首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
结核病是病死率仅次于艾滋病的全球第二大感染性疾病。当前结核病的控制面临一系列挑战。世界卫生组织推荐的结核治疗方案疗程长,对敏感菌和耐药菌感染分别需6个月、20个月的持续治疗。现有抗结核一线化疗药仍为四十多年前所开发,品种有限,选择余地小。此外,多耐药结核病(MDR-TB)及广泛耐药结核病(XDR-TB)的流行,严重阻碍了结核病控制的进展。严峻的结核病防治形势急需抗结核新药的出现。近十年来,抗结核化疗新药研发在沉寂多年后取得了较明显进展。本文介绍了近年上市与处于临床及临床前研究阶段的抗结核新药。  相似文献   

2.
Although a vaccine and effective chemotherapy against tuberculosis (TB) have been available for more than half a century, TB was declared a global emergency in 1993. Current chemotherapeutic regimens are being undermined by lack of resources for proper implementation and control, and the emergence of multi-drug resistant strains of Mycobacterium tuberculosis. Several new chemotherapeutic agents are under development, mainly derived from existing anti-TB drugs or broad-spectrum antibiotics. New experimental agents include immunomodulants and drugs directed against novel cellular targets.  相似文献   

3.
抗结核药物的作用机制及结核分枝杆菌的耐药机理   总被引:1,自引:0,他引:1  
结核病是一个严重的全球性疾病,随着艾滋病病毒及耐药结核菌的出现及播散成为结核病控制的又一个威胁。虽然我们有结核疫苗及抗结核药物,但控制结核病仍是一件很棘手的事情。多重耐药结核菌的不断出现给结核病的治疗带来很大的困难。为有效控制耐药结核病,我们必须了解结核菌的耐药机理。本文讨论了抗结核药物的作用机制及结核菌的耐药机理。结核菌耐药机理的阐明对耐药菌的快速分子诊断及新药的开发有重要的意义。  相似文献   

4.
喹诺酮抗分枝杆菌活性及其构效关系研究进展   总被引:1,自引:0,他引:1  
随着耐药结核病(尤其是耐多药结核病)发病率的不断上升以及结核病与AIDS病的并发,结核病疫情再度上升,成为全球重大公共卫生问题。作为二线抗结核病药物,氟喹诺酮类药物具有一定优势,它们在临床治疗耐多药结核病以及对不能耐受一线抗结核病药物的患者治疗中扮演着重要角色。本文综述了近年来喹诺酮(包括氟喹诺酮、6-非氟喹诺酮和非经典喹诺酮)在抗分枝杆菌活性及其构效关系方面的研究进展。  相似文献   

5.
Pulmonary tuberculosis (TB) has again become a global problem: it infects 2.2 billion people world-wide, caused the deaths of over 3 million last year and will produce over 8 million new cases of TB this coming year. Although effective therapy is widely available for antibiotic susceptible strains of Mycobacterium tuberculosis, current drugs are relatively useless against multi-drug resistant infections (MDRTB). Mortality is almost complete within two years regardless of therapy, and in the case of co-infection with HIV/AIDS, mortality is 100% within a few months of diagnosis especially the M. tuberculosis strain in XDRTB. As of the time of this writing no new effective anti-TB drugs have been made available by the pharmaceutical industry and XDRTB. Because TB is an intracellular infection of the non-killing macrophage of the lung, any agent that is to prove effective must have activity against MDRTB and XDRTB strains that have been phagocytosed by the human macrophage. This review intents to provide cogent in vitro, ex vivo and in vivo evidence that supports the use of a variety of commonly available phenothiazines for the therapy of MDRTB and XDRTB, especially when the prognosis of the infection is poor and the use of the recommend agents can take place along lines of "compassionate therapy". In addition, we will describe the macrophage assay as indispensable when an agent is to be further studied for its effectiveness as an anti-TB drug. In vitro studies if not complemented by ex vivo studies will for the most part be dead-ended since few agents that have activity in vitro have any activity against phagocytosed M. tuberculosis.  相似文献   

6.
Tuberculosis, HIV coinfection with TB, emergence of multidrug-resistant TB, and extensively drug-resistant TB are the major causes of death from infectious diseases worldwide. Because no new drug has been introduced in the last several decades, new classes of molecules as anti-TB drugs are urgently needed. Herein, we report the synthesis and structure-activity relationships of a series of thioester, amide, hydrazide, and triazolophthalazine derivatives of 4-alkoxy cinnamic acid. Many compounds exhibited submicromolar minimum inhibitory concentrations against Mycobacterium tuberculosis strain (H(37)Rv). Interestingly, compound 13e, a 4-isopentenyloxycinnamyl triazolophthalazine derivative, was found to be 100-1800 times more active than isoniazid (INH) when tested for its ability to inhibit the growth of INH-resistant M. tuberculosis strains. The results also revealed that 13e does not interfere with mycolic acid biosynthesis, thereby pointing to a different mode of action and representing an attractive lead compound for the development of new anti-TB agents.  相似文献   

7.
Infectious diseases are the leading cause of death worldwide. Among them, tuberculosis (TB) remains a major threat to public health, exacerbated by the emergence of multiple drug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis (Mtb). MDR-Mtb strains are resistant to first-line anti-TB drugs such as isoniazid and rifampicin; whereas XDR-Mtb strains are resistant to additional drugs including at least to any fluoroquinolone and one of the second-line anti-TB injectable drugs such as kanamycin, capreomycin, or amikacin. Clinically, these strains have significantly impacted the management of TB in high-incidence developing countries, where systemic surveillance of TB drug resistance is lacking. For effective management of TB on-site, early detection of drug resistance is critical to initiate treatment, to reduce mortality, and to thwart drug-resistant TB transmission. In this review, we discuss the diagnostic challenges to detect drug-resistant TB at the point-of-care (POC). Moreover, we present the latest advances in nano/microscale technologies that can potentially detect TB drug resistance to improve on-site patient care.  相似文献   

8.
Despite the availability of the BCG vaccine and chemotherapy, tuberculosis (TB) remains a leading infectious killer worldwide. The recent rise of TB and especially the alarming increase of drug-resistant TB call for urgent need to develop new anti-TB drugs. Lengthy chemotherapy and increasing emergence of drug-resistant strains pose a significant problem for effective control. The need for a lengthy TB therapy is a consequence of the presence of persistent Mycobacterium tuberculosis, not effectively killed by current anti-TB agents. A list of new drug candidates along with proposed targets for intervention is described. Recent advances in the knowledge of the biology of the organism and the availability of the genome sequence provide a wide range of novel targets for drug design. Gene products involved in controlling vital aspects of mycobacterial metabolism, persistence, virulence and cell wall synthesis would be attractive targets. It is expected that the application of functional genomics tools, such as microarray and proteomics, in combination with modern approaches, such as structure-based drug design and combinatorial chemistry to biology-based targets, will lead to the development of new drugs that are not only active against drug-resistant TB but also can shorten the course of TB therapy.  相似文献   

9.
One third of the world population is infected with tuberculosis (TB), and new infections occur at a rate of one per second. The recent increase in the emergence of drug-resistant strains of Mycobacterium tuberculosis and the dearth of anti-TB drugs is threatening the future containment of TB. New drugs or delivery systems that will stop the spread of TB and slow down or prevent the development of drug-resistant strains are urgently required. One of the reasons for the emergence of drug-resistant strains is the exposure of mycobacteria to sub-therapeutic levels of one or more antibiotics. Lung lesions containing large numbers of bacteria are poorly vascularized and are fortified with thick fibrous tissue; conventional therapy by the oral and parenteral routes may provide sub-therapeutic levels of anti-TB drugs to these highly sequestered organisms. Administering drugs by the pulmonary route to the lungs allows higher drug concentrations in the vicinity of these lesions. Supplementing conventional therapy with inhaled anti-TB therapy may allow therapeutic concentrations of drug to penetrate effectively into lung lesions and treat the resident mycobacteria.  相似文献   

10.
The aetiological agent of tuberculosis (TB), Mycobacterium tuberculosis, is responsible for millions of deaths annually. The increasing prevalence of the disease, the emergence of multidrug-resistant strains, and the devastating effect of human immunodeficiency virus co-infection have led to an urgent need for the development of new and more efficient antimycobacterial drugs. Since the shikimate pathway is present and essential in algae, higher plants, bacteria, and fungi, but absent from mammals, the gene products of the common pathway might represent attractive targets for the development of new antimycobacterial agents. In this review we describe studies on shikimate pathway enzymes, including enzyme kinetics and structural data. We have focused on mycobacterial shikimate pathway enzymes as potential targets for the development of new anti-TB agents.  相似文献   

11.
12.
Every minute, somewhere in the world four people die from tuberculosis (TB), yet it has been nearly 40 years since a novel drug was introduced to treat this disease. The ever increasing number of TB cases together with the advent of multi-drug resistant (MDR) TB, has stimulated the search for novel anti-TB agents. An array of novel drug targets is provided by the mycobacterial cell wall, whose integrity is essential for bacterial viability. Over the years researchers have identified potential drug targets that are associated with the synthesis of various cell wall constituents. This classic approach, together with the unravelling of the Mycobacterium tuberculosis genome sequence, has placed TB drug research in an unprecedented position. An entire new set of genetic and bioinformatic tools for probing potential drug targets is now available. As therapies using first-line drugs like isoniazid (INH) or rifampin in combination with second-line drugs, like ethambutol (EMB) still continues, a number of substituted fluoroquinolones are being considered as the new generation of anti-TB drugs for their favourable pharmacokinetic profile and excellent oral bioavailability. In this review, the future of anti-TB drugs is discussed with reflection on the structure and biosynthesis of cell wall constituents that are potential drug targets. The importance and relevance of the M. tuberculosis genome sequence for the development of novel anti-TB drugs, have also been underscored.  相似文献   

13.
New drugs active against drug-resistant tuberculosis are urgently needed to extend the range of TB treatment options to cover drug resistant infections. Quinoxaline derivatives show very interesting biological properties (antibacterial, antiviral, anticancer, antifungal, antihelmintic, insecticidal) and evaluation of their medicinal chemistry is still in progress. In this review we report the properties and the recent developments of quinoxaline 1,4-di-N-oxide derivatives as potential anti-tuberculosis agents. Specific agents are reviewed that have excellent antitubercular drug properties, are active on drug resistant strains and non-replicating mycobacteria. The properties of select analogs that have in vivo activity in the low dose aerosol infection model in mice will be reviewed.  相似文献   

14.
15.
摘要:由结核分枝杆菌(Mycobacterium tuberculosis,Mtb)感染引起的结核病(TB)是世界上最致命的感染性疾病之一。因抗 结核药物的泛用与滥用,细菌耐药问题日渐凸显。近几十年仅有2种抗结核新药上市,由于药物使用中的副作用及其耐药菌株 的出现,急需开展针对Mtb新靶点的药物研究。本文围绕近几年全球最新报道的抗结核药物靶点及其相关化合物进行综述并加 以系统总结,以期在一定程度上为新型抗结核药物的研发提供参考。  相似文献   

16.
Introduction: The furiously advancing cases of multidrug-resistant tuberculosis (TB) along with the recent emergence of total drug resistant TB and TB-AIDS comorbidity present an increased threat to global public health. Knowledge of pharmacokinetic properties helps in selecting an appropriate anti-TB dosage regimen to achieve optimal results in patients.

Areas covered: This article provides a brief compilation of the information available regarding published pharmacokinetic data for anti-TB drugs and may act as a single window for investigators/medical practitioners in this field. The information regarding absorption, tissue distribution, elimination and pharmacokinetic interactions of the first- and second-line anti-TB drugs and candidate drugs under clinical trials is discussed.

Expert opinion: Pharmacokinetic properties such as poor absorption, too short biological half-life, extensive first-pass metabolism, drug-food and drug-drug related interactions are not attractive for prospective anti-TB drugs and significantly contribute to treatment failure and further resistance. The long duration, monotonous and multidrug treatment plan leads to poor patient compliance and resulted in a greater occurrence of anti-TB drug resistance worldwide. Few new agents, which are in development phase, are considering the aspect of shortening duration of the treatment regimen and provide a boost in therapy that is sorely needed.  相似文献   

17.
INTRODUCTION: The high susceptibility of human immunodeficiency virus-infected people to tuberculosis (TB), the emergence of multi-drug-resistant (MDR-TB) strains and extensively drug-resistant (XDR-TB) ones, has brought TB into the focus of urgent scientific interest. As a result, there has been an upsurge in recent years to find new anti-TB agents, with the cinnamoyl moiety having been identified as a particularly simple and effective pharmacophore for this purpose. AREAS COVERED: This review aims at highlighting the potential of (non)natural cinnamic derivatives to treat TB. It provides an overview of the worldwide recent patent and literature surrounding this type of easy-to-prepare small molecules. There is a special focus on their salient structural and chemical features involved in the reported anti-TB activities. EXPERT OPINION: Cinnamic derivatives clearly appear as attractive drug candidates to combat TB. So far, literature has reported that they are easy to synthesize and have promising anti-TB activities. Nevertheless, the mode(s) of action of these small molecules remain(s) to date obscure, which is why the implicated molecular mechanisms deserve to be investigated in further detail in the near future.  相似文献   

18.
Tuberculosis (TB) has again emerged as a challenging disease, victimizing a large section of the world population. Long duration of therapy, drug resistance, side effects associated with large doses of number of drugs, and economic reasons have resulted in poor patient compliance and in ineffective anti-TB therapy. In addition, drug-resistant strains of tubercle bacilli have further compounded the problem. In this article challenges facing present therapy, the mode of tuberculosis infection, challenges facing fixed-dose combination (FDC) formulation, new anti-TB molecules from the modification of existing anti-TB drugs for better activity, new molecules acting on the novel targets for reducing bacterial pathogenicity, antibiotics and nonantibiotics exhibiting anti-TB activity, and new drug delivery systems are discussed.  相似文献   

19.
由于结核病具有严重的危害性,人类从未停止过与其抗争。微生物来源的抗结核药物作为人类抵御结核病侵袭的重要武器之一,具有很多防治结核的优势。这类药物品种繁多,在临床中有广泛的应用。随着新的致病菌的出现以及结核杆菌耐药率的不断提高,多药耐药结核菌感染的诊治丽临很大的挑战。鉴于经济、政治、科技、文化环境的差异,不同时期和不同国家,其市场情况也有一定变化。本文对当前这类药物国内外生产情况、研发进展及市场动态进行分析研究,并提供相应建议,以期为相关企业制定营销战略决策起导向作用。  相似文献   

20.
Tuberculosis (TB) remains one of the main causes of morbidity worldwide, and the emergence of multi-drug resistant (MDR) Mycobacterium tuberculosis strains in some parts of the world has become a major concern. The decrease in activity of the major anti-TB drugs, such as isoniazid and rifampicin, is an important threat and alternative therapies are urgently required. The anti-TB activity of the fluoroquinolones has been under investigation since the 1980s. Many are active in vitro but only a few, including ofloxacin, ciprofloxacin, sparfloxacin, levofloxacin and lomefloxacin, have been clinically tested. Fluoroquinolones can be used in co-therapy with the available anti-TB drugs. However, the choice of fluoroquinolone should be based not only on the in vitro activity, but also on the long-term tolerance. Fluoroquinolones are novel anti-TB drugs to be used when a patient is infected with a MDR-TB strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号