首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Extensive genome-wide linkage disequilibrium in cattle   总被引:10,自引:0,他引:10  
A genome-wide linkage disequilibrium (LD) map was generated using microsatellite genotypes (284 autosomal microsatellite loci) of 581 gametes sampled from the dutch black-and-white dairy cattle population. LD was measured between all marker pairs, both syntenic and nonsyntenic. Analysis of syntenic pairs revealed surprisingly high levels of LD that, although more pronounced for closely linked marker pairs, extended over several tens of centimorgan. In addition, significant gametic associations were also shown to be very common between nonsyntenic loci. Simulations using the known genealogies of the studied sample indicate that random drift alone is likely to account for most of the observed disequilibrium. No clear evidence was obtained for a direct effect of selection ("Bulmer effect"). The observation of long range disequilibrium between syntenic loci using low-density marker maps indicates that LD mapping has the potential to be very effective in livestock populations. The frequent occurrence of gametic associations between nonsyntenic loci, however, encourages the combined use of linkage and linkage disequilibrium methods to avoid false positive results when mapping genes in livestock.  相似文献   

2.
Linkage disequilibrium patterns of the human genome across populations   总被引:7,自引:0,他引:7  
We studied the patterns of linkage disequilibrium (LD) in the human genome among three populations: African Americans, Caucasians and Ashkenazi Jews. These three populations represent admixed, outbred and isolated populations, respectively. The study examined defined chromosomal regions across the whole genome. We found that SNP allele frequencies are highly correlated between Ashkenazi Jews and Caucasians and somewhat distinct in African Americans. In addition, Ashkenazi Jews have a modest increase in LD compared with Caucasians, and both have greater LD than African Americans. The three populations differed more significantly with regard to haplotype heterogeneity. We found, as expected, that Ashkenazi Jews display the greatest extent of homogeneity and African Americans the greatest extent of heterogeneity. We found that most of the variance in LD can be attributed to the difference between regions and markers rather than to that between different population types. The average recombination rates estimated by low-resolution genetic maps can only explain a small fraction of the variance between regions. We found that LD (in terms of r(2)) decreases as a function of distance even within the so-called 'haplotype blocks'. This has significant consequences when using LD mapping for the genetic dissection of complex traits, as higher density SNP maps will be required to scan the genome.  相似文献   

3.
目的提出一种对高通量单核苷酸多态位点(single nucleotide polymorphism,SNP)关联研究的数据分析方法。方法在160名上海地区中国人中进行754个SNP的基因型检测,分别构建病例组和对照组的连锁不平衡(linkage disequilibrium,LD)图谱,通过比较两组间染色体区域LD图谱随物理距离的变化趋势寻找与疾病相关的位点,并与传统LD分析以及SNP单点、单倍型分析进行比较。结果LD图谱的分析能判断出两组间LD存在差异的染色体区域,并且该区域SNP等位基因频率和单倍型频率在两组间分布存在统计学差异或差异趋势。结论可应用该方法对高通量SNP的关联研究进行数据分析。  相似文献   

4.
Integrated cytogenetic pachytene fluorescence in situ hybridization (FISH) maps were developed for chromosomes 1, 3, 4, 5, 6, and 8 of maize using restriction fragment length polymorphism marker-selected Sorghum propinquum bacterial artificial chromosomes (BACs) for 19 core bin markers and 4 additional genetic framework loci. Using transgenomic BAC FISH mapping on maize chromosome addition lines of oats, we found that the relative locus position along the pachytene chromosome did not change as a function of total arm length, indicative of uniform axial contraction along the fibers during mid-prophase for tested loci on chromosomes 4 and 5. Additionally, we cytogenetically FISH mapped six loci from chromosome 9 onto their duplicated syntenic regions on chromosomes 1 and 6, which have varying amounts of sequence divergence, using sorghum BACs homologous to the chromosome 9 loci. We found that successful FISH mapping was possible even when the chromosome 9 selective marker had no counterpart in the syntenic block. In total, these 29 FISH-mapped loci were used to create the most extensive pachytene FISH maps to date for these six maize chromosomes. The FISH-mapped loci were then merged into one composite karyotype for direct comparative analysis with the recombination nodule-predicted cytogenetic, genetic linkage, and genomic physical maps using the relative marker positions of the loci on all the maps. Marker colinearity was observed between all pair-wise map comparisons, although marker distribution patterns varied widely in some cases. As expected, we found that the recombination nodule-based predictions most closely resembled the cytogenetic map positions overall. Cytogenetic and linkage map comparisons agreed with previous studies showing a decrease in marker spacing in the peri-centromeric heterochromatin region on the genetic linkage maps. In fact, there was a general trend with most loci mapping closer towards the telomere on the linkage maps than on the cytogenetic maps, regardless of chromosome number or maize inbred line source, with just some of the telomeric loci exempted. Finally and somewhat surprisingly, we observed considerable variation between the relative arm positions of loci when comparing our cytogenetic FISH map to the B73 genomic physical maps, even where comparisons were to a B73-derived cytogenetic map. This variation is more evident between different chromosome arms, but less so within a given arm, ruling out any type of inbred-line dependent global features of linear deoxyribonucleic acid compared with the meiotic fiber organization. This study provides a means for analyzing the maize genome structure by producing new connections for integrating the cytogenetic, linkage, and physical maps of maize.  相似文献   

5.
A Metric Linkage Disequilibrium Map of a Human Chromosome   总被引:4,自引:0,他引:4  
We used LDMAP ( Maniatis et al. 2002 ) to analyse SNP data spanning chromosome 22 ( Dawson et al. 2002 ), to obtain a whole‐chromosome metric LD map. The LD map, with map distances analogous to the centiMorgan scale of linkage maps, identifies regions of high LD as plateaus (‘blocks’) and characterises steps which define the relationship between these regions. From this map we estimate that block regions comprise between 32% and 55% of the euchromatic portion of chromosome 22 and that increasing marker density within steps may increase block coverage. Steps are regions of low LD which correspond to areas of variable recombination intensity. The intensity of recombination is related to the height of the step and thus intense recombination hot‐spots can be distinguished from more randomly distributed historical events. The LD maps are more closely related to the high‐resolution linkage map ( Kong et al. 2002 ) than average measures of ρ with recombination accounting for between 34% and 52% of the variance in patterns of LD (r = 0.58 – 0.71, p = 0.0001) . Step regions are closely correlated with a range of sequence motifs including GT/CA repeats. The LD map identifies holes in which greater marker density is required and defines the optimal SNP spacing for positional cloning, which suggests that some multiple of around 50,000 SNPs will be required to efficiently screen Caucasian genomes. Further analyses which investigate selection of informative SNPs and the effect of SNP allele frequency and marker density will refine this estimate.  相似文献   

6.
The HLA system is the most polymorphic of all human genetic systems. The frequency of HLA class I alleles and their linkage disequilibrium patterns differ significantly among human populations as shown in studies using serologic methods. Many DNA-defined alleles with identical serotypes may have variable frequencies in different populations. We typed HLA-A, B, and C loci at the allele level by PCR-based methods in 1,296 unrelated subjects from five major outbred groups living in the U.S.A (African, AFAM; Caucasians, CAU; Asian, ORI; Hispanic, HIS, and North American Natives, NAI). We detected 46, 100 and 32 HLA-A, B, and C alleles, respectively. ORI and HIS presented more alleles at each of these loci. There was lack of correlation between the levels of heterozygosity and the number of alleles detected in each population. In AFAM, heterozygosity (>90%) is maximized at all class I loci. HLA-A had the lowest heterozygosity in all populations but CAU. Tight LD was observed between HLA-B and C alleles. AFAM had weaker or nonexistent associations between alleles of HLA-A and B than other populations. Analysis of the genetic distances between these and other populations showed a close relationship between specific US populations and a population from their original continents. ORI exhibited the largest genetic distance with all the other U.S. groups and were closer to NAI. Evidence of admixture with CAU was observed for AFAM and HIS. HIS also had significant frequencies of AFAM and Mexican Indian alleles. Differences in both LD and heterozygosity levels suggest distinct evolutionary histories of the HLA loci in the geographical regions from where the U.S. populations originated.  相似文献   

7.
Recent family and genome-wide association studies strongly suggest shared genetic risk factors for schizophrenia (SZ) and bipolar disorder (BP). However, linkage studies have not been used to test for statistically significant genome-wide overlap between them. Forty-seven Portuguese families with sibpairs concordant for SZ, BP, or psychosis (PSY, which includes either SZ or psychotic BP) were genotyped for over 57,000 markers using the Affymetrix 50K Xba SNP array. NPL and Kong and Cox LOD scores were calculated in Merlin for all three phenotypes. Empirical significance was determined using 1,000 gene-dropping simulations. Significance of genome-wide genetic overlap between SZ and BP was determined by the number of simulated BP scans having the same number of loci jointly linked with the real SZ scan, and vice versa. For all three phenotypes, a number of regions previously linked in this sample remained so. For BP, chromosome 1p36 achieved significance (11.54-15.71 MB, LOD = 3.51), whereas it was not even suggestively linked at lower marker densities, as did chromosome 11q14.1 (89.32-90.15 MB, NPL = 4.15). Four chromosomes had loci at which both SZ and BP had NPL ≥ 1.98, which was more than would be expected by chance (empirical P = 0.01 using simulated SZ scans; 0.07 using simulated BP scans), although they did not necessarily meet criteria for suggestive linkage individually. These results suggest that high-density marker maps may provide greater power and precision in linkage studies than lower density maps. They also further support the hypothesis that SZ and BP share at least some risk alleles.  相似文献   

8.
In this paper, we investigate variance component models of both linkage analysis and high resolution linkage disequilibrium (LD) mapping for quantitative trait loci (QTL). The models are based on both family pedigree and population data. We consider likelihoods which utilize flanking marker information, and carry out an analysis of model building and parameter estimations. The likelihoods jointly include recombination fractions, LD coefficients, the average allele substitution effect and allele dominant effect as parameters. Hence, the model simultaneously takes care of the linkage, LD or association and the effects of the putative trait locus. The models clearly demonstrate that linkage analysis and LD mapping are complementary, not exclusive, methods for QTL mapping. By power calculations and comparisons, we show the advantages of the proposed method: (1) population data can provide information for LD mapping, and family pedigree data can provide information for both linkage analysis and LD mapping; (2) using family pedigree data and a sparse marker map, one may investigate the prior suggestive linkage between trait locus and markers to obtain low resolution of the trait loci, because linkage analysis can locate a broad candidate region; (3) with the prior knowledge of suggestive linkage from linkage analysis, both population and family pedigree data can be used simultaneously in high resolution LD mapping based on a dense marker map, since LD mapping can increase the resolution for candidate regions; (4) models of high resolution LD mappings using two flanking markers have higher power than that of models of using only one marker in the analysis; (5) excluding the dominant variance from the analysis when it does exist would lose power; (6) by performing linkage interval mappings, one may get higher power than by using only one marker in the analysis.  相似文献   

9.
Two methods, linkage analysis and linkage disequilibrium (LD) mapping or association study, are usually utilised for mapping quantitative trait loci (QTL). Linkage mapping is appropriate for low resolution mapping to localise trait loci to broad chromosome regions within a few cM (<10 cM), and is based on family data. Linkage disequilibrium mapping, on the other hand, is useful in high resolution or fine mapping, and is based on both population and family data. Using only one marker, one may carry out single-point linkage analysis and linkage disequilibrium mapping. Using two or more markers, it is possible to flank the QTL by multipoint analysis. The development and thus availability of dense marker maps, such as single nucleotide polymorphisms (SNP) in human genome, presents a tremendous opportunity for multipoint fine mapping. In this article, we propose a regression approach of mapping QTL by linkage disequilibrium mapping based on population data. Assuming that two marker loci flank one quantitative trait locus, a two-point linear regression is proposed to analyse population data. We derive analytical formulas of parameter estimations, and non-centrality parameters of appropriate tests of genetic effects and linkage disequilibrium coefficients. The merit of the method is shown by the power calculation and comparison. The two-point regression model can capture much more linkage and linkage disequilibrium information than that derived when only one marker is used. For a complex disease with heritability h(2)> or =0.15, a study with sample size of 250 can provide high power for QTL detection under moderate linkage disequilibria.  相似文献   

10.
Simulation studies were undertaken with POPGEN, a new population simulation program, to explore strategies for detecting loci underlying rare and common disorders in a small population that has been partially isolated for 10 generations. Haplotype-sharing analysis (HSA) and non-parametric linkage analysis (NPL) were applied to the simulated haplotype and pedigree data for 100 cases, 100 controls, and an average of 28 multiplex pedigrees from cases' families, for a 2-5 cM map of markers. When identity by descent (IBD) status was known (using unique founder marker allele designations assigned during simulation), a linkage disequilibrium (LD) signal could be detected under disease-generating models predicting relative risk to sibs of 11.8 (high-RR) or 2.67 (mod-RR). Detection was more difficult when marker alleles were down-coded to resemble microsatellites (heterozygosities 0.75-0.80). False-positive peaks on nondisease chromosomes were uncommon. NPL analysis was more powerful than HSA at this marker density using down-coded alleles and assuming availability of all affected relatives. LD mapping of common disorders is likely to require denser maps of highly polymorphic markers to approximate full IBD information. LD and linkage mapping provide independent information, and strategies that combine these two methods could be useful in studies of small isolated populations.  相似文献   

11.
Information about linkage disequilibrium (LD) patterns and haplotype structures for candidate genes is instructive for the design and analysis of genetic association studies for complex diseases and drug response. ABCC1 and ABCG2 are genes coding for two multidrug resistance (MDR) associated transporters; they are also related to some pathophysiological traits. To pinpoint the LD profiles of these MDR genes in Chinese, we systemically screened 27 unrelated individuals for single nucleotide polymorphisms (SNPs) in the coding and regulatory regions of these genes, and thereby characterized their haplotype structures. Despite marked variations in haplotype diversity, LD pattern and intragenic recombination intensity between the two genes, both loci could be partitioned into several LD blocks, in which a modest number of haplotypes accounted for a high fraction of the sampled chromosomes. We concluded that each locus has its own genomic LD profile, but that they still share a common segmental LD architecture with low haplotype diversity. Our data will benefit genetic association studies of complex traits and drug response possibly related to these genes.  相似文献   

12.
The isolated population of the Faroe Islands has a history of recent expansion after being limited to a small size for centuries. Such an isolated population may be ideal for linkage disequilibrium mapping of disease genes if linkage disequilibrium (LD) extends over large regions. Analyses of 18 markers on 12q24.3, spanning a region of 4.3 Mb (16 cM), revealed extensive LD in the Faroese population. Maximum LD was found between marker pairs separated by more than 3.8 Mb. The same region had a maximum LD of only 1.2 and 1.4 Mb respectively in two outbred Danish and British populations analysed here for comparison. The analyses of gene diversity excess at 15 unlinked microsatellite markers did not reveal any sign of a severe bottleneck to have occurred within approximately 1200 years' history of the Faroese population. The extensive LD in this population may, therefore, have arisen primarily by random genetic drift. The implications for future gene mapping studies are discussed.  相似文献   

13.
It has been suggested that the haplotypic relationship between microsatellite markers and single nucleotide polymorphisms (SNPs) is of considerable importance, as microsatellite markers can potentially be incorporated into haplotypes containing SNPs to increase marker density across a region of interest. However, SNPs and microsatellite markers have different mutation rates and durations, and it is conceivable that the linkage disequilibrium (LD) patterns between the genetic markers may considerably differ. We assessed the LD patterns using 1,661 SNPs and 65 microsatellite markers along chromosome 22 and investigated whether common patterns of LD between the two genetic markers are deduced from the results. The results demonstrated that the patterns of LD among microsatellite markers varied considerably and the LD runs of SNPs and microsatellite markers showed distinct patterns. Microsatellite markers have a much higher mutation rate and the evolution of microsatellite markers is a more complex process which has distinct mutation properties from those of SNPs. We consider that these might contribute to the different LD patterns between the two genetic markers. Therefore, it would seem inadvisable to make assumptions about persistence of LD across even a relatively small genetic distance among microsatellite markers and to construct mixed marker haplotypes/LD maps employing microsatellite markers.  相似文献   

14.
In genomewide linkage scans for complex diseases involving many loci with small genetic effects, it may be the case that no loci reach conventional statistical significance. A complementary method of evaluating linkage results, locus counting, may provide evidence for the existence of a number of genetic loci in these cases. Sib-pair study designs are often used in genomewide linkage scans, but because all genotype configurations are consistent with Mendelian inheritance, genotyping error will go largely undetected. Previous work on the effect of genotyping error has focused on a single disease locus. We considered the effect of two levels of genotyping error on genomewide evidence for linkage by using the simulated GAW 13 data. For affected sib-pair and non-parametric quantitative trait study designs, a 0.5% genotyping error rate reduced the number of independent linkage regions towards that expected under the null hypothesis of no linkage. A 2% genotyping error rate yielded less independent linkage regions than expected under the null hypothesis of no linkage. For a quantitative trait analysed using a parametric regression-based method, there was very little erosion of the linkage signal, even for error rates as high as 2%.  相似文献   

15.
Autosomal dominant retinitis pigmentosa (ADRP) is caused by mutations in two known genes, rhodopsin and peripherin/Rds, and seven loci identified only by linkage analysis. Rhodopsin and peripherin/Rds have been estimated to account for 20-31% and less than 5% of ADRP, respectively. No estimate of frequency has previously been possible for the remaining loci, since these can only be implicated when families are large enough for linkage analysis. We have carried out such analyses on 20 unrelated pedigrees with 11 or more meioses. Frequency estimates based on such a small sample provide only broad approximations, while the above estimations are based on mutation detection in much larger clinic based patient series. However, when markers are informative, linkage analysis cannot fail to detect disease causation at a locus, whereas mutation detection techniques might miss some mutations. Also diagnosing dominant RP from a family history taken in a genetic clinic may not be reliable. It is therefore interesting that 10 (50%) of the families tested have rhodopsin-RP, suggesting that, in large clearly dominant RP pedigrees, rhodopsin may account for a higher proportion of disease than had previously been suspected. Four (20%) map to chromosome 19q, implying that this is the second most common ADRP locus. One maps to chromosome 7p, one to 17p, and one to 17q, while none maps to 1cen, peripherin/Rds, 8q, or 7q. Three give exclusion of all of these loci, showing that while the majority of dominant RP maps to the known loci, a small proportion derives from loci yet to be identified.  相似文献   

16.
A genome-wide map of single nucleotide polymorphisms (SNP) and a pattern of linkage disequilibrium (LD) between their alleles are being established in three main ethnic groups. An important question is the applicability of such maps to different populations within a main ethnic group. Therefore, we have developed high-resolution SNP, haplotype and LD maps of vitamin D receptor gene region in large samples from five populations. Comparative analysis reveals that the LD patterns are identical in all four European populations tested with two small regions of 1.3 and 5.7 kb at which LD is disrupted completely resulting in three block-like regions over which there is significant and extensive LD. In an African population the pattern is similar, but two additional LD-breaking spots are also apparent. This LD pattern suggests combined action of recombination hotspots and founder effects, but cannot be explained by random recombination and genetic drift alone. Direct comparison indicates that the tag SNPs selected in one European population effectively predict the non-tag SNPs in the other Europeans, but not in the Gambians, for this region.  相似文献   

17.
Genome-wide association studies have transformed genetic studies of disease susceptibility, identifying many variants that may tag functional polymorphism nearby. Variants are often ascribed to a physically close gene exhibiting plausible functionality for a causal pathway. However, more physically remote genes may be at a lesser linkage or linkage disequilibrium (LD) distance from the tested SNP and could therefore contain the functional variant tagged. This analysis aims to identify instances where research may be misled by misassociation of a variant with a gene and develop tools to analyse genomic confounding. A catalogue of reported associations was systematically analysed for unreported genes which may represent the true functionality ascribed to a reported variant, calculating physical and genetic distances for all genes within 1 cM of the tagging polymorphism. Results revealed 55 SNPs where recombination was lower between the identified SNP and a physically more remote gene than initially reported, and 374 where an alternative gene was genetically and physically closer than the reported gene. Analyses show potential for genomic confounding through false inferences of variant association to a gene. An online visualization tool (http://gcb.genes.org.uk/) was developed to plot genes by physical and genetic distance relative to a variant, along with LD data.  相似文献   

18.
Extended intermarker linkage disequilibrium in the Afrikaners   总被引:1,自引:0,他引:1  
In this study we conducted an investigation of the background level of linkage disequilibrium (LD) in the Afrikaner population to evaluate the appropriateness of this genetic isolate for mapping complex traits. We analyzed intermarker LD in 62 nuclear families using microsatellite markers covering extended chromosomal regions. The markers were selected to allow the first direct comparison of long-range LD in the Afrikaners to LD in other demographic groups. Using several statistical measures, we find significant evidence for LD in the Afrikaners extending remarkably over a 6-cM range. In contrast, LD decays significantly beyond 3-cM distances in the other founder and outbred populations examined. This study strongly supports the appropriateness of the Afrikaner population for genome-wide scans that exploit LD to map common, multigenic disorders.  相似文献   

19.
Studies of linkage disequilibrium (LD) and its variation in the genome are of central importance for understanding evolutionary history, population structure, and selective sweeps. Extreme forms of the latter may result in runs of homozygosity (ROH). In human gene mapping, long ROHs are the basis for homozygosity mapping (HM) with length measured in terms of Mb (106 base pairs physical distance). LD varies greatly over the human genome so that long ROHs tend to occur preferentially in regions of high LD and ROHs of the same length in different regions are not strictly comparable. Thus, in human gene mapping, LD appears as a confounder that needs to be taken into account in the interpretation of ROHs. The effect of varying LD can be mitigated by working on a scale of centimorgans (cM, genetic distance) instead of Mb. We demonstrate this effect for HapMap 3 data on chromosome 19 and show examples with different ROH lengths depending on whether physical or genetic lengths are used. These results suggest that HM should preferably be done on genetic rather than physical distances.  相似文献   

20.
Detailed knowledge of linkage disequilibrium (LD) is regarded as a prerequisite for population-based disease gene mapping. Variable patterns across the human genome are now recognized, both between regions and populations. Here, we demonstrate that LD may also vary within a genomic region in a haplotype-specific manner. In 864 Caucasian unrelated individuals, we describe haplotype-specific LD patterns across the human MHC by the construction of gene-specific allelic haplotypes at 25 loci between HLA-A and Tapasin. Strong and extensive LD is found across both common and rare haplotypes, suggesting that haplotype structure is influenced by factors other than genetic drift, including both selection and differential haplotype recombination. Knowledge of haplotype-specific LD in the HLA may explain the apparent discrepant data from previous studies of global LD, help delineate key areas in mapping HLA-associated diseases and, together with recombination data, provide valuable information about a population's demographic history and the selective pressures operating on it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号