首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondria take center stage in aging and neurodegeneration   总被引:24,自引:0,他引:24  
  相似文献   

2.
Mitochondria are key cytoplasmic organelles, responsible for generating cellular energy, regulating intracellular calcium levels, altering the reduction-oxidation potential of cells, and regulating cell death. Increasing evidence suggests that mitochondria play a central role in aging and in neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and Freidriech ataxia. Further, several lines of evidence suggest that mitochondrial dysfunction is an early event in most late-onset neurodegenerative diseases. Biochemical and animal model studies of inherited neurodegenerative diseases have revealed that mutant proteins of these diseases are associated with mitochondria. Mutant proteins are reported to block the transport of nuclear-encoded mitochondrial proteins to mitochondria, interact with mitochondrial proteins and disrupt the electron transport chain, induce free radicals, cause mitochondrial dysfunction, and, ultimately, damage neurons. This article discusses critical issues of mitochondria causing dysfunction in aging and neurodegenerative diseases, and discusses the potential of developing mitochondrial medicine, particularly mitochondrially targeted antioxidants, to treat aging and neurodegenerative diseases.  相似文献   

3.
Oxidative stress is a metabolic condition arising from imbalance between the production of potentially reactive oxygen species and the scavenging activities. Mitochondria are the main providers but also the main scavengers of cell oxidative stress. The role of mitochondrial dysfunction and oxidative stress in the pathogenesis of neurodegenerative diseases is well documented. Therefore, therapeutic approaches targeting mitochondrial dysfunction and oxidative damage hold great promise in neurodegenerative diseases. Despite this evidence, human experience with antioxidant neuroprotectants has generally been negative with regards to the clinical progress of disease, with unclear results in biochemical assays. Here we review the antioxidant approaches performed so far in neurodegenerative diseases and the future challenges in modern medicine.  相似文献   

4.
Complex I is the first protein component of the mitochondrial respiratory chain and as such plays a crucial role in ATP production and mitochondrial function in general. Mitochondrial dysfunction has been identified in a number of neurodegenerative diseases. In some of these the mitochondrial abnormality is primary and in others secondary. Mitochondrial toxins are capable of producing relatively selective neuronal cell death and have been used to produce models of human neurodegenerative diseases e.g. 1-methyl 4-phenyl 1,2,3,6 tetrahydropyridine (MPTP) for Parkinson's disease, and 3-nitropropionic acid for Huntington's disease. Annonacin, an ingredient of local soursop, is a Complex I inhibitor and has been incriminated as the cause of a parkinsonian tauopathy disorder in Guadeloupe. A systematic analysis has identified several environmentally available potent lipophilic Complex I inhibitors that can induce neuronal cell death in striatal cultures and somatodendritic redistribution of tau protein. It is possible that these compounds may contribute to the pathogenesis of neurodegenerative disorders, although further work must be done to confirm their potential participation in pathogenesis.  相似文献   

5.
Oxidative stress, mitochondrial damage and neurodegenerative diseases****   总被引:1,自引:0,他引:1  
Oxidative stress and mitochondrial damage have been implicated in the pathogenesis of several neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Oxidative stress is characterized by the overproduction of reactive oxygen species, which can induce mitochondrial DNA mutations, damage the mitochondrial respiratory chain, alter membrane permeability, and influence Ca2+ homeostasis and mitochondrial defense systems. All these changes are implicated in the development of these neurodegenerative diseases, mediating or amplifying neuronal dysfunction and triggering neurodegeneration. This paper summarizes the contribution of oxidative stress and mitochondrial damage to the onset of neurodegenerative diseases and discusses strategies to modify mitochondrial dysfunction that may be attractive therapeutic interventions for the treatment of various neurodegenerative diseases.  相似文献   

6.
The unique energy demands of neurons require well-orchestrated distribution and maintenance of mitochondria. Thus, dynamic properties of mitochondria, including fission, fusion, trafficking, biogenesis, and degradation, are critical to all cells, but may be particularly important in neurons. Dysfunction in mitochondrial dynamics has been linked to neuropathies and is increasingly being linked to several neurodegenerative diseases, but the evidence is particularly strong, and continuously accumulating, in Parkinson's disease (PD). The unique characteristics of neurons that degenerate in PD may predispose those neuronal populations to susceptibility to alterations in mitochondrial dynamics. In addition, evidence from PD-related toxins supports that mitochondrial fission, fusion, and transport may be involved in pathogenesis. Furthermore, rapidly increasing evidence suggests that two proteins linked to familial forms of the disease, parkin and PINK1, interact in a common pathway to regulate mitochondrial fission/fusion. Parkin may also play a role in maintaining mitochondrial homeostasis through targeting damaged mitochondria for mitophagy. Taken together, the current data suggests that mitochondrial dynamics may play a role in PD pathogenesis, and a better understanding of mitochondrial dynamics within the neuron may lead to future therapeutic treatments for PD, potentially aimed at some of the earliest pathogenic events.  相似文献   

7.
There is significant evidence that the pathogenesis of several neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, Friedreich's ataxia (FRDA), multiple sclerosis and amyotrophic lateral sclerosis, may involve the generation of reactive oxygen species (ROS) and/or reactive nitrogen species (RNS) associated with mitochondrial dysfunction. The mitochondrial genome may play an essential role in the pathogenesis of these diseases, and evidence for mitochondria being a site of damage in neurodegenerative disorders is based in part on observed decreases in the respiratory chain complex activities in Parkinson's, Alzheimer's, and Huntington's disease. Such defects in respiratory complex activities, possibly associated with oxidant/antioxidant imbalance, are thought to underlie defects in energy metabolism and induce cellular degeneration. The precise sequence of events in FRDA pathogenesis is uncertain. The impaired intramitochondrial metabolism with increased free iron levels and a defective mitochondrial respiratory chain, associated with increased free radical generation and oxidative damage, may be considered possible mechanisms that compromise cell viability. Recent evidence suggests that frataxin might detoxify ROS via activation of glutathione peroxidase and elevation of thiols, and in addition, that decreased expression of frataxin protein is associated with FRDA. Many approaches have been undertaken to understand FRDA, but the heterogeneity of the etiologic factors makes it difficult to define the clinically most important factor determining the onset and progression of the disease. However, increasing evidence indicates that factors such as oxidative stress and disturbed protein metabolism and their interaction in a vicious cycle are central to FRDA pathogenesis. Brains of FRDA patients undergo many changes, such as disruption of protein synthesis and degradation, classically associated with the heat shock response, which is one form of stress response. Heat shock proteins are proteins serving as molecular chaperones involved in the protection of cells from various forms of stress. In the central nervous system, heat shock protein (HSP) synthesis is induced not only after hyperthermia, but also following alterations in the intracellular redox environment. The major neurodegenerative diseases, Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), Huntington's disease (HD) and FRDA are all associated with the presence of abnormal proteins. Among the various HSPs, HSP32, also known as heme oxygenase I (HO-1), has received considerable attention, as it has been recently demonstrated that HO-1 induction, by generating the vasoactive molecule carbon monoxide and the potent antioxidant bilirubin, could represent a protective system potentially active against brain oxidative injury. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing the heat shock response. This may open up new perspectives in medicine, as molecules inducing this defense mechanism appear to be possible candidates for novel cytoprotective strategies. In particular, manipulation of endogenous cellular defense mechanisms, such as the heat shock response, through nutritional antioxidants, pharmacological compounds or gene transduction, may represent an innovative approach to therapeutic intervention in diseases causing tissue damage, such as neurodegeneration.  相似文献   

8.
Mitochondria are cytoplasmic organelles responsible for life and death. Extensive evidence from animal models, postmortem brain studies of and clinical studies of aging and neurodegenerative diseases suggests that mitochondrial function is defective in aging and neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Several lines of research suggest that mitochondrial abnormalities, including defects in oxidative phosphorylation, increased accumulation of mitochondrial DNA defects, impaired calcium influx, accumulation of mutant proteins in mitochondria, and mitochondrial membrane potential dissipation are important cellular changes in both early and late-onset neurodegenerative diseases. Further, emerging evidence suggests that structural changes in mitochondria, including increased mitochondrial fragmentation and decreased mitochondrial fusion, are critical factors associated with mitochondrial dysfunction and cell death in aging and neurodegenerative diseases. This paper discusses research that elucidates features of mitochondria that are associated with cellular dysfunction in aging and neurodegenerative diseases and discusses mitochondrial structural and functional changes, and abnormal mitochondrial dynamics in neurodegenerative diseases. It also outlines mitochondria-targeted therapeutics in neurodegenerative diseases.  相似文献   

9.
Polyglutamine diseases are a major cause of neurodegeneration worldwide. Recent studies highlight the importance of protein quality control mechanisms in regulating polyglutamine-induced toxicity. Here we discuss a model of disease pathogenesis that integrates current understanding of the role of protein folding in polyglutamine disease with emerging evidence that alterations in native protein interactions contribute to toxicity. We also incorporate new findings on other age-related neurodegenerative diseases in an effort to explain how protein aggregation and normal aging processes might be involved in polyglutamine disease pathogenesis.  相似文献   

10.
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. Despite a large amount of research, the pathogenetic mechanism of these diseases has not yet been clarified. Abnormal protein folding, oxidative stress, mitochondrial dysfunction, and apoptotic mechanisms have all been reported as causes of neurodegenerative diseases in association with neuroinflammatory mechanisms which, by generating deleterious molecules, could promote the cascade of events leading to neurodegeneration. Heat shock proteins (HSPs) play a central role in preventing protein misfolding and inhibiting apoptotic activity, and represent a class of proteins potentially involved in PD pathogenesis. The present review will focus on two HSPs, HSP70 and HSP90, with the aim of specifying their role in PD pathogenesis.  相似文献   

11.
Neurodegenerative diseases are a heterogeneous group of disorders that are incurable and characterized by the progressive degeneration of the function and structure of the central nervous system (CNS) for reasons that are not yet understood. Neurodegeneration is the umbrella term for the progressive death of nerve cells and loss of brain tissue. Because of their high energy requirements, neurons are especially vulnerable to injury and death from dysfunctional mitochondria. Widespread damage to mitochondria causes cells to die because they can no longer produce enough energy. Several lines of pathological and physiological evidence reveal that impaired mitochondrial function and dynamics play crucial roles in aging and pathogenesis of neurodegenerative diseases. As mitochondria are the major intracellular organelles that regulate both cell survival and death, they are highly considered as a potential target for pharmacological‐based therapies. The purpose of this review was to present the current status of our knowledge and understanding of the involvement of mitochondrial dysfunction in pathogenesis of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) and the importance of mitochondrial biogenesis as a potential novel therapeutic target for their treatment. Likewise, we highlight a concise overview of the key roles of mitochondrial electron transport chain (ETC.) complexes as well as mitochondrial biogenesis regulators regarding those diseases.  相似文献   

12.
13.
Although oxidative stress and mitochondrial dysfunction have been linked to neurodegenerative diseases such as Alzheimer's disease (AD), it remains unclear how mitochondrial oxidative stress may induce neuronal death. In a variety of tissues, cumulative oxidative stress, disrupted mitochondrial respiration, and mitochondrial damage are associated with, and may indeed promote cell death and degeneration. In this review, we examine current evidence supporting the involvement of mitochondria and mitochondrially generated stress signaling in AD and discuss potential implications for the mechanism of pathogenesis of this disease. Mitochondria are pivotal in controlling cell life and death not only by producing ATP, and sequestering calcium, but by also generating free radicals and serving as repositories for proteins which regulate the intrinsic apoptotic pathway. Perturbations in the physiological function of mitochondria inevitably disturb cell function, sensitize cells to neurotoxic insults and may initiate cell death, all significant phenomena in the pathogenesis of a number of neurodegenerative disorders including AD.  相似文献   

14.
15.
Alzheimer's disease (AD) is the most common form of dementia. Several hypotheses have been put forward to explain the basis of disease onset and progression. A complicated array of molecular events has been implicated in the pathogenesis of AD. It is attributed to a variety of pathological conditions that share similar critical processes, such as oxidative stress, proteinaceous aggregations, mitochondrial dysfunctions and energy failure. There is increasing evidence suggesting that metal homeostasis is dysregulated in the pathology of AD. Biometals play an important role in the normal body functioning but AD may be mediated or triggered by disproportion of metal ions leading to changes in critical biological systems and initiating a cascade of events finally leading to neurodegeneration and cell death. The link is multifactorial, and although the source of the shift in oxidative homeostasis is still unclear, current evidence points to changes in the balance of redox transition metals, especially iron, copper (Cu) and other trace metals. Their levels in the brain are found to be elevated in AD. In other neurodegenerative disorders, Cu, zinc, aluminum and manganese are involved. This paper is a review of recent advances of the role of metals in the pathogenesis and pathophysiology of AD and related neurodegenerative diseases.  相似文献   

16.
Ludolph  A. C.  Meyer  T.  Riepe  M. W. 《Journal of neurology》2000,247(1):I7-I16

It is well accepted that excitotoxic mechanisms contribute to the pathogenesis of acute neuronal death in stroke, epilepsy, or brain trauma. It is less widely acknowledged that excitotoxic mechanisms play a role in the pathogenesis of chronic neurological disorders, in particular neurodegenerative diseases. However, evidence is accumulating that this mechanism is indeed part of the pathogenesis of late-onset neurodegenerative diseases. One of the clinical examples may be amyotrophic lateral sclerosis, a disease in which antiexcitotoxic strategies have neuroprotective effects in both, an established animal model and in man. In addition, there is accumulating neuropathological, pathobiochemical and pathophysiological evidence which indicates that excitotoxic mechanisms are part of the pathogenesis of the human disease and consequently part of the mechanisms explaining selective vulnerability (“pathoclisis”) in the human motor system.

  相似文献   

17.
Abnormal interactions and misfolding of synaptic proteins in the nervous system are being extensively explored as important pathogenic events resulting in neurodegeneration in various neurological disorders. These include Alzheimer's disease (AD), Parkinson's disease (PD), and dementia with Lewy bodies (DLB). In AD, misfolded amyloid beta peptide 1-42 (Abeta), a proteolytic product of amyloid precursor protein metabolism, accumulates in the neuronal endoplasmic reticulum and extracellularly as plaques. In contrast, in PD and DLB cases there is abnormal accumulation of alpha-synuclein in neuronal cell bodies, axons, and synapses. Furthermore, in DLB, Abeta 1-42 may promote alpha-synuclein accumulation and neurodegeneration. The central event leading to synaptic and neuronal loss in these diseases is not completely clear yet; however, recent advances in the field suggest that nerve damage might result from the conversion of nontoxic monomers to toxic oligomers and protofibrils. The mechanisms by which misfolded Abeta peptide and alpha-synuclein might lead to synapse loss are currently under investigation. Several lines of evidence support the possibility that Abeta peptide and alpha-synuclein might interact to cause mitochondrial and plasma membrane damage upon translocation of protofibrils to the membranes. Accumulation of Abeta and alpha-synuclein oligomers in the mitochondrial membrane might result in the release of cytochrome C with the subsequent activation of the apoptosis cascade. Conversely, the oxidative stress and mitochondrial dysfunction associated with AD and PD may also lead to increased membrane permeability and cytochrome C release, which promotes Abeta and alpha-synuclein oligomerization and neurodegeneration. Together, these studies suggest that the translocation of misfolded proteins to the mitochondrial membrane might play an important role in either triggering or perpetuating neurodegeneration. The insights obtained from the characterization of this process may be applied to the role of mitochondrial dysfunction in other neurodegenerative disorders, including AD. New evidence may also provide a rationale for the mitochondrial membrane as a target for therapy in a variety of neurodegenerative diseases.  相似文献   

18.
Substantial evidence indicates bioenergetic dysfunction and mitochondrial impairment contribute either directly and/or indirectly to the pathogenesis of numerous neurodegenerative disorders. Treatment paradigms aimed at ameliorating this cellular energy deficit and/or improving mitochondrial function in these neurodegenerative disorders may prove to be useful as a therapeutic intervention. Creatine is a molecule that is produced both endogenously, and acquired exogenously through diet, and is an extremely important molecule that participates in buffering intracellular energy stores. Once creatine is transported into cells, creatine kinase catalyzes the reversible transphosphorylation of creatine via ATP to enhance the phosphocreatine energy pool. Creatine kinase enzymes are located at strategic intracellular sites to couple areas of high energy expenditure to the efficient regeneration of ATP. Thus, the creatinekinase/phosphocreatine system plays an integral role in energy buffering and overall cellular bioenergetics. Originally, exogenous creatine supplementation was widely used only as an ergogenic aid to increase the phosphocreatine pool within muscle to bolster athletic performance. However, the potential therapeutic value of creatine supplementation has recently been investigated with respect to various neurodegenerative disorders that have been associated with bioenergetic deficits as playing a role in disease etiology and/or progression which include; Alzheimer’s, Parkinson’s, amyotrophic lateral sclerosis (ALS), and Huntington’s disease. This review discusses the contribution of mitochondria and bioenergetics to the progression of these neurodegenerative diseases and investigates the potential neuroprotective value of creatine supplementation in each of these neurological diseases. In summary, current literature suggests that exogenous creatine supplementation is most efficacious as a treatment paradigm in Huntington’s and Parkinson’s disease but appears to be less effective for ALS and Alzheimer’s disease.  相似文献   

19.
Mitochondria are key organelles in eukaryotic cells that not only generate adenosine triphosphate but also perform such critical functions as hosting essential biosynthetic pathways, calcium buffering, and apoptotic signaling. In vivo, mitochondria form dynamic networks that undergo frequent morphologic changes through fission and fusion. In neurons, the imbalance of mitochondrial fission/fusion can influence neuronal physiology, such as synaptic transmission and plasticity, and affect neuronal survival. Core components of the mitochondrial fission/fusion machinery have been identified through genetic studies in model organisms. Mutations in some of these genes in humans have been linked to rare neurodegenerative diseases such as Charcot-Marie-Tooth subtype 2A and autosomal dominant optic atrophy. Recent studies also have implicated aberrant mitochondrial fission/fusion in the pathogenesis of more common neurodegenerative diseases such as Parkinson’s disease. These studies establish mitochondrial dynamics as a new paradigm for neurodegenerattve disease research. Compounds that modulate mitochondrial fission/fusion could have therapeutic value in disease intervention.  相似文献   

20.
Walsh DT  Perry VH  Minghetti L 《Glia》2000,29(4):392-396
Prion diseases, or transmissible spongiform encephalopathies, are a relatively rare group of chronic degenerative disorders afflicting both animals and humans, characterized by typical histopathological signs such as amyloid deposition, neuronal loss and spongiform changes. Despite the absence of a typical acute inflammatory response, the consistent microglial activation and astrocytosis, that are found in human pathologies as well as in animal models, suggests the existence of an ongoing inflammatory response in these neurodegenerative diseases. To investigate the role of cyclooxygenase-2 (COX-2) activity in the pathogenesis of chronic neurodegenerative diseases, we studied immunohistochemically the expression of this key enzyme in the formation of prostaglandins during inflammatory responses in a well characterized murine model of prion disease. We found that COX-2 is selectively up-regulated in glial cells presenting the typical morphology of activated microglia and that the number of COX-2-positive cells increases with the progression of the disease. The extensive microglial expression of COX-2, that is likely to be followed by a sustained enzymatic activity leading to the generation of prostaglandins as well as of oxygen free radicals, might have important effects on chronic neurodegeneration. Further functional experiments are required to elucidate the role of COX-2 activity in the pathogenesis of chronic neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号