首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Retinoid-related molecules have been described that induce apoptosis in a variety of cancer cell lines. Of particular interest is the apoptotic activity of the all-trans-retinoic acid receptor gamma-selective molecules MX2870-1 and MX3350-1. These compounds have been shown to be effective in vivo against lung cancer and could therefore serve as important leads for novel anticancer drugs. We analyzed the death signaling pathways activated by these molecules. We observed that apoptotic retinoid-related molecules (RRMs) cause the release of cytochrome c from the mitochondria and subsequent activation of caspases 9 and 3. This was preceded by a strong and sustained activation of c-Jun NH(2)-terminal kinase as well as p38 kinase, which was independent of caspase activity. Inhibition of p38 kinase activity by the specific inhibitor SB203580 did not affect the induction of apoptosis by MX2870-1. However, interference with the activation of c-Jun NH(2)-terminal kinase and p38 stress kinases by PD169316 completely blocked all signs of apoptosis, including caspase activity, DNA fragmentation, and phosphatidylserine externalization. PD169316 also prevented the cleavage of Bid and the release of cytochrome c induced by this class of RRMs. Furthermore, processing and activation of different caspases by MX2870-1 was completely inhibited by increasing concentrations of PD169316. Thus, the investigated RRMs induce a death pathway, which is independent of Fas ligand, that is also activated by UV radiation and other agents. Our findings open the possibility for the future use of this class of RRMs in combination therapies with other anticancer drugs.  相似文献   

2.
3.
Although c-Jun NH(2)-terminal kinase (JNK) is activated by treatment with therapeutic agents, the biologic sequelae of inhibiting constitutive activation of JNK has not yet been clarified. In this study, we examine the biologic effect of JNK inhibition in multiple myeloma (MM) cell lines. JNK-specific inhibitor SP600125 induces growth inhibition via induction of G1 or G2/M arrest in U266 and MM.1S multiple myeloma cell lines, respectively. Neither exogenous IL-6 nor insulin-like growth factor-1 (IGF-1) overcome SP600125-induced growth inhibition, and IL-6 enhances SP600125-induced G2/M phase in MM.1S cells. Induction of growth arrest is mediated by upregulation of p27(Kip1), without alteration of p53 and JNK protein expression. Importantly, SP600125 inhibits growth of MM cells adherent to bone marrow stromal cells (BMSCs). SP600125 induces NF-kappaB activation in a dose-dependent fashion, associated with phosphorylation of IkappaB kinase alpha (IKKalpha) and degradation of IkappaBalpha. In contrast, SP600125 does not affect phosphorylation of STAT3, Akt, and/or ERK. IKK-specific inhibitor PS-1145 inhibits SP600125-induced NF-kappaB activation and blocks the protective effect of SP600125 against apoptosis. Our data therefore demonstrate for the first time that inhibiting JNK activity induces growth arrest and activates NF-kappaB in MM cells.  相似文献   

4.

Background

c-Jun NH2-terminal kinases (JNKs) are strongly activated by a stressful cellular environment, such as chemotherapy and oxidative stress. Autophagy is a protein-degradation system in which double-membrane vacuoles called autophagosomes are formed. The autophagy-related gene Beclin 1 plays a key role in this process. We previously found that autophagy was induced by dihydroartemisinin (DHA) in pancreatic cancer cells. However, little is known about the complex relationship between ROS, JNK activation, autophagy induction, and Beclin 1 expression.

Methods

Cell viability and CCK-8 assays were carried out to determine the cell proliferation; small interfering RNAs (siRNAs) were used to knockdown c-Jun NH2-terminal kinases (JNK1/2) genes; western blot was performed to detect the protein expression of LC3, JNK, Beclin 1, caspase 3 and β-actin; production of intracellular ROS was analyzed using FACS flow cytometry; autophagy induction was confirmed by electron microscopy.

Results

In the present study, we explored the role of DHA and Beclin 1 expression in autophagy. DHA-treated cells showed autophagy characteristics, and DHA also activated the JNK pathway and up-regulated the expression of Beclin 1. Conversely, blocking JNK signaling inhibited Beclin 1 up-regulation. JNK activation was found to primarily depend on reactive oxygen species (ROS) resulting from the DHA treatment. Moreover, JNK pathway inhibition and Beclin 1 silencing prevented the induction of DHA-induced autophagy.

Conclusions

These results suggest that the induction of autophagy by DHA is required for JNK-mediated Beclin 1 expression.  相似文献   

5.
6.
The Gadd45 family of proteins is known to play a central role as cellular stress sensors that modulate the response of mammalian cells to stress inflicted by physiologic and environmental stressors. Gadd45a was shown to be a direct target to the p53 and BRCA1 tumor suppressor genes, whose loss of function is known to play a vital role in breast carcinogenesis; however, the role of Gadd45a in the suppression of breast cancer remains unclear. To address this issue, Gadd45a-deficient mice were crossed with breast cancer prone mouse mammary tumor virus-Ras mice to generate mice that express activated Ras and differ in their Gadd45a status. Using this mouse model, we show that the loss of Gadd45a accelerates Ras-driven mammary tumor formation, exhibiting increased growth rates and a more aggressive histologic phenotype. Moreover, it is shown that accelerated Ras-driven tumor formation in the absence of Gadd45a results in both a decrease in apoptosis, which is linked to a decrease in c-Jun NH(2)-terminal kinase (JNK) activation, and a decrease in Ras-induced senescence, which is correlated with a decrease in p38 kinase activation. Altogether, these results provide a novel model for the tumor-suppressive function of Gadd45a in the context of Ras-driven breast carcinogenesis, showing that Gadd45a elicits its function through activation of the stress-induced JNK and p38 kinases, which contribute to increase in apoptosis and Ras-induced senescence.  相似文献   

7.
8.
Sulindac sulfone (Exisulind) induces apoptosis and exhibits cancer chemopreventive activity, but in contrast to sulindac, it does not inhibit cyclooxygenases 1 or 2. We found that sulindac sulfone and two potent derivatives, CP248 and CP461, inhibited the cyclic GMP (cGMP) phosphodiesterases (PDE) 2 and 5 in human colon cells, and these compounds caused rapid and sustained activation of the c-Jun NH2-terminal kinase 1 (JNK1). Rapid activation of stress-activated protein/ERK kinase 1 (SEK1) and mitogen-activated protein kinase kinase kinase (MEKK1), which are upstream of JNK1, was also observed. Other compounds that increase cellular levels of cGMP also activated JNK1, and an inhibitor of protein kinase G (PKG), Rp-8-pCPT-cGMPS, inhibited JNK1 activation by the sulindac sulfone derivatives. Expression of a dominant-negative JNK1 protein inhibited CP248-induced cleavage of poly(ADP-ribose) polymerase, a marker of apoptosis. Thus, it appears that sulindac sulfone and related compounds induce apoptosis, at least in part, through activation of PKG, which then activates the MEKK1-SEK1-JNK1 cascade. These studies also indicate a role for cGMP and PKG in the JNK pathway.  相似文献   

9.
Kim YJ  Lee WS  Ip C  Chae HZ  Park EM  Park YM 《Cancer research》2006,66(14):7136-7142
Radiotherapy is one of the major treatment modalities for lung cancer. Cell killing by ionizing radiation is mediated primarily through the reactive oxygen species (ROS) and ROS-driven oxidative stress. Prx1, a peroxiredoxin family member, was shown to be frequently elevated in lung cancer cells and tissues. Although the antioxidant function of Prx1 is expected to affect the radiotherapy response of lung cancer, the physiologic significance of its peroxidase activity in irradiated cells is unclear because the catalytic Cys52 is easily inactivated by ROS due to its overoxidation to sulfinic or sulfonic acid. In this study, we investigated the role of Prx1 in radiation sensitivity of human lung cancer cells, with special emphasis on the redox status of the catalytic Cys52. We found that overexpression of Prx1 enhances the clonogenic survival of irradiated cells and suppresses ionizing radiation-induced c-Jun NH2-terminal kinase (JNK) activation and apoptosis. The peroxidase activity of Prx1, however, is not essential for inhibiting JNK activation. The latter effect is mediated through its association with the glutathione S-transferase pi (GSTpi)-JNK complex, thereby preventing JNK release from the complex. Reduced JNK activation is observed when the peroxidase activity of Prx1 is compromised by Cys52 overoxidation or in the presence of the Cys52 to Ser52 mutant (Prx1C52S) lacking peroxidase activity. We show that both Prx1 and Prx1C52S interact with the GSTpi-JNK complex and suppress the release of JNK from the complex. Our study provides new insight into the antiapoptotic function of Prx1 in modulating radiosensitivity and provides the impetus to monitor the influence of Prx1 levels in the management of lung cancer.  相似文献   

10.
Conversion of normal epithelial cells to tumors is associated with a shift in transforming growth factor-beta (TGF-beta) function: reduction of tumor suppressor activity and increase of oncogenic activity. However, specific mechanisms of this functional alteration during human colorectal carcinogenesis remain to be elucidated. TGF-beta signaling involves Smad2/3 phosphorylated at linker regions (pSmad2/3L) and COOH-terminal regions (pSmad2/3C). Using antibodies specific to each phosphorylation site, we herein showed that Smad2 and Smad3 were phosphorylated at COOH-terminal regions but not at linker regions in normal colorectal epithelial cells and that pSmad2/3C were located predominantly in their nuclei. However, the linker regions of Smad2 and Smad3 were phosphorylated in 31 sporadic colorectal adenocarcinomas. In particular, late-stage invasive and metastatic cancers typically showed a high degree of phosphorylation of Smad2/3L. Their extent of phosphorylation in 11 adenomas was intermediate between those in normal epithelial cells and adenocarcinomas. Whereas pSmad2L remained in the cytoplasm, pSmad3L was located exclusively in the nuclei of Ki-67-immunoreactive adenocarcinomas. In contrast, pSmad3C gradually decreased as the tumor stage progressed. Activated c-Jun NH(2)-terminal kinase in cancers could directly phosphorylate Smad2/3L. Although Mad homology 2 region sequencing in the Smad4 gene revealed a G/A substitution at codon 361 in one adenocarcinoma, the mutation did not correlate with phosphorylation. No mutations in the type II TGF-beta receptor and Smad2 genes were observed in the tumors. In conclusion, pSmad3C, which favors tumor suppressor activity of TGF-beta, was found to decrease, whereas c-Jun NH(2)-terminal kinase tended to induce the phosphorylation of Smad2/3L in human colorectal adenoma-carcinoma sequence.  相似文献   

11.
12.
13.
14.
15.
16.
We have previously shown that N-cadherin expression is associated with tumor invasion, and that some cancer cells respond to specific extracellular matrix molecules by up-regulating N-cadherin. Pancreatic cancer is characterized by excessive deposition of type I collagen. Here, we show that human pancreatic cancer cells respond to collagen I, but not other matrices, by increasing motility and up-regulating mesenchymal markers, including N-cadherin. Both collagen I-mediated motility and metastasis in a mouse model for pancreatic cancer were inhibited by N-cadherin knockdown. Furthermore, inhibiting c-Jun NH(2)-terminal kinase (JNK) with chemical inhibitors or short hairpin RNA abrogated all collagen I-induced changes. We show that JNK1 is activated in response to collagen I, which increases tumorigenesis by up-regulating N-cadherin expression and by increasing motility.  相似文献   

17.
18.
Ching YP  Leong VY  Lee MF  Xu HT  Jin DY  Ng IO 《Cancer research》2007,67(8):3601-3608
Hepatocellular carcinoma (HCC) is one of the major malignancies in the world. The prognosis of HCC is poor, due to frequent intrahepatic metastasis and tumor recurrence. P21-activated protein kinase (Pak1), a main downstream effector of small Rho GTPases, Rac1 and Cdc42, plays an important role in the regulation of cell morphogenesis, motility, mitosis, and angiogenesis. Here, we show that Pak1 gene was overexpressed in human HCCs. Overexpression of Pak1 in human HCCs was associated with more aggressive tumor behavior in terms of more metastatic phenotype and more advanced tumor stages. In addition, HCC cell line stably expressing Pak1 displayed increased cell motility rates and, conversely, knockdown of endogenous Pak1 expression by small interfering RNA reduced the migration rates of HCC cells. In an established metastatic HCC cell line, we found that Pak1 was overexpressed compared with its primary HCC cell line and this overexpression was associated with higher cell motility. Importantly, we found that c-Jun NH(2)-terminal kinase (JNK) was activated in HCC cell lines overexpressing Pak1. Inhibition of the JNK activity by chemical inhibitor significantly reduced the migration rates of HCC cells via attenuation of paxillin phosphorylation at Ser(178). In conclusion, our results document that Pak1 is overexpressed in HCCs and plays an important role in the metastasis of HCC. The mechanism by which Pak1 induces cancer metastasis may involve activation of JNK and phosphorylation of paxillin.  相似文献   

19.
PURPOSE: To study the effect of moscatilin (purified from the stem of orchid Dendrobrium loddigesii) on the proliferation of human colorectal cancer HCT-116 cells in vitro and in vivo. EXPERIMENTAL DESIGN: The growth inhibition of moscatilin was screened on several human cancer cell lines. The effect of moscatilin on tubulin was detected in vitro. Following moscatilin treatment on HCT-116 cells, c-Jun NH(2)-terminal protein kinase (JNK) and caspase activation was studied by Western blot analysis, and DNA damage was done by Comet assay. Specific JNK inhibitor SP600125 was cotreated to reverse moscatilin-induced apoptosis. Tumor growth inhibition of moscatilin was done on HCT-116 xenograft models. RESULTS: Moscatilin induced a time-dependent arrest of the cell cycle at G(2)-M, with an increase of cells at sub-G(1). Moscatilin inhibited tubulin polymerization, suggesting that it might bind to tubulins. Moscatilin also induced the phosphorylation of JNK1/2. SP600125 significantly inhibited the activation of caspase-9 and caspase-3 and the subsequent moscatilin-induced apoptosis. The data suggest that JNK activation may contribute to moscatilin-mediated apoptosis signaling. A parallel experiment showed that SP600125 significantly inhibits Taxol- and vincristine-induced HCT-116 cell apoptosis. This suggests that the JNK activation may be a common mechanism for tubulin-binding agents. Moreover, moscatilin induces DNA damage, phosphorylation of H2AX and p53, and up-regulation of p21. Our HCT-116 xenograft models show the in vivo efficacy of moscatilin. CONCLUSIONS: In summary, our results suggest that moscatilin induces apoptosis of colorectal HCT-116 cells via tubulin depolymerization and DNA damage stress and that this leads to the activation of JNK and mitochondria-involved intrinsic apoptosis pathway.  相似文献   

20.
Singh SV  Choi S  Zeng Y  Hahm ER  Xiao D 《Cancer research》2007,67(15):7439-7449
Guggulsterone, a constituent of Indian Ayurvedic medicinal plant Commiphora mukul, causes apoptosis in cancer cells but the sequence of events leading to cell death is poorly understood. We now show that guggulsterone-induced cell death in human prostate cancer cells is caused by reactive oxygen intermediate (ROI)-dependent activation of c-Jun NH(2)-terminal kinase (JNK). Exposure of PC-3 and LNCaP cells to apoptosis inducing concentrations of guggulsterone resulted in activation of JNK and p38 mitogen-activated protein kinase (p38 MAPK) in both cell lines and activation of extracellular signal-regulated kinase 1/2 (ERK1/2) in LNCaP cells. The guggulsterone-induced apoptosis in PC-3/LNCaP cells was partially but statistically significantly attenuated by pharmacologic inhibition (SP600125) as well as genetic suppression of JNK activation. On the other hand, pharmacologic inhibition of p38 MAPK activation in PC-3 or LNCaP cells (SB202190) and ERK1/2 activation in LNCaP cells (PD98059) did not protect against guggulsterone-induced cell death. The guggulsterone treatment caused generation of ROI in prostate cancer cells but not in a normal prostate epithelial cell line (PrEC), which was also resistant to guggulsterone-mediated JNK activation. The guggulsterone-induced JNK activation as well as cell death in prostate cancer cells was significantly attenuated by overexpression of catalase and superoxide dismutase. In addition, guggulsterone treatment resulted in a decrease in protein level and promoter activity of androgen receptor in LNCaP cells. In conclusion, the present study reveals that the guggulsterone-induced cell death in human prostate cancer cells is regulated by ROI-dependent activation of JNK and guggulsterone inhibits promoter activity of androgen receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号