首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epidemiologists have associated particulate matter (PM) air pollution with cardiovascular morbidity and premature mortality worldwide. However, experimental evidence demonstrating causality and pathogenesis of particulate matter (PM)-induced cardiovascular damage has been insufficient. We hypothesized that protracted, repeated inhalation by rats of oil combustion-derived, fugitive emission PM (EPM), similar in metal composition to selected sources of urban air PM, causes exposure duration- and dose-dependent myocardial injury in susceptible rat strains. Zinc was the only primary water-leachable/bioavailable element of this EPM. Male Sprague-Dawley (SD), Wistar Kyoto (WKY), and spontaneously hypertensive (SH) rats were exposed nose-only to EPM (2, 5, or 10 mg/m(3), 6 h/day for 4 consecutive days or 10 mg/m(3), 6 h/day, 1 day/week for 4 or 16 consecutive weeks). Two days following the last EPM exposure, cardiac and pulmonary tissues were examined histologically. The results showed that particle-laden alveolar macrophages were the only pulmonary lesions observed in all three rat strains. However, WKY rats exposed to EPM (10 mg/m(3) 6 h/day, 1 day/week for 16 weeks) demonstrated cardiac lesions with inflammation and degeneration. To further characterize the nature of EPM-associated lesions, more rigorous histopathological and histochemical techniques were employed for WKY and SD rats. We examined the hearts for myocardial degeneration, inflammation, fibrosis, calcium deposits, apoptosis, and the presence of mast cells. Decreased numbers of granulated mast cells, and multifocal myocardial degeneration, chronic-active inflammation, and fibrosis were present in 5 of 6 WKY rats exposed to EPM for 16 weeks. None of these lesions were present in WKY exposed to clean air. EPM-related cardiac lesions were indistinguishable from air-exposed controls in SD and SH rats. This study demonstrates that long-term inhalation exposures to environmentally relevant PM containing bioavailable zinc can cause myocardial injury in sensitive rats. These findings provide supportive evidence for the epidemiological associations of cardiovascular morbidity and ambient PM.  相似文献   

2.
In order to understand the toxic mechanisms of cardiovascular system injuries induced by ambient PM2.5 and/or ozone, a subacute toxicological animal experiment was designed with exposure twice a week for 3 continuous weeks. Wistar rats were randomly categorized into 8 groups (n = 6): 1 control group, 3 groups exposed to fine particulate matters (PM2.5) alone at 3 doses (0.2, 0.8, or 3.2 mg/rat), 1 group to ozone (0.81 ppm) alone and 3 groups to ozone plus PM2.5 at 3 doses (0.2, 0.8, or 3.2 mg/rat). Heart rate (HR) and electrocardiogram (ECG) was monitored at approximately 24-h both after the 3rd exposure and the last (6th) exposure, and systolic blood pressure (SBP) was monitored at approximately 24-h after the 6th exposure. Biomarkers of systemic inflammation and injuries (CRP, IL-6, LDH, CK), heart oxidative stress (MDA, SOD) and endothelial function (ET-1, VEGF) were analyzed after the 6th exposure. Additionally, myocardial ultrastructural alterations were observed under transmission electron microscopy (TEM) for histopathological analyses. Results showed that PM2.5 alone exposure could trigger the significant increase of CRP, MDA, CK, ET-1 and SBP and decrease of heart rate variability (HRV), a marker of cardiac autonomic nervous system (ANS) function. Ozone alone exposure in rats did not show significant alterations in any indicators. Ozone plus PM2.5 exposure, however, induced CRP, IL-6, CK, LDH and MDA increase, SOD and HRV decrease significantly in a dose–response way. Meanwhile, abnormal ECG types were monitored in rats exposed to PM2.5 with and without ozone and obvious myocardial ultrastructural changes were observed by TEM. In conclusion, PM2.5 alone exposure could cause inflammation, endothelial function and ANS injuries, and ozone potentiated these effects induced by PM2.5.  相似文献   

3.
《Inhalation toxicology》2013,25(5):355-368
Ambient particulate matter (PM) exposure is linked to cardiovascular events and death, especially among individuals with heart disease. A model of toxic cardiomyopathy was developed in Spontaneously Hypertensive Heart Failure (SHHF) rats to explore potential mechanisms. Rats were infused with isoproterenol (ISO; 2.5?mg/kg/day subcutaneous [sc]), a β-adrenergic agonist, for 28 days and subsequently exposed to PM by inhalation. ISO induced tachycardia and hypotension throughout treatment followed by postinfusion decrements in heart rate, contractility, and blood pressures (systolic, diastolic, pulse), and fibrotic cardiomyopathy. Changes in heart rate and heart rate variability (HRV) 17 days after ISO cessation indicated parasympathetic dominance with concomitantly altered ventilation. Rats were subsequently exposed to filtered air or Harvard Particle 12 (HP12) (12?mg/m3)—a metal-rich oil combustion-derived PM—at 18 and 19 days (4?h/day) after ISO infusion via nose-only inhalation to determine if cardio-impaired rats were more responsive to the effects of PM exposure. Inhalation of PM among ISO-pretreated rats significantly increased pulmonary lactate dehydrogenase, serum high-density lipoprotein (HDL) cholesterol, and heart-to-body mass ratio. PM exposure increased the number of ISO-pretreated rats that experienced bradyarrhythmic events, which occurred concomitantly with acute alterations of HRV. PM, however, did not significantly affect mean HRV in the ISO- or saline-pretreated groups. In summary, subchronic ISO treatment elicited some pathophysiologic and histopathological features of heart failure, including cardiomyopathy. The enhanced sensitivity to PM exposure in SHHF rats with ISO-accelerated cardiomyopathy suggests that this model may be useful for elucidating the mechanisms by which PM exposure exacerbates heart disease.  相似文献   

4.
Ozone is a ubiquitous air pollutant that can cause acute pulmonary inflammation and cell injury and may contribute to the exacerbation of chronic pulmonary diseases. The molecular mechanisms of ozone-induced cell injury, as well as protective mechanisms against ozone-injury, are not well understood. Since ozone is a reactive oxidant, and heme oxygenase-1 (HO-1) is an antioxidant enzyme induced by many oxidative stimuli, we hypothesized that HO-1 is one of the protective mechanisms against ozoneinduced cell injury, as well as pulmonary inflammation. In the current study, C57Bl/6 mice were pretreated with a low level of endotoxin (lipopolysaccharide, LPS) (0.5 mg/kg) to induce HO-1, and 16 h later were exposed to 1 ppm ozone for 3 h. Endotoxin pretreatment caused a significant protection against ozone-induced pulmonary inflammation and cell injury in bronchoalveolar lavage (BAL) cells. The protection by endotoxin pretreatment against ozone-induced inflammation and necrosis in BAL cells was abolished by the cotreatment with a heme oxygenase inhibitor, tin protoporphyrin IX dichloride (SnPP), suggesting that HO-1 is responsible for the protection against ozone-induced pulmonary inflammation and BAL cell necrosis. Therefore, since HO-1 is induced following ozone exposure, HO-1 may contribute to the development of cellular adaptation to chronic ozone exposure.  相似文献   

5.
Ozone is a ubiquitous air pollutant that can cause acute pulmonary inflammation and cell injury and may contribute to the exacerbation of chronic pulmonary diseases. The molecular mechanisms of ozone-induced cell injury, as well as protective mechanisms against ozone-injury, are not well understood. Since ozone is a reactive oxidant, and heme oxygenase-1 (HO-1) is an antioxidant enzyme induced by many oxidative stimuli, we hypothesized that HO-1 is one of the protective mechanisms against ozone-induced cell injury, as well as pulmonary inflammation. In the current study, C57Bl/6 mice were pretreated with a low level of endotoxin (lipopolysaccharide, LPS) (0.5 mg/kg) to induce HO-1, and 16 h later were exposed to 1 ppm ozone for 3 h. Endotoxin pretreatment caused a significant protection against ozone-induced pulmonary inflammation and cell injury in bronchoalveolar lavage (BAL) cells. The protection by endotoxin pretreatment against ozone-induced inflammation and necrosis in BAL cells was abolished by the cotreatment with a heme oxygenase inhibitor, tin protoporphyrin IX dichloride (SnPP), suggesting that HO-1 is responsible for the protection against ozone-induced pulmonary inflammation and BAL cell necrosis. Therefore, since HO-1 is induced following ozone exposure, HO-1 may contribute to the development of cellular adaptation to chronic ozone exposure.  相似文献   

6.
Supplemental oxygen contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. In this investigation, we tested the hypothesis that prenatal treatment of pregnant mice (C57BL/6J) with the cytochrome P450 (CYP)1A1 inducer, ß-napthoflavone (BNF), will lead to attenuation of lung injury in newborns (delivered from these dams) exposed to hyperoxia by mechanisms entailing transplacental induction of hepatic and pulmonary CYP1A enzymes. Pregnant mice were administered the vehicle corn oil (CO) or BNF (40 mg/kg), i.p., once daily for 3 days on gestational days (17-19), and newborns delivered from the mothers were either maintained in room air or exposed to hyperoxia (> 95% O2) for 1-5 days. After 3-5 days of hyperoxia, the lungs of CO-treated mice showed neutrophil infiltration, pulmonary edema, and perivascular inflammation. On the other hand, BNF-pretreated neonatal mice showed decreased susceptibility to hyperoxic lung injury. These mice displayed marked induction of ethoxyresorufin O-deethylase (EROD) (CYP1A1) and methoxyresorufin O-demethylase (MROD) (CYP1A2) activities, and levels of the corresponding apoproteins and mRNA levels until PND 3 in liver, while CYP1A1 expression alone was augmented in the lung. Prenatal BNF did not significantly alter gene expression of pulmonary NAD(P)H quinone reductase (NQO1). Hyperoxia for 24-72 h resulted in increased pulmonary levels of the F2-isoprostane 8-iso-PGF, whose levels were decreased in mice prenatally exposed to BNF. In conclusion, our results suggest that prenatal BNF protects newborns against hyperoxic lung injury, presumably by detoxification of lipid hydroperoxides by CYP1A enzymes, a phenomenon that has implications for prevention of BPD in infants.  相似文献   

7.
Humans with underlying cardiovascular disease, including stroke, are more susceptible to ambient particulate matter (PM)-induced morbidity and mortality. We hypothesized that stroke-prone spontaneously hypertensive rats (SHRSP) would be more susceptible than healthy Wistar Kyoto (WKY) rats to PM-induced cardiac oxidative stress and pulmonary injury. We further postulated that PM-induced injury would be greater in SHRSP than in spontaneously hypertensive rats (SHR) based on the greater disease severity in SHRSP than SHR. First, male WKY and SHRSP were intratracheally (IT) instilled with saline or 1.11, 3.33, or 8.33 mg/kg of oil combustion PM and responses were analyzed 4 or 24 h later. Second, SHR and SHRSP were IT instilled with saline or 3.33 or 8.33 mg/kg of the same PM and responses were analyzed 24 h later. Pulmonary injury and inflammation were assessed in bronchoalveolar lavage fluid (BALF) and cardiac markers in cytosolic and mitochondrial fractions. BALF neutrophilic inflammatory response was induced similarly in all strains following PM exposure. BALF protein leakage, gamma-glutamyl transferase, and N-acetylglucosaminidase activities, but not lactate dehydrogenase activity, were exacerbated in SHRSP compared to WKY or SHR. Pulmonary cytosolic and cardiac mitochondrial ferritin levels decreased, and cardiac cytosolic superoxide dismutase (SOD) activity increased in SHRSP only. Pulmonary SOD activity decreased in WKY and SHRSP. Cardiac mitochondrial isocitrate dehydrogenase (ICDH) activity decreased in PM-exposed WKY and SHR; control levels were lower in SHRSP than SHR or WKY. In summary, strain-related differences exist in pulmonary protein leakage and oxidative stress markers. PM-induced changes in cardiac oxidative stress sensitive enzymes are small, and appear only slightly exacerbated in SHRSP compared to WKY or SHR. Multiple biological markers may be differentially affected by PM in genetic models of cardiovascular diseases. Preexisting cardiovascular disease may influence susceptibility to PM pulmonary and cardiac health effects in a disease-specific manner.  相似文献   

8.
Exposure to particulate matter (PM) has been associated with increased morbidity and mortality among individuals with cardiovascular disease. It is hypothesized that systemic alterations occur concurrent to pulmonary injury/inflammation, and contribute to cardiac events in compromised hosts. We explored this hypothesis using a rat model for human hypertension and cardiovascular disease (spontaneously hypertensive, SH), and normotensive Wistar Kyoto (WKY) rats. SH and WKY rats (12-13 wk old) were exposed either intratracheally (IT; 0.0, 1.0, or 5.0 mg/kg in saline) or nose-only (15 mg/m 3 2 6 h/d 2 3 d/wk 2 1, 2 or 4 wk) to combustion source residual oil fly ash (ROFA) with low metal content, and examined 1, 2 or 4 d later. Bronchoalveolar lavage fluid (BALF) albumin and neutrophils increased (SH WKY) at d 1 following ROFA IT. With inhalation exposure, both strains experienced progressive histological lung damage and increases in BALF albumin and neutrophils during 1 to 4 wk (SH > WKY). Acute lung injury from ROFA IT was temporally associated with increases in plasma fibrinogen in both strains, but only the SH rats responded to the acute 1-wk ROFA inhalation. Longer term (2 or 4 wk) ROFA caused progressive lung injury (SH > WKY), but did not sustain the increase in fibrinogen. BALF glutathione increased in a temporal fashion similar to fibrinogen; however, only WKY rats demonstrated this response. There was a small but consistent decrease in blood lymphocytes and an increase in blood neutrophils in SH rats exposed to ROFA acutely. In conclusion, acute PM exposure can provoke an acute systemic thrombogenic response associated with pulmonary injury/inflammation and oxidative stress in cardiovascular compromised rats. This evidence is consistent with greater cardiovascular events during acute PM episodes in compromised humans.  相似文献   

9.
Exposure to particulate matter (PM) has been associated with increased morbidity and mortality among individuals with cardiovascular disease. It is hypothesized that systemic alterations occur concurrent to pulmonary injury/inflammation, and contribute to cardiac events in compromised hosts. We explored this hypothesis using a rat model for human hypertension and cardiovascular disease (spontaneously hypertensive, SH), and normotensive Wistar Kyoto (WKY) rats. SH and WKY rats (12-13 wk old) were exposed either intratracheally (IT; 0.0, 1.0, or 5.0 mg/kg in saline) or nose-only (15 mg/m(3) x 6 h/d x 3 d/wk x 1, 2 or 4 wk) to combustion source residual oil fly ash (ROFA) with low metal content, and examined 1, 2 or 4 d later. Bronchoalveolar lavage fluid (BALF) albumin and neutrophils increased (SH approximately equal WKY) at d 1 following ROFA IT. With inhalation exposure, both strains experienced progressive histological lung damage and increases in BALF albumin and neutrophils during 1 to 4 wk (SH > WKY). Acute lung injury from ROFA IT was temporally associated with increases in plasma fibrinogen in both strains, but only the SH rats responded to the acute 1-wk ROFA inhalation. Longer term (2 or 4 wk) ROFA caused progressive lung injury (SH > WKY), but did not sustain the increase in fibrinogen. BALF glutathione increased in a temporal fashion similar to fibrinogen; however, only WKY rats demonstrated this response. There was a small but consistent decrease in blood lymphocytes and an increase in blood neutrophils in SH rats exposed to ROFA acutely. In conclusion, acute PM exposure can provoke an acute systemic thrombogenic response associated with pulmonary injury/inflammation and oxidative stress in cardiovascular compromised rats. This evidence is consistent with greater cardiovascular events during acute PM episodes in compromised humans.  相似文献   

10.
Ischaemia-reperfusion (I/R) is a pivotal mechanism of organ injury during stroke, myocardial infarction, organ transplantation and vascular surgeries. Ischaemic preconditioning (IPC) is a potent endogenous form of tissue protection against I/R injury. On the one hand, endocannabinoids have been implicated in the protective effects of IPC through cannabinoid CB1/CB2 receptor-dependent and -independent mechanisms. However, there is evidence suggesting that endocannabinoids are overproduced during various forms of I/R, such as myocardial infarction or whole body I/R associated with circulatory shock, and may contribute to the cardiovascular depressive state associated with these pathologies. Previous studies using synthetic CB1 receptor agonists or knockout mice demonstrated CB1 receptor-dependent protection against cerebral I/R injury in various animal models. In contrast, several follow-up reports have shown protection afforded by CB1 receptor antagonists, but not agonists. Excitedly, emerging studies using potent CB2 receptor agonists and/or knockout mice have provided compelling evidence that CB2 receptor activation is protective against myocardial, cerebral and hepatic I/R injuries by decreasing the endothelial cell activation/inflammatory response (for example, expression of adhesion molecules, secretion of chemokines, and so on), and by attenuating the leukocyte chemotaxis, rolling, adhesion to endothelium, activation and transendothelial migration, and interrelated oxidative/nitrosative damage. This review is aimed to discuss the role of endocannabinoids and CB receptors in various forms of I/R injury (myocardial, cerebral, hepatic and circulatory shock) and preconditioning, and to delineate the evidence supporting the therapeutic utility of selective CB2 receptor agonists, which are devoid of psychoactive effects, as a promising new approach to limit I/R-induced tissue damage.  相似文献   

11.
AimsThe purpose of this study was to investigate the protective effects of puerarin and elucidate the underlying mechanisms of puerarin in myocardial ischemia/reperfusion (MI/R) injury.Main methodsC57BL/6 mice were exposed to puerarin (100 mg/kg) with or without the SIRT1 inhibitor nicotinamide (500 mg/kg) and then subjected to MI/R operation. Myocardial infarct size, serum creatine kinase-MB (CK-MB) activity, apoptotic cell death, and cardiac structure and function were examined to evaluate MI/R injury. RT-PCR and western blotting were used to determine the inflammatory response and inflammasome activation, as well as activation of SIRT1/NF-κB pathway.ResultsPuerarin significantly reduced myocardial infarct size, serum CK-MB activity, and apoptotic cell death, and improved cardiac structural damage and dysfunction. Moreover, puerarin notably decreased the mRNA and protein levels of TNF-α, IL-6, and IL-1β, indicating that puerarin attenuated MI/R-induced inflammation. Furthermore, puerarin markedly decreased the protein levels of Ac-NF-κB, NLRP3, cleaved caspase-1, cleaved IL-1β, and cleaved IL-18 and increased the protein level of SIRT1. More importantly, the SIRT1 inhibitor nicotinamide prevented these puerarin-induced cardioprotective effects and regulation of the SIRT1/NF-κB pathway, as well as the NLRP3 inflammasome activation.ConclusionPuerarin protected against MI/R injury by inhibiting inflammatory responses probably via the SIRT1/NF-κB pathway, and inhibition of the NLRP3 inflammasome was also involved in puerarin-induced cardioprotective effects. These results suggest that puerarin may be a novel candidate for the treatment of ischemic heart disease.  相似文献   

12.
Exposure to fine particulate matter with a diameter ≤2.5 μm (PM2.5) can cause a number of respiratory diseases. However, there is currently no safe treatment for PM2.5-induced lung damage. This study investigated the protective effect of IL-10 against lung injury and the possible involvement of AMPK/SIRT1/PGC-1α signaling. The mean diameter, particle size distribution, and zeta potential of PM2.5 samples were assessed using a Zetasizer Nano ZS90 analyzer. Thereafter, Wistar rats were exposed to PM2.5 (1.8, 5.4, or 16.2 mg/kg) alone or high-dose PM2.5 with recombinant rat IL-10 (rrIL-10; 5 μg/rat). Treatment with rrIL-10 ameliorated PM2.5-induced acute lung injury, reduced mitochondrial damage, and inhibited inflammation, oxidative stress, and apoptosis in the PM2.5-treated rats. Moreover, the mRNA and protein expression of AMPK, SIRT1, and PGC-1α were upregulated by rrIL-10 treatment. In conclusion, rrIL-10 protected lung tissues against PM2.5-induced inflammation by reducing oxidative stress and apoptosis via activating AMPK/SIRT1/PGC-1α signaling.  相似文献   

13.
Although research suggests that particles influence cardiac autonomic response as evidenced by decreases in heart rate variability (HRV), the time course of the response remains unclear. Using a crossover panel study, we monitored 36 male boilermaker welders, occupationally exposed to metal-rich particulate matter (PM) to investigate the temporal trend of hourly HRV subsequent to PM exposure. Ambulatory electrocardiograms were collected over work (exposure) and non-work (control) periods and the mean of the standard deviations of all normal-to-normal intervals for all 5-min segments (SDNN(i)) was calculated hourly for up to 14-hrs post-work. The exposure-response relationship was examined with linear mixed effects regression models to account for participants monitored over multiple occasions. Models were adjusted for non-work HRV to control for diurnal fluctuations and individual predictors of HRV. The mean (SD) work PM(2. 5) concentration was 1.12 (0.76) mg/m(3). Hourly SDNN(i) was consistently lower post-work as compared to the same time period on a non-work day. HRV was inversely associated with work PM(2. 5) exposures in each of the 14-hrs post-work. The hourly associations suggested an early and later phase response, with the largest regression coefficients observed 2-3 hrs (beta = -6.86 (95% CI: -11.91, -1.81) msec/1 mg/m(3) at 3-hrs), and then 9-13 hrs (beta = -8.60 (95% CI: -17.45, 0.24) msec/1 mg/m(3) at 11-hrs), after adjusting for non-work HRV, smoking status, and age. This investigation demonstrates declines in HRV for up to 14 hours following PM exposure and a multiphase cardiovascular autonomic response with immediate (2 hrs) and delayed (9-13 hrs) responses.  相似文献   

14.
Direct evidence is limited for the association between heart rate variability (HRV) indices and ventricular tachyarrhythmias (VTAs). While galectin-3 (Gal-3) is regarded as a causal factor for cardiac remodelling and a biomarker for arrhythmias, its regulation on VTAs and HVR is unknown. Using aged transgenic (TG) mice with cardiac overexpression of β2-adrenoceptors and spontaneous VTAs, we studied whether changes in HRV indices correlated with the severity of VTAs, and whether Gal-3 gene knockout (KO) in TG mice might limit VTA. Body-surface ECG was recorded (10-minute period) in 9- to 10-month-old mice of non-transgenic (nTG), TG and TG × Gal-3 knockout (TG/KO). Time-domain, frequency-domain and nonlinear-domain HRV indices were calculated using the R-R intervals extracted from ECG signals and compared with frequency of VTAs. TG and TG/KO mice developed frequent VTAs and showed significant changes in certain time-domain and nonlinear-domain HRV indices relative to nTG mice. The severity of VTAs in TG and TG/KO mice in combination, estimated by VTA counts and arrhythmia score, was significantly correlated with certain time-domain and nonlinear-domain HRV indices. In conclusion, significant changes in HRV indices were evident and correlated with the severity of spontaneous VTAs in TG mice. The frequency of VTA and HRV indices were largely comparable between TG and TG/KO mice. Deletion of Gal-3 in TG mice altered certain HRV indices implying influence by neuronally localized Gal-3 on autonomic nervous activity.  相似文献   

15.
Because epidemiology studies consistently identify the elderly at risk for air pollution-related morbidity and mortality, we developed a model of senescent-dependent susceptibility based on indices of physiological aging. In the current study, we hypothesized that heart-rate regulation during particulate matter (PM) exposure differs with senescence-dependent susceptibility owing to variation in autonomic nervous control. Heart rate (HR) and heart-rate variability (HRV) parameters were measured from 162 samples of 2-min electrocardiograph (ECG) recordings in age-matched healthy (n = 5) and terminally senescent (n = 3) AKR mice during 3-h exposures to filtered-air (FA, day 1) and carbon black (CB, day 4; <200 microg/m(3)). On day 1, HR was significantly (p <.01) depressed during FA in terminally senescent mice. By day 4, HR was further slowed significantly (p <.01) due to the effects of CB exposure for 3 days. The combined effects of terminal senescence and CB exposure acted to depress HR to an average (+/-SEM) 445 +/- 40 bpm, or approximately 80 bpm lower compared to healthy HR responses. The change in rMSSD, an HRV parameter corresponding to relative influences of parasympathetic tone on HR, was significantly (p <.01) greater on day 1 and day 4 in terminally senescent mice compared to healthy mice. In contrast, the LF/HF ratio, an HRV parameter derived from spectral analysis indicating relative changes in cardiac sympathetic tone, was significantly (p <.01) depressed in terminally senescent mice on day 1. By day 4, significant increases in LF/HF were evident in healthy mice during CB exposure, suggesting that HR regulation was associated with an increase in sympathetic tone. Alternatively, terminally senescent mice appeared to modulate a lower HR without change in LF/HF ratio during CB exposure, suggesting an absence of sympathetic tone. In conclusion, older healthy mice increase cardiac sympathetic tone during PM exposure while terminally senescent mice show a greater PM-induced parasympathetic tone in regulating HR. The significance of the current results suggest that PM-induced HR regulatory changes may ultimately depend on the degree of physiological aging.  相似文献   

16.
Short-term exposure to elevated levels of particulate matter is associated with increased respiratory and cardiovascular mortality and morbidity. However, the mechanisms underlying these effects are still unclear. Recent studies have suggested that inhaled ultrafine particles are able to translocate into the bloodstream. To gain more insight into this potential mechanism, we studied the effect of diesel exhaust particles (DEP, 0.02 and 0.1mg/kg), 48h following their intravenous administration, on systemic inflammation and both pulmonary and cardiac morphological alterations in rats. The intravenous administration of DEP (0.1mg/kg) triggered systemic inflammation characterized by an increase of monocyte and granulocyte numbers. Both doses of DEP caused a reduction of the number of red blood cells (RBC) and haemoglobin concentration. Transmission electron microscopy analysis of RBC after in vitro incubation (5microg/ml) or in vivo administration of DEP, revealed the presence of ultrafine-sized aggregates of DEP within the RBC. Larger aggregates were also taken up by the RBC. Moreover, while the myocardial morphology and capillary bed were not affected by DEP exposure, the lungs of rats exposed to DEP (0.02 and 0.1mg/kg) showed clear evidence of inflammation, characterized by neutrophils infiltration. Stereological analysis revealed an increase in interalveolar wall thickness and a decrease in numbers of alveolar sacs per unit area of lung parenchyma of rat exposed to DEP. We conclude that 48h after their systemic administration, DEP cause systemic and pulmonary morphological alterations.  相似文献   

17.
As a common component of ambient particulate matter (PM), zinc has been proposed to play a role in PM-induced adverse health effects. Although occupational exposures to high levels of zinc-fume have been associated with metal-fume fever accompanied by pulmonary inflammation and injury, the effects of PM-associated zinc are unclear. We hypothesized that an oil combustion emission PM (EPM) containing bioavailable zinc would induce pulmonary injury and systemic hematological changes attributable to the leachable zinc following acute as well as longer-term exposures in a rat strain-specific manner. In order to initially characterize the pulmonary response to EPM, male Sprague-Dawley (SD) rats were intratracheally (IT) instilled with 0.0, 0.8, 3.3, or 8.3 mg/kg EPM in saline. To further determine if the pulmonary injury was associated with the EPM leachable zinc, subsequent studies included IT instillation of SD rats with either saline, whole EPM suspension, the saline leachable fraction of EPM, the particulate fraction of EPM (all at 8.3 mg/kg, soluble Zn = 14.5 microg/mg EPM), or ZnSO(4) (0.0, 33.0, or 66.0 microg/kg Zn). Finally, to ascertain the cumulative impact of inhaled EPM in the causation of acute pulmonary and systemic effects as well as long-term fibrotic responses, we exposed three rat strains of differential susceptibility to PM. Male SD, normotensive Wistar-Kyoto (WKY), and spontaneously hypertensive (SH) rats (90 days old) were exposed nose-only to either filtered air or EPM: 2, 5, or 10 mg/m(3) (6 h/day x 4 days/week x 1 week); or 10 mg/m(3) (6 h/day x 1 day/week for 1, 4, or 16 weeks) and assessed at 2 days postexposure. IT exposures to whole EPM suspensions were associated with a dose-dependent increase in protein/albumin permeability and neutrophilic inflammation. Pulmonary protein/albumin leakage and neutrophilic inflammation caused by the leachable fraction of EPM and ZnSO(4) were comparable to the effect of whole suspension. However, protein/albumin leakage was not associated with the particulate fraction, although significant neutrophilic inflammation did occur following instillation. With EPM nose-only inhalation, acute exposures (10 mg/m(3) only) for 4 days resulted in small increases in bronchoalveolar lavage fluid (BALF) protein and n-acetyl glucosaminidase activities (approximately 50% above control). Surprisingly, unlike IT exposures, no neutrophilic influx was detectable in BALF from any of the inhalation groups. The only major effect of acute and long-term EPM inhalation was a dose- and time-dependent increase in alveolar macrophages (AM) regardless of the rat strain. Histological evidence also showed dose- and time-dependent accumulations of particle-loaded AM. Particles were also evident in interstitial spaces, and in the lung-associated lymph nodes following the inhalation exposures (SH > WKY = SD). There were strain-related differences in peripheral white blood cell counts and plasma fibrinogen with no major EPM inhalation effect. The present study demonstrated the critical differences in pulmonary responsiveness to EPM between IT and inhalation exposures, probably attributable to the dose of bioavailable zinc. EPM IT exposures, but not acute and long-term inhalation of up to 10 mg/m(3), caused neutrophilic inflammation. Inhalation exposures may result in particle accumulation and macrophage recruitment with potential strain differences in EPM clearance.  相似文献   

18.
Long-term exposure to fine particulate air pollution (PM2.5) has been associated increased risk of death from cardiopulmonary diseases. Cardiac function parameters have also been affected by ambient particulate matter (PM) exposure, including heart-rate variability (HRV), a measure of autonomic function that has been recognized as a well-defined, quantitative indicator of autonomic dysfunction. However, the role of HRV in ambient PM-induced cardiovascular effect is not fully understood. In an accompanying article, we report significant decreasing patterns of heart rate (HR), body temperature, and physical activity for mice lacking apoliproprotein (ApoE-/-) over 5 mo of exposure to concentrated ambient PM (CAPs), with smaller and nonsignificant change for C57 mice. In this article, we report the effects of subchronic CAPs exposure on HRV parameters that are sensitive to cardiac sympathetic and parasympathetic nerve activity. The standard deviation of normal to normal beat intervals (SDNN) and the square root of the mean squared differences of successive RR intervals (RMSSD) in the late afternoon and overnight for the ApoE-/- mice showed a gradual increase for the first 6 wk, a decline for about 12 more wk, and a slight turn upward at the end of the study period. For C57 mice, there were no chronic effect changes of SDNN or RMSSD in the late afternoon, an a slight increase after 6 wk for the overnight period. The response patterns of ApoE-/- mice indicated a perturbation of the homeostatic function in the cardiovascular system (initial enhancement and late depression of the HRV parameters). Our results complement the findings in human panel and controlled CAPs exposure studies in demonstrating that increased levels of particle pollution are able to perturb cardiac autonomic function, which may lead to adverse cardiovascular outcomes.  相似文献   

19.
摘要: 目的 探讨五味子提取物对百草枯(PQ)中毒模型小鼠肺纤维化的保护作用, 并探讨其机制。方法 108 只小鼠按随机数字表法分为正常对照组, 模型组, 五味子提取物低剂量组 (200 mg/kg)、 中剂量组 (400 mg/kg)、 高剂量组 (800 mg/kg) 及维生素 C 组 (100 mg/kg), 每组 18 只。除正常对照组以外的小鼠行一次性 PQ 溶液 (100 mg/kg) 灌胃造模, 造模成功后每 24 h 给予相应剂量药物 1 次, 分别在建模后第 7、 14、 21 天处死小鼠, 每个时间点 6 只。解剖肺脏, HE 染色观察小鼠肺组织炎症程度并进行炎症评分; Masson 染色观察肺组织纤维化程度;RT-PCR 和酶联免疫吸附试验(ELISA)分别检测各组肺组织中转化生长因子(TGF) -β1、 白细胞介素(IL) -6、 IL-17 mRNA 及蛋白表达水平。结果 (1)造模后第 7 天和第 14 天, 模型组小鼠肺组织出现大量炎性细胞浸润、 肺泡间隔充血, 炎症评分较正常对照组升高(P < 0.05), 而五味子提取物中、 高剂量组小鼠肺组织炎症评分较模型组和维生素 C 组降低(P < 0.05)。(2)造模后第 14 天和第 21 天, 五味子中、 高剂量组小鼠肺组织纤维化程度较模型组降低(P < 0.05)。(3)随着造模时间的延长, 模型组 TGF-β1 mRNA 及蛋白表达水平升高, IL-6 表达降低, IL-17 则先升高后降低。五味子提取物中、 高剂量组与模型组比较, 造模后第 7 天和第 14 天, IL-6 表达降低, 造模后第 14 天和第 21 天, TGF-β1 表达降低, 而 3 个时间点 IL-17 表达均降低 (P < 0.05)。结论 五味子提取物可通过抑制 TGF-β1、 IL-6 和 IL-17 的表达来减轻 PQ 中毒造成的炎症反应和肺纤维化。  相似文献   

20.
邓增华  谢辉  陈振岗  王广舜  张成岗 《天津医药》2015,43(12):1386-1389
目的观察植物多糖和吡格列酮对小鼠肺腺癌的干预效果,探讨炎症和肺腺癌之间的关系,为临床肺腺癌的治疗提供理论基础。方法100 只小鼠分为对照组、模型组、植物多糖组、吡格列酮组、植物多糖和吡格列酮联合干预组(联合组),每组20 只;植物多糖组给予植物多糖溶液500 mg/kg,吡格列酮组给予吡格列酮溶液15 mg/kg,联合组给予500 mg/kg 植物多糖+15 mg/kg 吡格列酮;对照组和模型组给予等量生理盐水(10 mL/kg),均1 次/d,5 d/周;共 20 周。观察各组不同时间小鼠肺腺癌成瘤情况,分别于第12 周和20 周,处死小鼠后检测各组核因子(NF)-κB、肿瘤坏死因子(TNF)-α、白细胞介素(IL)-1β和IL-6 含量。结果对照组小鼠体质量平稳上升,其余组小鼠在乌拉坦注射期体质量持续下降,然后持续上升;第20 周,对照组小鼠肺表面未见结节,其余组均见明显的肺结节,且小鼠肺的脏器指数明显高于对照组;在第12 周和20 周时,模型、吡格列酮、植物多糖和联合组小鼠体内的NF-κB、TNF-α、 IL-1β和IL-6 含量均高于对照组,吡格列酮、植物多糖和联合组小鼠体内的NF-κB、TNF-α、IL-1β和IL-6 含量均低于模型组。结论持续的炎症反应是肺腺癌发生发展的危险因素之一,植物多糖和吡格列酮均能降低肺腺癌小鼠体内的炎症水平,提示可将其用于临床肺腺癌的药物辅助治疗。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号