administered thymidine on days 11–15 after sensitization a large number of mononuclear cells showed radioactive label. Many of these labeled cells, most likely monocytes and lymphocytes, were associated with inflammatory lesions, but others were located in the CNS parenchyma at great distances from the lesions. Most cells staining for the GFAP were hypertrophied with greatly extended cell processes, and the nuclei of some of these cells identified as astrocytes were overlaid with silver grains, indicating uptake of [3H]thymidine. In addition a few ependymal cells appeared to be labeled. No GFAP-stained cells from the Freund's adjuvant controls contained radioactive label. Similar studies using SJL/J mice with chronic relapsing EAE yielded very few labeled inflammatory cells or astrocytes. This study indicates that division takes place in some astrocytes in acute EAE, but occurs much less frequently in chronic EAE. Probably most of the increase in GFAP-stained material is a result of hypertrophy of astrocytes rather than of massive cell division.  相似文献   

8.
In this study, we demonstrate for the first time the immunohistochemical expression of citrullinated proteins in the central nervous system (CNS) of mice with myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE). By using an established monoclonal antibody (F95) against natural and synthetic citrullinated proteins (Nicholas and Whitaker [2002] Glia 37:328-336), numerous, small, previously unrecognized "patches" of citrullinated proteins were discovered throughout EAE brains, whereas EAE spinal cords showed similar but much larger lesions. On dual color immunofluorescence, these lesions were found to contain citrullinated myelin basic protein (MBP) and were surrounded by astrocytes immunoreactive for both glial fibrillary acidic protein (GFAP) and F95. These lesions became evident about the time when EAE mice became symptomatic and increased in size and number with increasing disease severity. In some sections of spinal cord but not brains of severely debilitated EAE mice, a widespread gliotic response was seen, with astrocytes containing citrullinated GFAP spread throughout the gray and white matter. Western blot analysis of acidic proteins from the brains and spinal cords of EAE mice had higher levels of multiple citrullinated GFAP isoforms compared with controls, with more F95-positive bands in the EAE brains vs. spinal cords. These results raise the possibility that citrullination of both GFAP and MBP may contribute to the pathophysiology of EAE and that the brains of EAE mice may contain more pathology than previously realized.  相似文献   

9.
Shin T  Ahn M  Jung K  Heo S  Kim D  Jee Y  Lim YK  Yeo EJ 《Journal of neuroimmunology》2003,140(1-2):118-125
The expression of mitogen-activated protein (MAP) kinases, including extracellular signal-regulated kinase (ERK), c-Jun NH(2)-terminal protein kinase (JNK), and p38, was analyzed in experimental autoimmune encephalomyelitis (EAE) in rats.

Western blot analysis showed that the three MAP kinases (phosphorylated ERK (p-ERK), p-JNK, and p-p38) were increased significantly in the spinal cords of rats with EAE at the peak stage as compared with the levels in controls (p<0.05), and both p-ERK and p-JNK declined slightly in the recovery stage of EAE. Immunohistochemistry showed that p-ERK was constitutively expressed in brain cells, including astroglial cells, and showed enhanced immunoreactivity in those cells in EAE, while some T cells and macrophages were weakly immunopositive for p-ERK in EAE lesions. Both p-JNK and p-p38 were intensely immunostained in T cells in EAE lesions, while a few glial cells and astrocytes were weakly positive for both.

Taking all these facts into consideration, we postulate that increased expression of the phosphorylated form of each MAP kinase plays an important role in the initiation of acute monophasic EAE. Differential expression of three MAP kinases was discerned in an animal model of human autoimmune central nervous system diseases, including multiple sclerosis.  相似文献   


10.
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the CNS. Activated microglia/macrophages play a key role in the immunopathogenesis of MS and its corresponding animal models, experimental autoimmune encephalomyelitis (EAE). Microglia activation begins at early stages of the disease and is associated with elevated expression of the 18 kDa mitochondrial translocator protein (TSPO). Thus, positron emission tomography (PET) imaging of microglial activation using TSPO-specific radioligands could be valuable for monitoring disease-associated neuroinflammatory processes. EAE was induced in rats using a fragment of myelin basic protein, yielding acute clinical disease that reflects extensive spinal cord inflammation. Enhanced TSPO expression in spinal cords of EAE rats versus those of controls was confirmed by Western blot and immunohistochemistry. Biodistribution studies in control and EAE rats were performed using the TSPO radioligand [1?F]DPA-714 [N,N-diethyl-2-(2-(4-(2-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide]. At 1 h after injection, almost fivefold higher levels of [1?F]DPA-714 were measured in spinal cords of EAE rats versus controls. The specific binding of [1?F]DPA-714 to TSPO in spinal cords was confirmed in competition studies, using unlabeled (R,S)-PK11195 [(R,S)-N-methyl-N-(1-methylpropyl)-1-(2-chlorophenyl)isoquinoline-3-carboxamide)] or DPA-714 in excess. MicroPET studies affirm that this differential radioactivity uptake in spinal cords of EAE versus control rats could be detected and quantified. Using [1?F]DPA-714, neuroinflammation in spinal cords of EAE-induced rats could be visualized by PET, offering a sensitive technique for monitoring neuroinflammatory lesions in the CNS and particularly in the spinal cord. In addition to current MRI protocols, this approach could provide molecular images of neuroinflammation for detection, monitoring, and research in MS.  相似文献   

11.
Caveolae (CAV) constitute a novel subcellular transport vesicle that has received special attention based on its proven and postulated participation in transcytosis, potocytosis, and in cell signaling events. One of the principal components of CAV are caveolin protein isoforms. Here, we have undertaken the immunochemical identification of CAV and the known caveolin isoforms (1alpha, 1beta, 2 and 3) in cultured rat C6 glioma cells. Immunoblot analysis revealed that particulate fractions from rat C6 glioma cells express caveolin-1 and caveolin-2. The relative detergent-insolubility of these caveolin isoforms was also determined by Western blot analysis. Indirect immunofluorescence analysis with caveolin-1 and -2 antibodies revealed staining patterns typical of CAV's known subcellular distribution and localization. For both caveolin isoforms immunocytochemical staining was characterized by intensely fluorescent puncta throughout the cytoplasm and diffuse micropatches at the level of the plasmalemma. Perinuclear staining was also detected, consistent and suggestive of caveolin's localization in the trans Golgi region. The caveolin-1 and -2 immunoreactivity seen in Western blots and immunocytochemically is related to structurally relevant CAV as supported by the isolation of caveolin-enriched membrane complexes using two different methods. Light-density, Triton X-100-insoluble caveolin-1- and caveolin-2-enriched fractions were obtained after fractionation of rat C6 glioma cells and their separation over 5-40% discontinuous sucrose-density gradients. Similar fractions were obtained using a detergent-free, sodium carbonate-based fractionation method. These results further support the localization of CAV and caveolins in glial cells. In addition, they demonstrate that cultured C6 glioma cells can be useful as a model system to study the role of CAV and caveolins in subcellular transport and signal transduction events in glial cells and the brain.  相似文献   

12.
Although spontaneous remyelination occurs in multiple sclerosis (MS), the extent of myelin repair is often inadequate to restore normal function. Oligodendrocyte precursors remaining in nonremyelinating MS plaques may be restricted by an inhibitory signal. Bone morphogenetic proteins (BMPs) have been implicated as repressors of oligodendrocyte development and inducers of astrogliogenesis. We hypothesized that BMPs are up-regulated in MS lesions and play a role in demyelination and astrogliosis. We examined expression of BMPs in an animal model of MS, chronic experimental autoimmune encephalomyelitis (EAE) induced by the myelin oligodendrocyte glycoprotein (MOG) peptide in C57BL/6 mice. By 14 days postimmunization, compared to those of control mice, the lumbar spinal cords of MOG-peptide EAE mice demonstrated prominent astrogliosis, infiltration of inflammatory cells, and disrupted expression of myelin proteins. Quantitative RT-PCR showed that expression of BMP4, BMP6, and BMP7 mRNA increased 2- to 4-fold in the lumbar spinal cords of animals with symptomatic EAE versus in vehicle-treated and untreated controls on days 14, 21, and 42 postimmunization. BMP2 mRNA expression was not altered. BMP4 mRNA was much more abundant in the spinal cords of all animals than was mRNA encoding BMP2, BMP6, and BMP7. Immunoblot analysis confirmed the increased expression of BMP4 in the EAE animals. Immunohistochemistry revealed increased BMP4 immunoreactivity in areas of inflammation in MOG-peptide EAE animals. BMP4 labeling was mostly limited to macrophages but was sometimes associated with astrocytes and oligodendrocytes. These results indicate that members of the BMP family are differentially expressed in adult spinal cord and are up-regulated during EAE. (c) 2007 Wiley-Liss, Inc.  相似文献   

13.
W Cammer  F A Tansey  C F Brosnan 《Glia》1989,2(4):223-230
Spinal cord sections from rats sensitized to develop experimental allergic encephalomyelitis (EAE) were immunostained with antibodies against glial fibrillary acidic protein (GFAP), carbonic anhydrase, and vimentin, to see whether the latter two antigens could be detected in GFAP-positive reactive astrocytes. Sixteen days after sensitization (16 dpi) there was intense carbonic anhydrase immunostaining in GFAP-positive cells in the spinal cords of EAE rats, particularly in the white matter. At 13 and 20 dpi carbonic anhydrase immunostaining in astrocytes was less intense, and in the spinal cord white matter of control animals carbonic anhydrase was not detected in the few GFAP-positive cells. In the spinal cords of EAE rats vimentin immunostaining was observed in inflammatory cells and astrocytes. In the latter, GFAP and carbonic anhydrase were colocalized with vimentin. The data suggest that carbonic anhydrase expression in astrocytes is an acute response to injury and that vimentin can be detected in astrocytes, as well as inflammatory cells, as early as 16 dpi.  相似文献   

14.
Moon C  Ahn M  Wie MB  Kim HM  Koh CS  Hong SC  Kim MD  Tanuma N  Matsumoto Y  Shin T 《Brain research》2005,1035(2):206-210
This study examined whether phenidone, a dual inhibitor of cyclooxygenase (COX) and lipoxygenase (LOX), affects the clinical symptoms of experimental autoimmune encephalomyelitis (EAE) in the rat, and the expression of both COX-1/-2 and 5-LOX in EAE spinal cords. Oral phenidone (200 mg/kg) significantly suppressed the incidence and clinical severity of EAE paralysis. Western blot analysis showed that phenidone significantly inhibited the increases in COX-1/-2 and 5-LOX in the spinal cords of rats with EAE. This finding was paralleled by immunohistochemical observations. Overall, these findings suggest that COX-1/-2 and 5-LOX are important inflammatory mediators in the pathogenesis of EAE, and that the inhibition of both COX and LOX ameliorates the autoimmune disorder of the central nervous system.  相似文献   

15.
To date, there are no reports of growth of significant numbers of axons into or across a lesion of the mammalian spinal cord. However, recent studies showing that CNS axons will grow into PNS environments indicate that comparable growth into spinal cord lesions could be achieved if ischemic necrosis could be prevented and the lesion site repopulated by astrocytes and ependymal cells rather than by the macrophages, lymphocytes, and fibroblasts that generally accumulate at sites of CNS injury. To examine this possibility, we made a laminectomy at T5 in rats and crushed the spinal cord for 2 s with a smooth forceps (leaving the dura mater intact to prevent ingrowth of connective tissue). At 1 week, the lesion was filled with mononuclear cells, degenerating nerve fibers, and capillaries that were oriented parallel to the long axis of the spinal cord. By 2 weeks, longitudinally oriented cords of ependymal cells and astrocytes had migrated into the lesion from the adjacent spinal cord, and similarly oriented nerve fibers had begun to grow into the lesion along these capillaries and cellular cordons. The mononuclear cells had now assumed phagocytic activity and were engorged with myelin and other cellular debris. After 3 weeks, the astrocytes had elaborated thick cell processes. The nerve fibers in the lesion were still oriented longitudinally but had increased in number and were often arranged in small fascicles. These observations provide the first histological evidence of growth of nerve fibers into a lesion of the rat spinal cord. We conclude that the intrinsic regenerative capacity of the spinal cord can be expressed if ischemic necrosis and collagenous scarring are prevented and the spinal cord parenchyma is first reconstructed by its nonneuronal constituents.  相似文献   

16.
目的:探讨盐酸法舒地尔对实验性自身免疫性脑脊髓炎(EAE)的治疗效果及机制。方法:雌性C57BL/6小鼠,随机分为EAE对照组、盐酸法舒地尔干预组和盐酸法舒地尔治疗组。采用髓鞘少突胶质细胞糖蛋白多肽诱导慢性EAE模型。干预和治疗分别在免疫后第3天和症状出现时予以腹腔注射盐酸法舒地尔,观察EAE模型小鼠体重变化和临床症状,进行苏木精-伊红和CD4+T细胞染色,同时检测磷酸化肌球蛋白磷酸酶(p-MYPT1)和核因子(NF-κB)。结果:盐酸法舒地尔可推迟并改善EAE小鼠症状,减轻中枢神经系统炎细胞浸润,抑制脊髓和脑p-MYPT1及脊髓NF-κB的表达。  相似文献   

17.
18.
Caveolae, a specialized form of lipid rafts, are cholesterol- and sphingolipid-rich membrane microdomains implicated in potocytosis, endocytosis, transcytosis, and as platforms for signal transduction. One of the major constituents of caveolae are three highly homologous caveolin isoforms (caveolin-1, caveolin-2, and caveolin-3). The present study expands the analysis of caveolin isoform expression in C6 glioma cells. Three complementary approaches were used to assess their differential expression during the dibutyryl-cyclic AMP-induced differentiation of C6 cells into an astrocyte-like phenotype. Immunoblotting, conventional RT-PCR, and real-time RT-PCR analysis established the expression of the caveolin-3 isoform in C6 cells, in addition to caveolin-1 and caveolin-2. Similar to the other isoforms, caveolin-3 was associated with light-density, detergent-insoluble caveolae membrane fractions obtained using sucrose-density gradient centrifugation. The three caveolin isoforms display different temporal patterns of mRNA/protein expression during the differentiation of C6 cells. Western blot and real-time RT-PCR analysis demonstrate that caveolin-1 and caveolin-2 are up-regulated during the late stages of the differentiation of C6 cells. Meanwhile, caveolin-3 is gradually down-regulated during the differentiation process. Indirect immunofluorescence analysis via laser-scanning confocal microscopy reveals that the three caveolin isoforms display similar subcellular distribution patterns. In addition, co-localization of caveolin-1/caveolin-2 and caveolin-1/caveolin-3 was detected in both C6 glioma phenotypes. The findings reveal a differential temporal pattern of caveolin gene expression during phenotypic differentiation of C6 glioma cells, with potential implications to developmental and degenerative events in the brain.  相似文献   

19.
There is growing evidence that the impaired IGF‐I system contributes to neurodegeneration. In this study, we examined the spinal cords of the EAE, the animal model of multiple sclerosis, to see if the expression of the IGF‐I system is altered. To induce EAE, C57/BL6 mice were immunized with the Hooke lab MOG kit, sacrificed at the peak of the disease and their spinal cords were examined for the immunoreactivities (ir) of the IGF‐I, IGF binding protein‐1 (IGFBP‐1) and glycogen synthase kinase 3β (GSK3β), as one major downstream molecule in the IGF‐I signaling. Although neurons in the non EAE spinal cords did not show the IGF‐I immunoreactivity, they were numerously positive for the IGFBP‐1. In the inflamed EAE spinal cord however, the patterns of expressions were reversed, that is, a significant increased number of IGF‐I expressing neurons versus a reduced number of IGFBP‐1 positive neurons. Moreover, while nearly all IGF‐I‐ir neurons expressed GSK3β, some expressed it more intensely. Considering our previous finding where we showed a significant reduced number of the inactive (phosphorylated) but not that of the total GSK3β expressing neurons in the EAE spinal cord, it is conceivable that the intense total GSK3β expression in the IGF‐I‐ir neurons belongs to the active form of GSK3β known to exert neuroinflammatory effects. We therefore suggest that the altered expression of the IGF‐I system including GSK3β in spinal cord neurons might involve in pathophysiological events during the EAE.  相似文献   

20.
实验性变态反应性脑脊髓炎大鼠星形胶质细胞的变化   总被引:4,自引:0,他引:4  
目的观察实验性变态反应性脑脊髓炎(EAE)大鼠脊髓中星形胶质细胞的变化,探讨EAE大鼠的发病相关生物学机制。方法采用免疫组化法,对豚鼠全脊髓匀浆诱导的Wistar大鼠EAE的过程中,脊髓内星形胶质细胞变化情况进行研究。结果EAE大鼠症状高峰期时星形胶质细胞开始激活,恢复期时激活达到高峰,而且活化的星形胶质细胞未见表达主要组织相容性抗原(MHC)。结论活化的星形胶质细胞可能与EAE大鼠的恢复有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号