首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regression of oxygen uptake (O2) on power output and the O2 demand predicted for suprapeak oxygen uptake (O2peak) exercise (power output = 432 W) were compared in ten male cyclists [C, mean O2peak = 67.9 (SD 4.2) ml · kg–1 · min–1] and nine active, yet untrained men [UT, mean O2peak = 54.1 (SD 6.5) ml · kg–1 · min–1]. The O2-power regression was determined using a continuous incremental cycle test (CON4), performed twice, which comprised several 4-min exercise periods progressing in intensity from approximately 40%–85% O2peak. Minute ventilation (E), heart rate (HR), respiratory exchange ratio (R), blood lactate concentration ([1a]b) and rectal temperature (T re) were measured at rest and during CON4. The slope of the O2-power regression was greater (P 0.05) in C [12.4 (SD 0.7) ml · min–1. W–1] compared to UT [11.7 (SD 0.4) ml · min–1 W–1]; as a result, the O2 demand (at 432 W) was also higher (P 0.05) in C [5.97 (SD 0.23) l · min–1] than UT [5.70 (SD 0.15) 1 · min–1]. ExerciseR and [la]b were lower (P 0.05) in C .in comparison to UT at all power outputs, whereas E and HR were relatively lower (P 0.05) in C at power outputs approximating 180 W, 220 W and 270 W. Differences in fat metabolism estimated over the first three power outputs accounted for approximately 19% of the difference in O2-power slopes between the groups and up to 46% of the difference in O2 at a given intensity. Although the O2-power regressions were linear for C [r = 0.997 (SD 0.001)] and UT [r = 0.997 (SD 0.001)], the O2-power slope was higher at power outputs at or above the lactate threshold (13.2 ml · min–1 · W–1 than at lower intensities (11.6 ml · min–1 · W–1) in C, an effect which was less profound in UT. As a result, the exclusion of O2 at the highest power outputs completely abolished the difference in O2-power slopes between C and UT. Thus, the relatively higher O2 during incremental exercise in C can be almost entirely attributed to the higher O2 cost of cycling at higher power outputs. In addition, the presence of non-linear responses in O2 at higher intensities also confirms the invalidity of describing the O2 response across a wide range of power outputs using a linear function, and challenges the validity of predicting the O2 demand of more intense exercise by a linear extrapolation of this same function.  相似文献   

2.
Effects of specific versus cross-training on running performance   总被引:1,自引:0,他引:1  
The cross-training (XT) hypothesis suggests that despite the principle of specificity of training, athletes may improve performance in one mode of exercise by training using another mode. To test this hypothesis we studied 30 well-trained individuals (10 men, 20 women) in a randomized longitudinal trail. Subjects were evaluated before and after 8 weeks of enhanced training (+10%/week), accomplished by adding either running (R) or swimming (XT) to baseline running, versus continued baseline running (C). Both R ( – 26.4s) and XT (– 13.2s) improved time trial (3.2 km) performance, whereas C did not (– 5.4s). There were no significant changes during treadmill running in maximum oxygen uptake (O2peak; – 0.2, – 6.0, and + 2.7%), steady state submaximal O2 at 2.68 m · s–1 ( – 1.2, – 3.3 and + 0.2 ml · kg–1 · min–1), velocity at O2peak (+0.05, +0.25 and +0.09 m · s–1) or accumulated O2 deficit (+ 11.2, – 6.1 and + 9.4%) in the R, XT or C groups, respectively. There was a significant increase in velocity associated with a blood lactate concentration of 4 mmol · l–1 in R but not in XT or C ( + 0.32, + 0.07 and + 0.08 m · s–1). There were significant changes in arm crank O2peak ( + 5%) and arm crank O2 at 4 mmol · l–1 ( + 6.4%) in XT. There was no significant changes in arm crank O2peak ( + 1.3 and – 7.7%) or arm crank O2 at 4 mmol · l–1 ( + 0.8 and + 0.4%) in R or C, respectively. The data suggest that muscularly non-similar XT may contribute to improved running performance but not to the same degree as increased specific tranining.  相似文献   

3.
Summary This study examined the effect of exposure of the whole body to moderate cold on blood lactate produced during incremental exercise. Nine subjects were tested in a climatic chamber, the room temperature being controlled either at 30°C or at 10°C. The protocol consisted of exercise increasing in intensity in 35 W increments every 3 min until exhaustion. Oxygen consumption (VO2) was measured during the last minute of each exercise intensity. Blood samples were collected at rest and at exhaustion for the measurement of blood glucose, free fatty acid (FFA), noradrenaline (NA) and adrenaline (A) concentrations and, during the last 15 s of each exercise intensity, for the determination of blood lactate concentration [la]b. TheVO2 was identical under both environments. At 10°C, as compared to 30°C, the lactate anaerobic threshold (Than, la ) occurred at an exercise intensity 15 W higher and [Than, la ]b was lower for submaximal intensities above the Than, la Regardless of ambient temperature, glycaemia, A and NA concentrations were higher at exhaustion while FFA was unchanged. At exhaustion the NA concentration was greater at 10°C [15.60 (SEM 3.15) nmol·l–1] than at 30°C [8.64 (SEM 2.37) nmol·l–1]. We concluded that exposure to moderate cold influences the blood lactate produced during incremental exercise. These results suggested that vasoconstriction was partly responsible for the lower [la]b observed for submaximal high intensities during severe cold exposure.  相似文献   

4.
Summary The effects of two levels of caffeine ingestion (5 mg·kg –1, CAF1, and 10 mg·kg –1, CAF2) on postexercise oxygen consumption was investigated in six untrained women aged 20.5 (SEM 0.5) years. After a test to determine maximal oxygen consumption (VO2max) each subject underwent three test sessions at 55% VO2max either in a control condition (CON) or with the CAF1 or CAF2 dose of caffeine. During exercise, oxygen consumption was found to be significantly higher in the CAM and CAF2 trials, compared to CON (P<0.05). During the hour postexercise, oxygen consumption in CAF1 and CAF2 remained significantly higher than in CON (P<0.05). At all times throughout the exercise, free fatty acid (FFA) concentrations were significantly higher in the caffeine trials than in CON. The FFA concentrations 1 h postexercise (+ 60 min) were further elevated above resting values for all three trials. Caffeine ingestion caused the greatest elevation above resting levels being 1.89 (SEM 0.19) mmol·l–1 and 1.96 (SEM 0.22) mmol·1–1 for the CAF1 and CAF2 trials, respectively. This was significantly higher (P<0.0001) than the CON level which was 0.97 (SEM 0.19) mmol·l–1. Respiratory exchange ratio (R) values became significantly lower (P<0.05) in CAF1 and CAF2 compared to CON at the onset of exercise and continued to decrease during the activity. Throughout the recovery period, R values were significantly lower for both caffeine trials compared to CON. The results of this study would suggest that caffeine is useful in significantly increasing metabolic rate above normal levels in untrained women during, as well as after, exercising at 55% VO2max.  相似文献   

5.
Summary Two experiments were carried out to compare the cardiorespiratory and metabolic effects of cross-country skiing and running training during two successive winters. Forty-year-old men were randomly assigned into skiing (n = 15 in study 1,n = 16 in study 2), running (n = 16 in study 1 andn = 16 in study 2) and control (n = 17 in study 1 andn = 16 in study 2) groups. Three subjects dropped out of the programme. The training lasted 9–10 weeks with 40-min exercise sessions three times each week. The training intensity was controlled at 75%–85% of the maximal oxygen consumption (VO2max) using portable heart rate metres and the mean heart rate was 156–157 beats·min–1 in the training groups. In the pooled data of the two studies the mean increase in theVO2max (in ml·min–1·kg–1) on a cycle ergometer was 17% for the skiing group, 13% for the running group and 2% for the control group. The increase inVO2max was highly significant in the combined exercise group compared to the control group but did not differ significantly between the skiing and running groups. The fasting serum concentrations of lipoproteins and insulin did not change significantly in any of the groups. These results suggested that training by cross-country skiing and running of the same duration and intensity at each session for 9–10 weeks improved equally the cardiorespiratory fitness of untrained middle-aged men.  相似文献   

6.
Summary This experiment investigated the effects of intensity of exercise on excess postexercise oxygen consumption (EPOC) in eight trained men and eight women. Three exercise intensities were employed 40%, 50%, and 70% of the predetermined maximal oxygen consumption (VO2max). All ventilation measured was undertaken with a standard, calibrated, open circuit spirometry system. No differences in the 40%, 50% and 70% VO2max trials were observed among resting levels of oxygen consumption (V02) for either the men or the women. The men had significantly higher resting VO2 values being 0.31 (SEM 0.01) 1·min–1 than did the women, 0.26 (SEM 0.01) 1·min–1 (P < 0.05). The results indicated that there were highly significant EPOC for both the men and the women during the 3-h postexercise period when compared with resting levels and that these were dependent upon the exercise intensity employed. The duration of EPOC differed between the men and the women but increased with exercise intensity: for the men 40% – 31.2 min; 50% – 42.1 min; and 70% – 47.6 min and for the women, 40% – 26.9 min; 50% – 35.6 min; and 70% – 39.1 min. The highest EPOC, in terms of both time and energy utilised was at 70% VO2max. The regression equation for the men, where y=O2 in litres, and x=exercise intensity as a percentage of maximum was y=0.380x + 1.9 (r 2=0.968) and for the women is y=0.374x–0.857 (r 2=0.825). These findings would indicate that the men and the women had to exercise at the same percentage of their VO2max to achieve the maximal benefits in terms of energy expenditure and hence body mass loss. However, it was shown that a significant EPOC can be achieved at moderate to low exercise intensities but without the same body mass loss and energy expenditure.  相似文献   

7.
In men, the hypothalamic-pituitary-testicular axis controls the secretion of testosterone which, in this sex, is a major anabolic hormone. Physical exercise modulates testosterone concentration, affecting the whole axis by poorly understood mechanisms. We have reported in this preliminary study the short and longterm effects of exercise on the function of the gonadotropic axis in trained compared to untrained subjects. Environmental factors known to interfere with pituitary function were minimized. Four marathon and four sedentary men, were studied during 5 days successively using different combinations of two factors: duration and intensity of running tests. Day 0 (DO) was a rest day, and the exercises were: D1 and D2 brief (20 min), light (50% maximal heart rate, HRmax, D1) or intense (80% HRmax, D2), D3 and D4 prolonged (120 min) and light (50% HRmax, D3) or intense (80% HRmax, D4). Testosterone (free and total) and luteinizing hormone (LH) concentrations were measured before, during and after exercise. The baseline concentrations of plasma testosterone were lower in the long distance runners than in the sedentary group [41.8 (SEM 5.5) vs 64.5 (SEM 7.9) pmol · 1–1, respectively;P < 0.05]. This phenomenon was centrally mediated as LH concentration was apparentlyinappropriately low [3.4 (SEM 0.4) vs 4.3 (SEM 1.0) UI · 1–1;P > 0.05]. Light to moderate exercise did not modify testosterone and LH concentrations. Conversely, intense and prolonged exercise increased testosterone concentration [73.2 (SEM 9.0) vs 92 (SEM 11.0) pmol · 1–1 in the long distance runners and sedentary group, respectively;P < 0.05] and lowered LH concentrations [2.1 (SEM 0.3) vs 3.4 (SEM 0.3) UI · 1–1 in the long distance runners and sedentary group, respectively;P <0.05 compared to DO, at the same time]. In our conditions of exercise, negative feedback of testosterone upon LH persisted, as positive feedback of low testosterone concentrations was apparently lacking (inappropriately low LH concentration with regard to low basal testosterone concentration).  相似文献   

8.
Sex differences in running economy (gross oxygen cost of running, CR), maximal oxygen uptake (VO2max), anaerobic threshold (Than), percentage utilization of aerobic power (% VO2max), and Than during running were investigated. There were six men and six women aged 20–30 years with a performance time of 2 h 40 min over the marathon distance. The VO2max, Than, and CR were measured during controlled running on a treadmill at 1° and 3° gradient. From each subject's recorded time of running in the marathon, the average speed (v M) was calculated and maintained during the treadmill running for 11 min. The VO2 max was inversely related to body mass (m b), there were no sex differences, and the mean values of the reduced exponent were 0.65 for women and 0.81 for men. These results indicate that for running the unit ml·kg–0.75·min–1 is convenient when comparing individuals with different m b. The VO2max was about 10% (23 ml·kg–0.75·min–1) higher in the men than in the women. The women had on the average 10–12 ml·kg–0.75·min–1 lower VO2 than the men when running at comparable velocities. Disregarding sex, the mean value of CR was 0.211 (SEM 0.005) ml·kg–1·m–1 (resting included), and was independent of treadmill speed. No sex differences in Than expressed as % VO2max or percentage maximal heart rate were found, but Than expressed as VO2 in ml·kg–0.75·min–1 was significantly higher in the men compared to the women. The percentage utilization of f emax and concentration of blood lactate at v M was higher for the female runners. The women ran 2 days more each week than the men over the first 4 months during the half year preceding the marathon race. It was concluded that the higher VO2max and Than in the men was compensated for by more running, superior CR, and a higher exercise intensity during the race in the performance-matched female marathon runners.  相似文献   

9.
Summary Body temperature and metabolic responses to 2 h treadmill exercise in dogs given glucose intravenously (25–30 mg·kg–1· min–1 throughout the run) were compared with those measured in the same animals with elevated plasma FFA concentrations (soya bean oil ingestion+intravenous heparin) and in control experiments (24 h fasting). In comparison with control conditions enhanced glucose availability for the working muscles caused a reduction in the exercise-induced increases in both rectal (by 0.9± 0.11° C) and muscle (by 0.9±0.16° C) temperatures, a lower rate of oxygen uptake (by 16%) and an elevated respiratory exchange ratio. A tendency towards enhanced body temperature responses to exercise, accompanied by increases inV O 2 and cardiac frequency was noted in dogs with elevated plasma FFA concentrations as compared with the control animals. The estimated amount of heat effectively dissipated from the body, expressed as a fraction of heat load (thermoregulatory efficiency) was significantly higher in dogs infused with glucose (0.962±0.0035), than in the controls (0.947± 0.0043) and those with elevated plasma FFA concentrations (0.931±0.0029).It is concluded that the increased contribution of carbohydrates to the energy yield during exercise results in a marked attenuation of hyperthermia, associated with a reduced metabolic rate and improved thermoregulatory efficiency.This work was supported by the Polish Academy of Sciences within the Project 10.4.  相似文献   

10.
Summary The present experiment evaluated a new approach to establish exercise intensity during hydraulic rowing ergometry. In contrast to the traditional approach where exercise intensity is augmented by systematically increasing workload, the new procedure increments the intensity of exercise while maintaining a constant percentage of maximum force output. Ten college females exercised on a hydraulic rower that allowed for control of rowing speed and resistance. The new method to establish work intensity was to row at a cadence of 30 c·min–1 at a force output equal to 50% of maximum rowing force at each setting determined dynamically prior to testing. Two protocols were used for the maximum tests on the hydraulic rower. Row 1 was a 17-min, six-stage, incremental continuous row test performed at increasingly difficult settings from easy (setting 1; 603 N) to difficult (setting 6; 893 N). Row 2 was identical to row 1 until 15 min when resistance was reduced to setting 2 (658 N) for allout effort during the last 2 min. During this time, cadence declined from 30 c·min–1 to 19.4 c·min–1 at dial setting 6 and increased to 35.4 c·min–1 at dial setting 2. Both rowing protocols were compared to maximal physiological responses during treadmill running (TM). Compared to TM, both rowing protocols elicited. significantly lower maximum oxygen uptake (VO2max;P<0.05; row 1=29.0% and row 2=12.9%) and maximum heart rate (HRmax;P<0.05; row 1=12.9% and row 2=6.7%). Maximum ventilation (V Emax) during row 1 was also lower by 30.4% than TM (P<0.05). In addition, row 1 was significantly lower (P<0.05) than row 2 forVO2max (2.23 vs 2.60 l·min–1), HRmax (165.5 vs 177.3 beats·min–1), andV Emax (62.7 vs 86.3 1·min–1). These results demonstrate thatVO2max, HRmax, andV Emax are depressed when rowing exercise is performed at a high intensity relative to maximum strength. We conclude that the new approach to establish exercise intensity relative to maximum force production is more effective for eliciting near maximum values ofVO2, HR, andV E than the conventional method that increases the workload by set increments without consideration of maximal strength.  相似文献   

11.
Summary Fifteen middle-aged, untrained (defined as no regular exercise) men (mean age 49.9 years, range 42–67) cycled on a cycle ergometer at 50 rpm for 30 min at an intensity producing 60% predicted maximum heart rate [(f c,max), wheref c, max = 220 - age]. Total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and triglyceride (Tg) concentrations were measured from fasting fingertip capillary blood samples collected at rest, after 15 and 30 min of exercise, and at 15 min post-exercise. The mean HDL-C level increased significantly from the resting level of 0.85 mmol · l–1 to 0.97 mmol · 1–1 (P<0.05) after 15 min of exercise, increased further to 1.08 mmol · 1–1 (P<0.01) after 30 min of exercise and remained elevated at 1.07 mmol · 1–1 (P<0.01) at 15 min post-exercise. These increases represented changes above the mean resting level of 14.1%, 27.1% and 25.9% respectively. The HDL-C/LDL-C ratio increased significantly from a resting ratio of 0.20 to 0.26 after 30 min of exercise (P < 0.01) and to 0.24 at 15 min post-exercise (P<0.05). The mean Tg level increased significantly from a resting level of 0.88 mmol · 1–1 to 1.05 mmol · 1–1 after 15 min, and to 1.06 mmol · I–1 after 30 min of exercise (P<0.05 at each time). The TC/HDL-C ratio decreased significantly (P=0.05) after 30 min of exercise and at 15 min post-exercise by 18.8% and 14%, respectively. No significant changes were observed in the levels of TC or LDL-C over time. These results indicate that 30 min of moderate exercise elicits significant changes in HDL-C concentration during and up to 15 min after the exercise in untrained middle-aged men with low mean resting levels of HDL-C (0.85 mmol · 1–1).  相似文献   

12.
Summary The mechanical power (Wtot, W·kg–1) developed during ten revolutions of all-out periods of cycle ergometer exercise (4–9 s) was measured every 5–6 min in six subjects from rest or from a baseline of constant aerobic exercise [50%–80% of maximal oxygen uptake (VO2max)] of 20–40 min duration. The oxygen uptake [VO2 (W·kg–1, 1 ml O2 = 20.9 J)] and venous blood lactate concentration ([la]b, mM) were also measured every 15 s and 2 min, respectively. During the first all-out period, Wtot decreased linearly with the intensity of the priming exercise (Wtot = 11.9–0.25·VO2). After the first all-out period (i greater than 5–6 min), and if the exercise intensity was less than 60% VO2max, Wtot, VO2 and [la]b remained constant until the end of the exercise. For exercise intensities greater than 60% VO2max, VO2 and [la]b showed continuous upward drifts and Wtot continued decreasing. Under these conditions, the rate of decrease of Wtot was linearly related to the rate of increase of V [(d Wtot/dt) (W·kg–1·s–1) = 5.0·10–5 –0.20·(d VO2/dt) (W·kg–1·s–1)] and this was linearly related to the rate of increase of [la]b [(d VO2/dt) (W·kg–1·s–1) = 2.310–4 + 5.910–5·(d [la]b/dt) (mM·s–1)]. These findings would suggest that the decrease of Wtot during the first all-out period was due to the decay of phosphocreatine concentration in the exercising muscles occurring at the onset of exercise and the slow drifts of VO2 (upwards) and of Wtot (downwards) during intense exercise at constant Wtot could be attributed to the continuous accumulation of lactate in the blood (and in the working muscles).  相似文献   

13.
Energy cost and energy sources in karate   总被引:1,自引:0,他引:1  
Energy costs and energy sources in karate (wado style) were studied in eight male practitioners (age 23.8 years, mass. 72.3 kg, maximal oxygen consumption (VO2max) 36.8 ml · min–1 · kg–1) performing six katas (formal, organized movement sequences) of increasing duration (from approximately. 10 s to approximately 80 s). Oxygen consumption (VO2) was determined during pre-exercise rest, the exercise period and the first 270 s of recovery in five consecutive expired gas collections. A blood sample for lactate (la) analysis was taken 5 min after the end of exercise. The overall amount of O2 consumed during the exercise and in the following recovery increased linearly with the duration of exercise (t) from approximately 1.51 (for t equal to 10.5 s (SD 1.6)) to approximately 5.81, for t equal to 81.5 s (SD 1.0). The energy release from la production (VO21a ) calculated assuming that an increase of 1 mmol · l–1 la corresponded to a VO2 of 3 mlO2 · kg–1 was negligible for t equal to or less than 20 s and increased to 17.3 ml · kg–1 (la = 5.8 mmol · l–1 above resting values) for t equal approximately to 80 s. The overall energy requirement (VO2eq) as given by the sum of VO2 and VO2la was described by VO2eq = 0.87 + 0.071 · t (n = 64; r 2 = 0.91), where VO2eq is in litres and t in seconds. This equation shows that the metabolic power (VO2eq · t –1) for this karate style is very high: from approximately 9.51 · min–1 for t equal to 10 s to approximately 4.91 · min–1 for t equal to 80 s, i.e. from 3.5 to 1.8 times the subjects' VO2max. The fraction of VO2eq derived from the amount of O2 consumed during the exercise increased from 11% for t equal to 10 s to 41 % for t equal to 80 s whereas VO21a was negligible far t equal to or less than 20 s and increased to 13 % o for t equal to 80 s. The remaining fraction (from 90% for t equal to 10 s to 46% for t equal to 80 s), corresponding to the amount of O2 consumed in the recovery after exercise, is derived from anaerobic alactic sources, i.e. from net splitting of high energy phosphates during the exercise.  相似文献   

14.
Several endurance sports, e.g. road cycling, have a varying intensity profile during competition. At present, few laboratory tests take this intensity profile into consideration. Thus, the purpose of this study was to examine the prognostic value of heart rate (HR), lactate (La−1), potassium (K+), and respiratory exchange ratio (RER) performance at an exhausting cycling exercise with varying intensity. Eight national level cyclists performed two cycle tests each on a cycle ergometer: (1) a incremental test to establish VO2max, maximum power (W max), and lactate threshold (VO2LT), and (2) a variable intensity protocol (VIP). Exercise intensity for the VIP was based upon the VO2max obtained during the incremental test. The VIP consisted of six high intense (HI) workloads at 90% of VO2max for 3 min each, interspersed by five middle intense (MI) workloads at 70% of VO2max for 6 min each. VO2 and HR were continuously measured throughout the tests. Venous blood samples were taken before, during, and after the test. Increases in HR, La-, K+, and RER were observed when workload changed from MI to HI workload (P < 0.05). Potassium and RER decreased after transition from HI to MI workloads (P < 0.05). There was a negative correlation between time to exhaustion and decrease in La- concentration during the first MI (r = −0.714; P = 0.047). Furthermore, time to exhaustion correlated with VO2LT calculated from the ramp test (r = 0.738; P = 0.037). Our results suggest that the magnitude of decrease of La−1 between the first HI workload and the consecutive MI workload could predict performance during prolonged exercise with variable intensity.  相似文献   

15.
Summary To document the possible influence of a single episode of maximal aerobic stress on the serum lecithin: cholesterol acyltransferase (LCAT) activity in subjects with differing histories of training, two groups of healthy male adults [controls (C),n = 18, 28.6 years, SD 5.2, 50.1 ml · kg–1 · min–1 maximal O2 uptake (VO2max), SD 5.3; endurance trained athletes (T),n = 18, 31.4 years, SD 8.8, 65.0 ml · kg–1 · min–1 VO2max, SD 2.8] were examined in a maximal aerobic stress test. In addition to the routine assessment of lipid status, LCAT activity was measured immediately before and after exercise. At rest nearly identical LCAT activity values were found in both groups: C 64.4 nmol · ml–1 · h–1, SD 16.7 vs T 65.0 nmol · ml–1 · h–1, SD 20.9. The post-exercise LCAT values induced by the maximal stress test increased significantly to (C) 95.7 nmol · ml–1 · h–1, SD 23.5, +48.6%,P<0.001; (T) 83.5 nmol · ml–1 · h–1, SD 24.3, +29.1%,P<0.01. Neither the pre nor the post-exercise individual LCAT activity values showed any significant correlation to the corresponding data on physical performance.  相似文献   

16.
Summary The purpose of this study was to measure the cardiac output using the CO2 rebreathing method during submaximal and maximal arm cranking exercise in six male paraplegic subjects with a high level of spinal cord injury (HP). They were compared with eight able bodied subjects (AB) who were not trained in arm exercise. Maximal O2 consumption ( O2max) was lower in HP (1.1 1·min–1, SD 0.1; 17.5 ml·min·kg, SD 4) than in AB (2.5 1·min–1, SD 0.6; 36.7 ml·min–1·kg, SD 10.7). Maximal cardiac output was similar in the groups (HP, 141·min–1 SD 2.6; AB, 16.81·min–1 SD 4). The same result was obtained for maximal heart rate (f c,max (HP, 175 beats·min–1, SD 18; AB, 187 beats·min, SD 16) and the maximal stroke volume (HP, 82 ml, SD 13; AB, 91 ml, SD 27). The slopes of the relationshipf c/ O2 were higher in HP than AB (P<0.025) but when expressed as a % O2max there were no differences. The results suggests a major alteration of oxygen transport capacity to active muscle mass in paraplegics due to changes in vasomotor regulation below the level of the lesion.  相似文献   

17.
Summary This study compared the effects of 9 weeks of run (RT) versus cycle (CT) training on ventilatory threshold (Thv) determined during treadmill (TM) and cycle ergometer (CE) graded exercise testing. Sixteen college age men were assigned to a RT or CT group and performed a TM and a CE test before and after training. Both training groups performed similar training protocols which initially consisted of continuous exercise 4 days·week–1 at 75–80% maximum heart rate (fc,max) for 45 min. Training intensity was later increased to 80–85% fc max and interval training (90–95% fc,max) was incorporated 2 days·week–1 into the continuous training. Both groups showed significantly improved maximal oxygen consumption ( O2max) on both TM and CE tests (P<0.01) with no significant differences between the groups. Significant Thv increases (P<0.05) were found on TM tests for RT (n=8) and CT (n=8) groups [mean (SD); 443 (438) and 373 (568) ml O2·min–1, respectively] with no difference between the groups. Results from the CE tests revealed a significant Thv increase (P<0.01) for the CT group [566 (663) ml O2·min–1] with no change for the RT group. The Thv improvement noted for the RT group was significantly different (P< 0.05) comparing CE with TM tests but not for the CT group. The results indicate that CT and RT improvement in Thv for runners is dependent upon mode of training and testing, and there is an apparent dissociation of O2maxand Thv specific to training.  相似文献   

18.
The temporal relationship between the electromyographic (EMG) and ventilatory thresholds was investigated during incremental exercise performed by eight professional road cyclists. The exercise, performed on a cycloergometer, started at 100 W with successive increments of 26 W·min–1 until exhaustion. Gas exchange and the root mean square value of EMG (RMS) from eight lower limb muscles were examined throughout the exercise period. Professional cyclists achieved a maximal oxygen consumption, i.e. O2max, of 5.4 (0.5) l·min–1 [74.6 (2.5) ml·min–1·kg–1, range: 67.8–82.4 ml·min–1·kg–1] and a maximum power (Wmax) of 475 (30) W (range: 438–516 W). Our results showed at least the occurrence of a first EMG threshold (EMGTh1) in 50% (gastrocnemius lateralis) of the subjects and a second EMG threshold (EMGTh2) in 63% (gastrocnemius medialis). EMGTh1 occurred significantly before the first ventilatory threshold (VT1), i.e. at 52 (2)% and 62 (9)% of Wmax, respectively. Inversely, no significant difference was observed between the occurrence of EMGTh2 and the second ventilatory threshold (VT2), i.e. at 86 (1)% and 89 (7)% of Wmax, respectively. These results suggest that the use of EMG may be a useful non-invasive method for detecting the second ventilatory threshold in most of the muscles involved in cycling exercise.  相似文献   

19.
Summary A characteristic notch in the heart rate (f c) on-response at the beginning of square-wave exercise is described in 7 very fit marathon runners and 12 sedentary young men, during cycle tests at 30% and 60% of maximal oxygen consumption (VO2max). The (f c) notch revealed af c overshoot with respect to the (f c) values predicted from exponential beat-by-beat fitted models. While at 30% of (VO2max). all subjects showed af c over-shoot, at 60% of (VO2max). it occurred in the marathon runners but not in the sedentary subjects. The mean time of occurrence of thef c overshoot from the onset of the exercise was 16.7 (SD 4.7) s and 12.2 (SD 3.2) s at 30% of (VO2max). in the runners and the sedentary subjects respectively, and 23.8 (SD 8.8) s at 60% of (VO2max). in the runners. The amplitude of the overshoot, with respect to rest, was 41 (SD 12) beats·min–1and 31 (SD 4) beats·min–1 at 30% of (VO2max). in the runners and the sedentary subjects respectively, and 46 (SD 19) beats·min–1 at 60% of (VO2max). in the runners. The existence and the amplitude of thef c overshoot may have been related to central command and muscle heart reflex mechanisms and thus may have been indicators of changes in the balance between sympathetic and parasympathetic activity occurring in fit and unfit subjects.  相似文献   

20.
These studies investigated the effects of 2 weeks of either a high-fat (HIGH-FAT: 70% fat, 7% CHO) or a high-carbohydrate (HIGH-CHO: 74% CHO, 12% fat) diet on exercise performance in trained cyclists (n = 5) during consecutive periods of cycle exercise including a Wingate test of muscle power, cycle exercise to exhaustion at 85% of peak power output [90% maximal oxygen uptake ( O2max), high-intensity exercise (HIE)] and 50% of peak power output [60% O2max, moderate intensity exercise (MIE)]. Exercise time to exhaustion during HIE was not significantly different between trials: nor were the rates of muscle glycogen utilization during HIE different between trials, although starting muscle glycogen content was lower [68.1 (SEM 3.9) vs 120.6 (SEM 3.8) mmol · kg –1 wet mass, P < 0.01] after the HIGH-FAT diet. Despite a lower muscle glycogen content at the onset of MIE [32 (SEM 7) vs 73 (SEM 6) mmol · kg –1 wet mass, HIGH-FAT vs HIGH-CHO, P < 0.01], exercise time to exhaustion during subsequent MIE was significantly longer after the HIGH-FAT diet [79.7 (SEM 7.6) vs 42.5 (SEM 6.8) min, HIGH-FAT vs HIGH-CHO, P<0.01]. Enhanced endurance during MIE after the HIGH-FAT diet was associated with a lower respiratory exchange ratio [0.87 (SEM 0.03) vs 0.92 (SEM 0.02), P<0.05], and a decreased rate of carbohydrate oxidation [1.41 (SEM 0.70) vs 2.23 (SEM 0.40) g CHO · min–1, P<0.05]. These results would suggest that 2 weeks of adaptation to a high-fat diet would result in an enhanced resistance to fatigue and a significant sparing of endogenous carbohydrate during low to moderate intensity exercise in a relatively glycogen-depleted state and unimpaired performance during high intensity exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号