首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The present study determined whether repeated administration of the antidepressant and selective norepinephrine (NE) uptake inhibitor reboxetine resulted in an adaptive modification of the function of the NE transporters (NETs), serotonin (5-HT) transporters, or dopamine (DA) transporters. Because antidepressants may be effective tobacco smoking cessation agents and because antidepressants have recently been shown to interact with nicotinic acetylcholine receptors (nAChRs), the interaction of reboxetine with nAChRs was also evaluated. Repeated administration of reboxetine (10 mg/kg i.p., twice daily for 14 days) did not alter the potency or selectivity of reboxetine inhibition of [(3)H]NE, [(3)H]DA, or [(3)H]5-HT uptake into striatal or hippocampal synaptosomes (IC(50) values = 8.5 nM, 89 microM, and 6.9 microM, respectively). In a separate series of experiments, reboxetine did not inhibit (K(i) > 1 microM) [(3)H]methyllycaconitine, [(3)H]cytisine, or [(3)H]epibatidine binding to rat whole brain membranes. However, at concentrations that did not exhibit intrinsic activity, reboxetine potently inhibited (IC(50) value = 7.29 nM) nicotine-evoked [(3)H]NE overflow from superfused hippocampal slices via a noncompetitive mechanism. In the latter experiments, the involvement of NET was eliminated by inclusion of desipramine (10 microM) in the superfusion buffer. Reboxetine also inhibited (IC(50) value = 650 nM) nicotine-evoked (86)Rb(+) efflux at reboxetine concentrations that did not exhibit intrinsic activity in this assay. Thus, in addition to inhibition of NET function, reboxetine inhibits nAChR function, suggesting that it may have potential as a smoking cessation agent.  相似文献   

3.
The effects of pure philanthotoxin (PhTX), a component of the venom of the wasp Philanthus triangulum, were studied on nicotinic acetylcholine receptors (nAChRs) of vertebrates and insects so as to compare their sensitivities and the mechanism of action of PhTX. Electrophysiological techniques were used on frog muscles and cockroach thoracic ganglia and biochemical techniques were applied to membranes from Torpedo electric organ and honeybee brain. PhTX (1-20 microM) inhibited reversibly the indirectly elicited muscle twitch and reduced the endplate current peak amplitude and its decay time constant in a concentration-dependent manner. In patch clamp studies, PhTX (1-5 microM) when combined with acetylcholine, induced a concentration-dependent decrease in frequency of channel openings and in channel open and burst times. The cockroach fast coxal depressor neuron was inhibited by PhTX in a time- and voltage-dependent manner. The initial rate of binding of [3H]perhydrohistrionicotoxin to Torpedo nAChR in the presence of carbamylcholine was inhibited competitively by PhTX. Binding of alpha-[125I] bungarotoxin to electric organ and honeybee brain membranes was inhibited by PhTX. Binding of [3H]acetylcholine to the electric organ receptor was potentiated by low concentrations of PhTX but inhibited by high concentrations. PhTX, therefore, inhibits both vertebrate and insect nAChRs, which may be important molecular targets for its toxicity. It is suggested that PhTX at high concentration may have some competitive action on nAChR, but it acts mainly as a blocker of the ion channel of the nAChR in its open conformation.  相似文献   

4.
Modulation of neuronal nicotinic acetylcholine receptors by mercury   总被引:3,自引:0,他引:3  
Mercuric chloride exerted a biphasic modulatory effect on rat neuronal nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus laevis oocytes as heteromers of the alpha3 or alpha4 and beta2 or beta4 subunits. The degree of modulation was subunit-dependent, with beta4-containing receptors displaying greater potentiation and alpha4-containing receptors displaying greater inhibition. Thus, alpha4beta4 receptors displayed both robust potentiation and robust inhibition. During prolonged coapplication of HgCl(2), first potentiation then inhibition of the acetylcholine (ACh) response was observed. Upon coapplication of 1 microM HgCl(2), a 2-fold increase in ACh-induced current was achieved in 55 +/- 1 s. With continued HgCl(2) application, the ACh response was slowly inhibited until, after 5 min, less than 10% of the initial response remained. By measuring potentiation at its peak and inhibition 5 min after the start of HgCl(2) coapplication, we obtained EC(50) and IC(50) values of 262 +/- 75 and 430 +/- 72 nM, respectively. HgCl(2) potentiation was voltage-dependent, increasing at more positive holding potentials. Upon washout of mercury chloride, potentiation reversed with a t(1/2) of 4.6 min. Inhibition reversed more slowly, with less than half the initial response recovered after 15 min of wash. Although free cysteine residues are common targets for mercury, elimination of all free cysteines located in the extracellular domains of the alpha4 and beta4 subunits did not alter the effects of mercuric chloride. Potentiation and inhibition of neuronal nAChRs may occur through action at a transmembrane or cytoplasmic location after passive diffusion of mercuric chloride across the plasma membrane.  相似文献   

5.
6.
7.
Systemic blood pressure and cardiac function have long been known to be under the control of central autonomic and hormonal pathways that, in part, use cholinergic neural systems. Recently choline, a precursor and product of acetylcholine metabolism, has been shown to serve as a selective endogenous agonist for the alpha7 subtype of the nicotinic acetylcholine receptor (alpha7nAChR). This receptor subtype mediates several responses to nicotine in animals, most notably, neuroprotection and enhanced cognition. The purpose of this study was to determine whether the cardiovascular changes induced by central injection of choline in rats also were mediated by alpha7nAChRs. Moreover, we sought to determine whether these cardiovascular changes to choline could be blocked by central pretreatment with amyloid beta peptide (1-42) (Abeta1-42), a neurotoxic component of cerebral amyloid that is known to bind with high affinity to alpha7nAChRs. Central, i.c.v. injection of choline (50, 100, or 150 microg) produced dose-dependent (10-15-min duration) pressor response of up to about 20 mm Hg. The most consistent change in heart rate included a brief increase (up to 40 beats/min) that lasted 2 to 3 min, followed by a prolonged decrease averaging 50 beats/min that lasted up to 30 min. Pretreatment (i.c.v.) with the selective alpha7nAChR antagonists alpha-bungarotoxin and methyllycaconitine significantly inhibited the pressor and heart rate responses to subsequent injection of choline. Pretreatment with the non-alpha7-preferring antagonist dihydro-beta-erythroidin was not effective. These findings suggested that the cardiovascular response to i.c.v. injection of choline was mediated at least in part through alpha7nAChRs. Pretreatment (30 min) with low doses (1-100 pmol) of amyloid peptide Abeta1-42 (but not with Abeta40-1) administered by the i.c.v. route significantly inhibited the choline-induced blood pressure increase as well as the choline-induced decrease in heart rate.  相似文献   

8.
Allosteric, non-competitive inhibitors (NCIs) of neuronal nicotinic acetylcholine receptors (nAChRs) have been shown to produce a wide variety of clinically relevant responses. Many of the observed effects are desired as the nAChR is the therapeutic target, while others are undesired consequences due to off-target binding at the nAChR. Thus, the determination of whether or not a lead drug candidate is an NCI should play an important role in drug discovery programs. However, the current experimental techniques used to identify NCIs are challenging, expensive, and time consuming. This review focuses on an alternative approach to the investigation of interactions between test compounds and nAChRs based upon liquid chromatographic stationary phases containing cellular fragments from cell lines expressing nAChRs. The development and validation of these phases as well as their use in drug discovery and pharmacophore modeling are discussed.  相似文献   

9.
The electrophysiological and pharmacological properties of nicotinic acetylcholine receptors (nAChRs) were studied in guinea pig small intestinal myenteric neurons maintained in culture or in acutely isolated preparations. Acetylcholine and nicotine caused inward currents that desensitized in approximately 4 s. The current-voltage (I-V) relationship rectified inwardly with a reversal potential near 0 mV. The agonist rank order potency was 1,1-dimethyl-4-phenyl-piperazinium > acetylcholine = nicotine > cytisine. Agonist-induced currents were blocked by nAChR antagonists with a rank order potency of mecamylamine > hexamethonium > dihydro-beta-erythroidine (DHbetaE); mecamylamine and DHbetaE exhibit high potency at beta4 and beta2 subunit-containing nAChRs, respectively. alpha-Bungarotoxin (0.1 microM) or alpha-methyllycaconitine (0.1 microM), antagonists that block nAChRs containing alpha7 subunits, did not affect acetylcholine-induced responses. Immunohistochemical studies revealed that nearly every neuron in culture was labeled by an antibody (mAb35) that recognizes nAChR alpha3 and alpha5 subunits. Antibodies selective for alpha3, alpha5, or beta2 subunits also stained most neurons, whereas an alpha7 subunit antibody revealed very few neurons. In neurons in the intact myenteric plexus from newborn and adult guinea pigs, local application of acetylcholine (1 mM) and cytisine (1 mM) caused similar amplitude depolarizations, and these responses were blocked by nAChR antagonists with a rank order potency of mecamylamine > hexamethonium > DHbetaE. These data indicate that myenteric neurons maintained in culture predominantly express nAChRs composed of alpha3, alpha5, beta2, and beta4 subunits. These subunits may be in a homogeneous population of receptors with unique pharmacological properties, or multiple receptors of different subunit composition may be expressed by individual neurons.  相似文献   

10.
Ginseng saponins, major active components of ginseng root used by folk medicine in the treatment of various diseases, produce multiple pharmacological responses having many effects on the central and peripheral nervous system. Specifically, ginsenoside Rg(2) has been shown to block the nicotinic acetylcholine receptors in bovine chromaffin cells. We have studied the effect of Rg(2) on different types of human neuronal nicotinic acetylcholine receptors (nAChRs), both homomeric and heteromeric, expressed in Xenopus oocytes. Rg(2) did not affect the acetylcholine (ACh)-induced currents in alpha(7) human receptors, however Rg(2) affected the peak currents, and mainly the desensitization of heteromeric receptors alpha(3)beta(4), alpha(3)beta(2), alpha(4)beta(4), and alpha(4)beta(2). Both effects, a diminution of peak current and an increase of desensitization, are dose-dependent and are very similar for all the receptors. The mechanism of action has been studied in more detail in alpha(3)beta(4) and alpha(4)beta(2) receptors where we found a negligible shift in the ACh dose-response curves and a persistence of the Rg(2) effects at high ACh concentrations, indicative of a noncompetitive antagonism. A lack of voltage dependence on the reduction of the peak currents induced by ACh also suggests that Rg(2) does not act as an open channel blocker of human nAChR. The results indicate that Rg(2) acts specifically on heteromeric human nAChRs modulating their desensitization and suggest a possible mechanism by which this saponin contributes to the multiple therapeutic effects of ginseng.  相似文献   

11.
The plant alkaloid methyllycaconitine (MLA) is considered to be a selective antagonist of the alpha7 subtype of neuronal nicotinic acetylcholine receptor (nAChR). However, 50 nM MLA partially inhibited (by 16%) [(3)H]dopamine release from rat striatal synaptosomes stimulated with 10 microM nicotine. Other alpha7-selective antagonists had no effect. Similarly, MLA (50 nM) inhibited [(3)H]dopamine release evoked by the partial agonist (2-chloro-5-pyridyl)-9-azabicyclo[4.2.1]non-2-ene (UB-165) (0.2 microM) by 37%. In both cases, inhibition by MLA was surmountable with higher agonist concentrations, indicative of a competitive interaction. At least two subtypes of presynaptic nAChR can modulate dopamine release in the striatum, and these nAChR are distinguished by their differential sensitivity to alpha-conotoxin-MII (alpha-CTx-MII). MLA was not additive with a maximally effective concentration of alpha-CTx-MII (100 nM) in inhibiting [(3)H]dopamine release elicited by 10 microM nicotine or 0.2 microM UB-165, suggesting that both toxins act at the same site. This was confirmed in quantitative binding assays with (125)I-alpha-CTx-MII, which displayed saturable specific binding to rat striatum and nucleus accumbens with B(max) values of 9.8 and 16.5 fmol/mg of protein, and K(d) values of 0.63 and 0.83 nM, respectively. MLA fully inhibited (125)I-alpha-CTx-MII binding to striatum and nucleus accumbens with a K(i) value of 33 nM, consistent with the potency observed in the functional assays. We speculate that MLA and alpha-CTx-MII interact with a presynaptic nAChR of subunit composition alpha3/alpha6beta2beta3* on dopamine neurons. The use of MLA as an alpha7-selective antagonist should be exercised with caution, especially in studies of nAChR in basal ganglia.  相似文献   

12.
Adverse 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) effects are usually ascribed to neurotransmitter release in the central nervous system. Since clinical features such as fasciculations, muscle cramps, rapidly progressing hyperthermia, hyperkalemia, and rhabdomyolysis point to the skeletal muscle as additional target, we studied the effects of MDMA on native and cultured skeletal muscle. We addressed the question whether malignant hyperthermia (MH)-susceptible (MHS) muscle is predisposed to adverse MDMA reactions. Force measurements on muscle strips showed that 100 microM MDMA, a concentration close to that determined in some MDMA users, regularly enhanced the sensitivity of skeletal muscle to caffeine-induced contractures but did not cause contractures on its own. The left-shift of the dose-response curve induced by MDMA was greater in normal than in MHS muscle. Furthermore, MDMA did not release Ca(2+) from isolated sarcoplasmic reticulum vesicles. These findings do not support the view of an MH-triggering effect on muscle. However, MDMA induced Ca(2+) transients in myotubes and increased their acidification rate. Surprisingly, alpha-bungarotoxin, a specific antagonist of the nicotinic acetylcholine receptor (nAChR), abolished these MDMA effects. The nAChR agonistic action of MDMA was confirmed by patch-clamp measurements of ion currents on human embryonic kidney cells expressing nAChR. We conclude that the neuromuscular junction is a target of MDMA and that an activation of nAChR contributes to the muscle-related symptoms of MDMA users. The drug may be of particular risk in individuals with abundant extrajunctional nAChR such as in generalized denervation or muscle regeneration processes and may act on central nAChR.  相似文献   

13.
The presence of distinct nicotinic acetylcholine receptor (nAChR) subtypes in specific central nervous system (CNS) areas offers the possibility of developing targeted therapies for diseases involving the affected brain region. Parkinson's disease is a neurodegenerative movement disorder characterized by a progressive degeneration of the nigrostriatal system. alpha6-containing nAChRs (designated alpha6(*)1 nAChRs) have a relatively selective localization to the nigrostriatal pathway and a limited number of other CNS regions. In addition to a unique distribution, this subtype has a distinct pharmacology and specifically interacts with alpha-conotoxinMII, a toxin key in its identification and characterization. alpha6(*) nAChRs are also regulated in a novel manner, with a decrease in their number after nicotine treatment rather than the increase observed for alpha4(*) nAChRs. Striatal alpha6(*) receptors were functional and mediate dopamine release, suggesting that they have a presynaptic localization. This is further supported by lesion studies showing that both alpha6(*) nAChR sites and their functions are dramatically decreased with dopaminergic nerve terminal loss, in contrast to only small declines in alpha4(*) and no change in alpha7(*) receptors. Although the role of nigrostriatal alpha6(*) nAChRs is only beginning to be understood, an involvement in motor behavior is emerging. This latter observation coupled with the finding that nicotine protects against nigrostriatal damage suggest that alpha6(*) nAChRs may represent unique targets for neurodegenerative disorders linked to the nigrostriatal system such as Parkinson's disease.  相似文献   

14.
15.
Drugs that antagonize nicotinic acetylcholine receptors (nAChRs) can be used to inhibit nicotine-induced behavior in both humans and animals. The aim of our experiments is to establish a proof-of-principle that antagonism of nAChRs by negative allosteric modulation can alter behavior in a relevant animal model of addiction, nicotine self-administration. We have identified a novel, negative allosteric modulator of nAChRs, UCI-30002 [N-(1,2,3,4-tetrahydro-1-naphthyl)-4-nitroaniline], with selectivity for the major neuronal nAChR subtypes over muscle-type nAChRs. After systemic administration, UCI-30002 significantly reduces nicotine self-administration in rats on both fixed ratio and progressive ratio schedules of reinforcement. The minimum effective dose that significantly alters nicotine self-administration corresponds to brain concentrations of UCI-30002 that produce at least 30% inhibition of the major neuronal nAChR subtypes measured in vitro. UCI-30002 has no effect on responding for food reinforcement in rats on either type of schedule, indicating that there is no effect on general responding or natural reward. UCI-30002 represents validation of the concept that negative allosteric modulators may have significant benefits as a strategy for treating nicotine addiction and encourages the development of subtype-selective modulators.  相似文献   

16.
We investigated the effect of the phytoestrogen cimicifugoside, one of the pharmacologically active ingredients of the medicinal plant Cimicifuga racemosa (black cohosh) that has been used to treat many kinds of neuronal and menopausal symptoms, such as arthritis, menopausal depression, and nerve pain. Cimicifugoside inhibited calcium increase induced by 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), a nicotinic acetylcholine receptor (nAChR) agonist in bovine adrenal chromaffin cells with a half-maximal inhibitory concentration (IC(50)) of 18 +/- 2 microM. In contrast, cimicifugoside did not affect the calcium increases evoked by high K(+), veratridine, and bradykinin. The DMPP-induced sodium increase was also inhibited by cimicifugoside with an IC(50) of 2 +/- 0.3 microM, suggesting that the activity of nAChRs is inhibited by cimicifugoside. Cimicifugoside did not affect the KCl-induced secretion but markedly inhibited the DMPP-induced catecholamine secretion that was monitored by carbon-fiber amperometry in real time and high-performance liquid chromatography through electrochemical detection. The results suggest that cimicifugoside selectively inhibits nAChR-mediated response in bovine chromaffin cells.  相似文献   

17.
A variety of peptide ligands are known to inhibit the function of neuronal nicotinic acetylcholine receptors (nAChRs), including small toxins and brain-derived peptides such as beta-amyloid(1-42) and synthetic apolipoproteinE peptides. The myristoylated alanine-rich C kinase substrate (MARCKS) protein is a major substrate of protein kinase C and is highly expressed in the developing and adult brain. The ability of a 25-amino acid synthetic MARCKS peptide, derived from the effector domain (ED), to modulate nAChR activity was tested. To determine the effects of the MARCKS ED peptide on nAChR function, receptors were expressed in Xenopus laevis oocytes, and two-electrode voltage-clamp experiments were performed. The MARCKS ED peptide completely inhibited acetylcholine (ACh)-evoked responses from alpha7 nAChRs in a dose-dependent manner, yielding an IC(50) value of 16 nM. Inhibition of ACh-induced responses was both activity- and voltage-independent. The MARCKS ED peptide was unable to block alpha-bungarotoxin binding. A MARCKS ED peptide in which four serine residues were replaced with aspartate residues was unable to inhibit alpha7 nAChR-mediated currents. The MARCKS ED peptide inhibited ACh-induced alpha4beta2 and alpha2beta2 responses, although with decreased potency. The effects of the MARCKS ED peptide on native nAChRs were tested using acutely isolated rat hippocampal slices. In hippocampal interneurons, the MARCKS ED peptide was able to block native alpha7 nAChRs in a dose-dependent manner. The MARCKS ED peptide represents a novel antagonist of neuronal nAChRs that has considerable utility as a research tool.  相似文献   

18.
The effects of varying the structure of philanthotoxin (PhTX) were investigated on binding of the channel blockers: [3H]perhydrohistrionicotoxin (H12-HTX) to the nicotinic acetylcholine receptor (nACh-R) of Torpedo electric organ and [3H]MK-801 [( 3H]-5-methyl-10,11-dihydro-5H-dibenzocyclo-hepten-5,10-imine maleate) to the N-methyl-D-aspartate receptor (NMDA-R) of rat brain cortex. The four moieties of PhTX (tyrosine, butyrate, spermine and the terminal amino group) were modified or conjugated resulting in 36 compounds. Although the potencies of the PhTX analogs on both receptors were higher with increasing lipophilicity and the polyamine chain length, there was considerable divergence between the two receptors' channels in the structural activity requirements for blockade by PhTX analogs. A major difference was the more critical role of the amine terminal for inhibition of the nACh-R than the NMDA-R, whereas the reverse might be true for the tyrosine moiety. The potency range of PhTX analogs on [3H]H12-HTX binding was 1070, but only 21 on [3H]MK-801 binding. Adding a lysine or arginine onto the spermine moiety increased the compound's potency on the nACh-R with little effect on the NMDA-R. Because spermine is a component of PhTX, the effects of five polyamines were also studied. Spermine and spermidine potentiated [3H]MK-801 binding, whereas putrescine, cadeverine and agmatine inhibited it. In presence of glutamate, higher concentrations of all polyamines inhibited [3H]MK-801 binding. On the nACh-R, spermine, spermidine and agmatine inhibited [125I]alpha-bungarotoxin and also [3H]H12-HTX binding in presence of carbamylcholine. The complex nature of PhTX interactions with the two receptors suggests that PhTX may bind to two sites: an external polyamine binding site and a channel binding site.  相似文献   

19.
N-alcohols exert a dual action on neuronal nicotinic acetylcholine (ACh) receptors with short-chain alcohols exhibiting potentiating action and long-chain alcohols exhibiting inhibitory action. n-Butanol lies at the transition point from potentiation to inhibition. To elucidate the mechanism of dual action of alcohols, the effects of n-butanol on the human alpha4beta2 ACh receptors expressed in the HEK293 cell line were analyzed in detail by the whole-cell patch-clamp technique. Prolonged applications of n-butanol evoked small currents with an EC(50) value of 230 +/- 90 mM and a Hill coefficient of 1.8 +/- 0.4. This current was blocked by either the ACh channel blocker mecamylamine or the receptor blocker dihydro-beta-erythroidine, indicating that butanol activated receptors as a partial agonist. As expected from its partial agonist action, n-butanol also modulated ACh-induced currents in a concentration-dependent manner. Butanol at 300 mM potentiated currents induced by low concentrations of ACh (相似文献   

20.
BACKGROUND: Ulcerative colitis (UC) is a disease largely of non-smokers, in which nicotine is of therapeutic value. The mode of action is unknown, but may involve nicotinic acetylcholine receptors (nAChRs) in the bowel wall. AIM: To investigate the presence of nAChRs in rectal mucosa, and the effect of smoking and nicotine on their expression. DESIGN: Prospective case-control study. METHODS: In situ hybridization (ISH) and immunocytochemistry (ICC) were used to show alpha3 nAChRs in colonic mucosa. Rectal mucosa was examined from controls (n=55) and patients with inactive UC (n=62), both smokers and non-smokers, by ICC, using two antibodies to show the density and distribution of receptors in the mucosa. Non-smokers with UC (n=43) were given transdermal nicotine or placebo patches for 6 months, and rectal biopsies, taken before and after treatment, were examined by ICC to show nAChRs. RESULTS: In normal colon, ISH and ICC showed alpha3 subunit in a wide variety of cells, including mucosal epithelium. In rectal biopsies, neither smoking nor nicotine influenced the expression of alpha3 immunoreactivity in epithelium, either in controls or UC. However, controls had a significantly greater density of immunodetectable mucosal epithelium alpha3 subunit, compared with UC patients. DISCUSSION: The presence of nAChRs in colonic epithelium may be pertinent to the beneficial effect of nicotine in UC, but since neither smoking nor nicotine treatment is associated with any change in the expression of epithelial alpha3 nAChRs, the effect may be due to functional changes in the receptor. The decreased number of alpha3 nAChRs in UC compared with controls may be related to an increased cell turnover in UC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号