首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Insulinoma-associated protein (IA)-2beta, also known as phogrin, is an enzymatically inactive member of the transmembrane protein tyrosine phosphatase family and is located in dense-core secretory vesicles. In patients with type 1 diabetes, autoantibodies to IA-2beta appear years before the development of clinical disease. The genomic structure and function of IA-2beta, however, is not known. In the present study, we determined the genomic structure of IA-2beta and found that both human and mouse IA-2beta consist of 23 exons and span approximately 1,000 and 800 kb, respectively. With this information, we prepared a targeting construct and inactivated the mouse IA-2beta gene as demonstrated by lack of IA-2beta mRNA and protein expression. The IA-2beta(-/-) mice, in contrast to wild-type controls, showed mild glucose intolerance and impaired glucose-stimulated insulin secretion. Knockout of the IA-2beta gene in NOD mice, the most widely studied animal model for human type 1 diabetes, failed to prevent the development of cyclophosphamide-induced diabetes. We conclude that IA-2beta is involved in insulin secretion, but despite its importance as a major autoantigen in human type 1 diabetes, it is not required for the development of diabetes in NOD mice.  相似文献   

3.
Saeki K  Zhu M  Kubosaki A  Xie J  Lan MS  Notkins AL 《Diabetes》2002,51(6):1842-1850
IA-2 is a major autoantigen in type 1 diabetes. Autoantibodies to IA-2 appear years before the development of clinical disease and are being widely used as predictive markers to identify individuals at risk for developing type 1 diabetes. IA-2 is an enzymatically inactive member of the transmembrane protein tyrosine phosphatase family and is an integral component of secretory granules in neuroendocrine cells. To study its function, we generated IA-2-deficient mice. Northern and Western blot analysis showed that neither IA-2 mRNA nor protein was expressed. Physical examination of the IA-2(- /-) animals and histological examination of tissues failed to reveal any abnormalities. Nonfasting blood glucose levels, measured over 6 months, were slightly elevated in male IA-2(-/-) as compared to IA-2(+ /+) littermates, but remained within the nondiabetic range. Glucose tolerance tests, however, revealed statistically significant elevation of glucose in both male and female IA-2(-/-) mice and depressed insulin release. In vitro glucose stimulation of isolated islets showed that male and female mice carrying the disrupted gene released 48% (P < 0.001) and 42% (P < 0.01) less insulin, respectively, than mice carrying the wild-type gene. We concluded that IA-2 is involved in glucose-stimulated insulin secretion.  相似文献   

4.
5.
To elucidate a possible mechanism for regulation of insulin mRNA levels in the pancreatic B-cell, isolated mouse pancreatic islets were cultured in the presence of either glucose, leucine, or 2-ketoisocaproate, and insulin mRNA levels were compared with insulin biosynthesis, insulin release, and islet O2 uptake. It was observed that leucine or 2-ketoisocaproate was as effective as 20 mM glucose in supporting high insulin mRNA levels, high basal rates of insulin release or insulin synthesis, and rapid O2 uptake. Furthermore, islets cultured with either leucine or 2-ketoisocaproate could be stimulated to increase their insulin biosynthesis by a high glucose concentration. In addition the insulin release and respiration of such islets could be increased by exposure to 2-ketoisocaproate + glutamine. It is concluded that the maintenance of high concentrations of insulin mRNA levels and high rates of insulin biosynthesis and release are all processes correlated with metabolic fluxes in islets rather than the presence of the glucose molecule per se.  相似文献   

6.
The aim of this study was to estimate the time course of lysosomal transformations associated with crinophagy, i.e., the degradation of insulin within lysosomes, in the beta-cells of pancreatic islets. Primary and secondary lysosomes were identified in mouse islet beta-cells and subjected to ultrastructural morphometry. Islets from an in situ preparation were compared with isolated islets incubated in vitro. Under the in vitro conditions, the islets were initially exposed to 28 or 3.3 mM glucose for 24 h. Then the glucose concentration was rapidly changed to 3.3 and 28 mM glucose, respectively, and the islets were incubated for up to an additional 24 h. The beta-cell lysosomes were analyzed and related to alterations in insulin biosynthesis and secretion and islet insulin content after the rapid change in glucose concentration. In vivo, the beta-cell lysosomal population was predominantly composed of secondary lysosomes, which frequently contained secretory granule cores. After the initial 24-h period at 3.3 mM glucose, the volume density and the average volume of the secondary beta-cell lysosomes were increased, suggesting increased crinophagic activity. The mean diameter of the primary beta-cell lysosomes was decreased after 24 h at either 28 or 3.3 mM glucose. The change in glucose from 28 to 3.3 mM resulted in alterations in insulin biosynthesis and secretion, leading to an accumulation of insulin within the beta-cells. Lysosomal transformations suggestive of increased crinophagy were observed 24 h after the alteration in glucose concentration. The change from 3.3 to 28 mM glucose resulted in a parallel increase in insulin biosynthesis and secretion without a change in islet insulin content.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Arden C  Harbottle A  Baltrusch S  Tiedge M  Agius L 《Diabetes》2004,53(9):2346-2352
The association of glucokinase with insulin secretory granules has been shown by cell microscopy techniques. We used MIN6 insulin-secretory cells and organelle fractionation to determine the effects of glucose on the subcellular distribution of glucokinase. After permeabilization with digitonin, 50% of total glucokinase remained bound intracellularly, while 30% was associated with the 13,000g particulate fraction. After density gradient fractionation of the organelles, immunoreactive glucokinase was distributed approximately equally between dense insulin granules and low-density organelles that cofractionate with mitochondria. Although MIN6 cells show glucose-responsive insulin secretion, glucokinase association with the granules and low-density organelles was not affected by glucose. Subfractionation of the insulin granule components by hypotonic lysis followed by sucrose gradient centrifugation showed that glucokinase colocalized with the granule membrane marker phogrin and not with insulin. PFK2 (6-phosphofructo-2-kinase-2/fructose-2,6-bisphosphatase)/FDPase-2, a glucokinase-binding protein, and glyceraldehyde phosphate dehydrogenase, which has been implicated in granule fusion, also colocalized with glucokinase after hypotonic lysis or detergent extaction of the granules. The results suggest that glucokinase is an integral component of the granule and does not translocate during glucose stimulation.  相似文献   

8.
Guillam MT  Dupraz P  Thorens B 《Diabetes》2000,49(9):1485-1491
We previously reported that pancreatic islet beta-cells from GLUT2-null mice lost the first phase but preserved the second phase of glucose-stimulated insulin secretion (GSIS). Furthermore, we showed that the remaining secretory activity required glucose uptake and metabolism because it can be blocked by inhibition of oxidative phosphorylation. Here, we extend these previous studies by analyzing, in GLUT2-null islets, glucose transporter isoforms and glucokinase expression and by measuring glucose usage, GSIS, and glucose-stimulated insulin mRNA biosynthesis. We show that in the absence of GLUT2, no compensatory expression of either GLUT1 or GLUT3 is observed and that glucokinase is expressed at normal levels. Glucose usage by isolated islets was increased between 1 and 6 mmol/l glucose but was not further increased between 6 and 20 mmol/l glucose. Parallel GSIS measurements showed that insulin secretion was not stimulated between 2.8 and 6 mmol/l glucose but was increased by >4-fold between 6 and 20 mmol/l glucose. Stimulation by glucose of total protein and insulin biosynthesis was also markedly impaired in the absence of GLUT2. Finally, we re-expressed GLUT2 in GLUT2-null beta-cells using recombinant lentiviruses and demonstrated a restoration of normal GSIS. Together, these data show that in the absence of GLUT2, glucose can still be taken up by beta-cells, albeit at a low rate, and that this transport activity is unlikely to be attributed to GLUT1 or GLUT3. This uptake activity, however, is limiting for normal glucose utilization and signaling to secretion and translation. These data further demonstrate the key role of GLUT2 in murine beta-cells for glucose signaling to insulin secretion and biosynthesis.  相似文献   

9.
Chan SL  Mourtada M  Morgan NG 《Diabetes》2001,50(2):340-347
Efaroxan, like several other imidazoline reagents, elicits a glucose-dependent increase in insulin secretion from pancreatic beta-cells. This response has been attributed to efaroxan-mediated blockade of KATP channels, with the subsequent gating of voltage-sensitive calcium channels. However, increasing evidence suggests that, at best, this mechanism can account for only part of the secretory response to the imidazoline. In support of this, we now show that efaroxan can induce functional changes in the secretory pathway of pancreatic beta-cells that are independent of KATP channel blockade. In particular, efaroxan was found to promote a sustained sensitization of glucose-induced insulin release that persisted after removal of the drug and to potentiate Ca2+-induced insulin secretion from electropermeabilized islets. To investigate the mechanisms involved, we studied the effects of the efaroxan antagonist KU14R. This agent is known to selectively inhibit insulin secretion induced by efaroxan, without altering the secretory response to glucose or KCl. Surprisingly, however, KU14R markedly impaired the potentiation of insulin secretion mediated by agents that raise cAMP, including the adenylate cyclase activator, forskolin, and the phosphodiesterase inhibitor isobutylmethyl xanthine (IBMX). These effects were not accompanied by any reduction in cAMP levels, suggesting an antagonistic action of KU14R at a more distal point in the pathway of potentiation. In accord with our previous work, islets that were exposed to efaroxan for 24 h became selectively desensitized to this agent, but they still responded normally to glucose. Unexpectedly, however, the ability of either forskolin or IBMX to potentiate glucose-induced insulin secretion was severely impaired in these islets. By contrast, the elevation of cAMP was unaffected by culture of islets with efaroxan. Taken together, the data suggest that, in addition to effects on the KATP channel, imidazolines also interact with a more distal component that is crucial to the potentiation of insulin secretion. This component is not required for Ca2+-dependent secretion per se but is essential to the mechanism by which cAMP potentiates insulin release. Overall, the results indicate that the actions of efaroxan at this distal site may be more important for control of insulin secretion than its effects on the KATP channel.  相似文献   

10.
11.
We examined the effects of rat islet amyloid polypeptide (IAPP) on insulin biosynthesis and secretion by isolated rat islets of Langerhans. Culture of islets for 24 h in the presence of 10(-6) M IAPP and 5.5 mM glucose had no effect on insulin mRNA levels. Similarly, the rates of proinsulin biosynthesis were not altered in islets incubated in 10(-4)-10(-9) M IAPP and 5.5 mM glucose, nor was the rate of conversion of proinsulin to insulin changed at 10(-6) M IAPP. Addition of 10(-5) M IAPP to islets incubated in 11 mM glucose decreased the fractional insulin secretion rate; however, the secretion of newly synthesized proinsulin and insulin was not affected. These data indicate that it is unlikely that IAPP is a physiologically relevant modulator of insulin biosynthesis or secretion.  相似文献   

12.
One impediment for a wider application of islet transplantation is the limited number of donor pancreata for islet isolation. A more efficient utilization of available organs could in part alleviate this problem. Perfluorocarbons (PFCs) have a high oxygen solubility coefficient and maintain high oxygen partial pressures for extended time. They serve also as oxygen "reservoirs" for harvested organs in pancreas organ transplantation. The aim of this study was to test whether the use of PFCs could also be beneficial for the secretory activity and overall viability of cultured purified islets before transplantation. Purified rat islets were cultured in static conditions with or without oxygen-saturated PFCs for 1 or 7 days. Cell death and apoptosis were assessed by trypan blue staining, DNA strand breaks, and caspase 3/7 activity. mRNA levels of insulin and ICA512/IA-2, a membrane marker of secretory granules (SGs), were quantitated by real-time PCR, whereas insulin content and secretion were measured by RIA. Polypyrimidine tract binding protein (PTB), which promotes SG biogenesis, was assessed by Western blotting. The number of SGs and the ultrastructural appearance of beta5-cells were analyzed by cryoimmunoelectronmicroscopy for insulin. Various parameters, including caspase activity, insulin and ICA512/IA-2 mRNA levels, PTB expression, number of secretory granules, and ultrastructural appearance did not significantly differ between control and PFC-cultured islets. On the other hand, PFC culture islets showed significantly increased DNA fragmentation and a reduced insulin stimulation index at both time points compared to control islets. While advantageous for the transport of human harvested organs, the use of PFH in the culture may be comparable to and/or not provide advantage over conventional protocols for culture of islets for transplantation.  相似文献   

13.
W S Zawalich  V A Diaz  K C Zawalich 《Diabetes》1988,37(11):1478-1483
The influence of cyclic AMP (cAMP) and extracellular calcium on phosphoinositide (PI) hydrolysis in isolated islets was assessed and related to insulin output. Three stimulants were chosen to activate the beta-cell: sulfated cholecystokinin (CCK-8S, 200 nM), high-level glucose (20 mM), and the sulfonylurea tolbutamide (200 microM). The insulin secretory response to all three agonists was amplified by forskolin (which increases cAMP levels) and reduced by nitrendipine (which decreases calcium influx). All three stimulants increased the hydrolysis of inositol-containing phospholipids, an event monitored by an increase in [3H]inositol efflux from [3H]inositol-prelabeled islets and by the accumulation of labeled inositol phosphates. Forskolin, despite its positive impact on insulin secretion, reduced [3H]inositol efflux and inositol phosphate accumulation in response to all agonists. A similar inhibitory effect on these parameters was noted with nitrendipine; however, nitrendipine abolished secretion in response to all agonists. These findings support the following conclusions: 1) an increase in cellular cAMP levels reduces the quantitative impact of various agonists on these indices of PI hydrolysis; 2) despite this inhibitory effect, cAMP amplifies the insulin secretory response to these agonists; and 3) extracellular calcium is a crucial determinant of both PI hydrolysis and the ensuing insulin secretory response.  相似文献   

14.
The physiological role of soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) proteins in insulin exocytosis has been reported in pancreatic beta-cells. To determine whether the beta-cells of GK rats, a nonobese rodent model of type 2 diabetes, exhibit abnormalities in their SNARE proteins, we studied the expression and function of target (t)-SNAREs, syntaxin 1A, and synaptosomal-associated protein of 25 kDa (SNAP-25) in GK rat islets. Although insulin release and insulin content of islets isolated from 12-week-old GK rats were reduced, the proinsulin biosynthetic rate was about twofold higher than that in control rat islets, and no change in the preproinsulin mRNA level was observed. Pulse-chase experiments suggested the increased degradation of insulin in GK rat islets. Immunoblot analysis revealed that protein levels of syntaxin 1A and SNAP-25 in GK rat islets decreased to approximately 60% of the levels in control rat islets. We then examined whether the restoration of the decreased expression of t-SNAREs to the normal level in GK rat islets affected insulin secretion. Restoration was achieved by the overexpression of syntaxin 1A and SNAP-25 via the recombinant adenovirus-mediated gene transduction system, which recovered levels of these proteins to almost control levels. Glucose-stimulated insulin release from AdexlCA syntaxin 1A and Adex1CA SNAP-25-infected GK rat islets increased up to approximately 135 and 200%, respectively, of those from uninfected GK rat islets, although no difference in basal (2.2 mmol/l glucose) insulin release was evident between them. We conclude that decreased expression of t-SNAREs in GK rat islets is in part the defect responsible for impaired insulin secretion.  相似文献   

15.
Chronic elevations in plasma levels of fatty acids (FAs) adversely affect pancreatic beta-cell function in type 2 diabetes. In vitro, we have previously shown that deleterious effects of prolonged exposure of isolated islets to FAs were dependent on the presence of elevated glucose concentration. This led us to hypothesize that both hyperlipidemia and hyperglycemia must be present simultaneously for FAs to affect beta-cell function. To test this hypothesis in vivo, we administered a high-fat diet for 6 weeks to Goto-Kakizaki (GK) rats. High-fat feeding had no effect on insulin secretion, insulin content, or insulin mRNA levels in islets from normoglycemic Wistar rats. In contrast, high-fat feeding markedly impaired glucose-induced insulin secretion in islets from GK rats. High-fat feeding did not affect triglyceride (TG) content or the rate of glucose oxidation in islets. It was, however, accompanied by a twofold increase in uncoupling protein (UCP)-2 levels in GK rat islets. Insulin treatment completely normalized glucose-induced insulin secretion and prevented the increase in UCP-2 expression in islets from high-fat-fed GK rats. We conclude that hyperlipidemia induced by high-fat feeding affects insulin secretion in islets from hyperglycemic GK rats only, by a mechanism which may involve, at least in part, modulation of UCP-2 expression.  相似文献   

16.
17.
18.
R S Clements  W B Rhoten  W R Starnes 《Diabetes》1977,26(12):1109-1116
The subcellular localization of the incorporation of 2-(3H)-myoinositol into lipids has been studied in isolated pancreatic islets of the rat. The recovery of lipid-bound myoinositol increased with time in the nuclear, mitochondrial, microsomal, and secretory granule fractions. The utilization of a filtration technique for the more complete separation of mitochondrial and secretory granule elements permitted us to show that the recovery of lipid-bound 2-(3H)-myoinositol increased most rapidly in the secretory granule fraction. A 30-minute exposure of prelabeled islets to a stimulatory concentration of D-glucose (3.0 mg./ml.) resulted in a statistically significant decrease in the amount of lipid-bound 2-(3H)-myoinositol that was recovered from the secretory granule fraction (p less than 0.001). In contrast, exposure of islets to the elevated glucose concentration had no statistically significant effect on the recovery of lipid-bound radioactivity from other subcellular fractions. Since the majority of lipid-bound radioactivity associated with the secretory granule fraction could be recovered with the presumptive secretory granule membranes, these data suggest that the hydrolysis of phosphatidylinositol that accompanies glucose-induced insulin secretion from the rat pancreatic islet may be localized to the beta granule and, in particular, to its limiting membrane.  相似文献   

19.
In pancreatic beta-cells, glucose metabolism signals insulin secretion by altering the cellular array of messenger molecules. ATP is particularly important, given its role in regulating cation channel activity, exocytosis, and events dependent upon its hydrolysis. Uncoupling protein (UCP)-2 is proposed to catalyze a mitochondrial inner-membrane H(+) leak that bypasses ATP synthase, thereby reducing cellular ATP content. Previously, we showed that overexpression of UCP-2 suppressed glucose-stimulated insulin secretion (GSIS) in isolated islets (1). The aim of this study was to identify downstream consequences of UCP-2 overexpression and to determine whether insufficient insulin secretion in a diabetic model was correlated with increased endogenous UCP-2 expression. In isolated islets from normal rats, the degree to which GSIS was suppressed was inversely correlated with the amount of UCP-2 expression induced. Depolarizing the islets with KCl or inhibiting ATP-dependent K(+) (K(ATP)) channels with glybenclamide elicited similar insulin secretion in control and UCP-2-overexpressing islets. The glucose-stimulated mitochondrial membrane ((m)) hyperpolarization was reduced in beta-cells overexpressing UCP-2. ATP content of UCP-2-induced islets was reduced by 50%, and there was no change in the efflux of Rb(+) at high versus low glucose concentrations, suggesting that low ATP led to reduced glucose-induced depolarization, thereby causing reduced insulin secretion. Sprague-Dawley rats fed a diet with 40% fat for 3 weeks were glucose intolerant, and in vitro insulin secretion at high glucose was only increased 8.5-fold over basal, compared with 28-fold in control rats. Islet UCP-2 mRNA expression was increased twofold. These studies provide further strong evidence that UCP-2 is an important negative regulator of beta-cell insulin secretion and demonstrate that reduced (m) and increased activity of K(ATP) channels are mechanisms by which UCP-2-mediated effects are mediated. These studies also raise the possibility that a pathological upregulation of UCP-2 expression in the prediabetic state could contribute to the loss of glucose responsiveness observed in obesity-related type 2 diabetes in humans.  相似文献   

20.
Calpains play a role in insulin secretion and action   总被引:17,自引:0,他引:17  
Studies of the genetic basis of type 2 diabetes suggest that variation in the calpain-10 gene affects susceptibility to this common disorder, raising the possibility that calpain-sensitive pathways may play a role in regulating insulin secretion and/or action. Calpains are ubiquitously expressed cysteine proteases that are thought to regulate a variety of normal cellular functions. Here, we report that short-term (4-h) exposure to the cell-permeable calpain inhibitors calpain inhibitor II and E-64-d increases the insulin secretory response to glucose in mouse pancreatic islets. This dose-dependent effect is observed at glucose concentrations above 8 mmol/l. This effect was also seen with other calpain inhibitors with different mechanisms of action but not with cathepsin inhibitors or other protease inhibitors. Enhancement of insulin secretion with short-term exposure to calpain inhibitors is not mediated by increased responses in intracellular Ca2+ or increased glucose metabolism in islets but by accelerated exocytosis of insulin granules. In muscle strips and adipocytes, exposure to both calpain inhibitor II and E-64-d reduced insulin-mediated glucose transport. Incorporation of glucose into glycogen in muscle also was reduced. These results are consistent with a role for calpains in the regulation of insulin secretion and insulin action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号