首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most cases of neonatal Escherichia coli meningitis develop as a result of hematogenous spread, but it is not clear how circulating E. coli crosses the blood-brain barrier. In an attempt to identify E. coli structures contributing to invasion into the central nervous system (CNS), TnphoA mutagenesis was performed with an invasive CSF isolate of E. coli K1 strain RS218 (O18:K1:H7), and TnphoA mutants were examined for their noninvasive capability in brain microvascular endothelial cells (BMEC). The noninvasive mutants exhibited the invasive ability of < 1% of the parent strain. One of the noninvasive mutants (10A-23) with a single TnphoA insertion and no changes in phenotypic characteristics was found to be significantly less invasive into the CNS in the newborn rat model of hematogenous E. coli meningitis. The TnphoA inserts with flanking sequences were cloned and sequenced. A novel open reading frame (8.2 kDa) was identified. Open reading frame analysis indicated that the 8.2-kDa protein (Ibe10) contained multiple transmembrane domains. ibe10 was cloned into an expression vector, pQE30, and the purified Ibe10 was shown to inhibit invasion of BMEC by strain RS218. These findings indicate that ibe10 is one of the E. coli genes involved in the invasion of BMEC in vitro and in vivo.  相似文献   

2.
Most cases of Escherichia coli meningitis develop as a result of hematogenous spread, but it is not clear how circulating E. coli crosses the blood-brain barrier. A TnphoA mutant of E. coli K1 RS218 was shown to be significantly less invasive than its parent strain in bovine and human brain microvascular endothelial cells (BMEC), which constitute the blood-brain barrier. More importantly, traversal of the blood-brain barrier was significantly less with this mutant than with the parent strain in newborn rats with experimental hematogenous meningitis. A DNA segment containing the TnphoA insertion site was cloned from RS218, and the cloned DNA complemented the TnphoA mutant in invasion of BMEC. Nucleotide sequence revealed a near identity to that of a hypothetical yijP gene (also called f577) in the E. coli K-12 genome. Sequence analysis indicated that the E. coli K1 yijP gene likely encodes a 66. 6-kDa membrane protein. Deletion and complementation experiments indicated that the yijP gene was involved in E. coli K1 invasion of BMEC, i.e., the invasive ability of E. coli K1 was significantly reduced after yijP was deleted and was restored by complementation with a plasmid containing the yijP open reading frame. This is the first demonstration that the yijP gene locus plays a role in the pathogenesis of E. coli K1 meningitis.  相似文献   

3.
IbeT is a downstream gene of the invasion determinant ibeA in the chromosome of a clinical isolate of Escherichia coli K1 strain RS218 (serotype 018:K1:H7). Both ibeT and ibeA are in the same operon. Our previous mutagenesis and complementation studies suggested that ibeT may coordinately contribute to E. coli K1 invasion with ibeA. An isogenic in-frame deletion mutant of ibeT has been made by chromosomal gene replacement with a recombinant suicide vector carrying a fragment with an ibeT internal deletion. The characteristics of the mutant in meningitic E. coli infection were examined in vitro [cell culture of human brain microvascular endothelial cells (HBMEC)] and in vivo (infant rat model of E. coli meningitis) in comparison with the parent strain. The ibeT deletion mutant was significantly less adhesive and invasive than its parent strain E. coli E44 in vitro, and the adhesion- and invasion-deficient phenotypes of the mutant can be complemented by the ibeT gene. Recombinant IbeT protein is able to block E. coli E44 invasion of HBMEC. Furthermore, the ibeT deletion mutant is less capable of colonizing intestine and less virulent in bacterial translocation across the blood-brain barrier (BBB) than its parent E. coli E44 in vivo. These data suggest that ibeT-mediated E. coli K1 adhesion is associated with the bacterial invasion process.  相似文献   

4.
Neonatal Escherichia coli meningitis remains a devastating disease, with unacceptably high morbidity and mortality despite advances in supportive care measures and bactericidal antibiotics. To further our ability to improve the outcome of affected neonates, a better understanding of the pathogenesis of the disease is necessary. To identify potential bacterial genes which contribute to E. coli invasion of the blood-brain barrier, a cerebrospinal fluid isolate of E. coli K1 was mutagenized with TnphoA. TnphoA mutant 27A-6 was found to have a significantly decreased ability to invade brain microvascular endothelial cells compared to the wild type. In vivo, 32% of the animals infected with mutant 27A-6 developed meningitis, compared to 82% of those infected with the parent strain, despite similar levels of bacteremia. The DNA flanking the TnphoA insertion in 27A-6 was cloned and sequenced and determined to be homologous to E. coli K-12 aslA (arylsulfatase-like gene). The deduced amino acid sequence of the E. coli K1 aslA gene product shows homology to a well-characterized arylsulfatase family of enzymes found in eukaryotes, as well as prokaryotes. Two additional aslA mutants were constructed by targeted gene disruption and internal gene deletion. Both of these mutants demonstrated decreased invasion phenotypes, similar to that of TnphoA mutant 27A-6. Complementation of the decreased-invasion phenotypes of these mutants was achieved when aslA was supplied in trans. This is the first demonstration that this locus contributes to invasion of the blood-brain barrier by E. coli K1.  相似文献   

5.
Transmigration of neutrophil [polymorphonuclear neutrophil (PMN)] across the blood-brain barrier (BBB) is a critical event in the pathogenesis of bacterial meningitis. We have shown that IbeA is able to induce meningitic Escherichia coli invasion of brain microvascular endothelial cells (BMECs), which constitutes the BBB. In this report, we provide evidence that IbeA and its receptor, vimentin, play a key role in E. coli-induced PMN transmigration across BMEC. In vitro and in vivo studies indicated that the ibeA-deletion mutant ZD1 was significantly less active in stimulating PMN transmigration than the parent strain E44. ZD1 was fully complemented by the ibeA gene and its product. E. coli-induced PMN transmigration was markedly inhibited by withaferin A, a dual inhibitor of vimentin and proteasome. These cellular effects were significantly stimulated and blocked by overexpression of vimentin and its head domain deletion mutant in human BMEC, respectively. Our studies further demonstrated that IbeA-induced PMN migration was blocked by bortezomib, a proteasomal inhibitor and correlated with upregulation of endothelial ICAM-1 and CD44 expression through proteasomal regulation of NFκB activity. Taken together, our data suggested that IbeA and vimentin contribute to E. coli K1-stimulated PMN transendothelial migration that is correlated with upregulation of adhesion molecule expression at the BBB.  相似文献   

6.
7.
Escherichia coli K1 invasion of brain microvascular endothelial cells (BMEC) is a prerequisite for penetration into the central nervous system. We previously have shown that outer membrane protein A (OmpA) and cytotoxic necrotizing factor-1 (CNF1) contribute to E. coli K1 invasion of BMEC. In this study we constructed a double-knockout mutant by deleting ompA and cnf1. We demonstrated that the double-knockout mutant was significantly less invasive in human BMEC as compared with its individual Delta ompA and Delta cnf1 mutants, suggesting that the contributions of OmpA and CNF1 to BMEC invasion are independent of each other. In addition, we showed that OmpA treatment of human BMEC resulted in phosphatidylinositol 3-kinase (PI3K) activation with no effect on RhoA, while CNF1 treatment resulted in RhoA activation with no effect on PI3K, supporting the concept that OmpA and CNF1 contribute to E. coli K1 invasion of BMEC using different mechanisms. This concept was further confirmed by using both PI3K inhibitor (LY294002) and Rho kinase inhibitor (Y27632), which exhibited additive effects on inhibiting E. coli K1 invasion of BMEC. We isolated a 96KD OmpA interacting human BMEC protein by affinity chromatography using purified OmpA, which was identified as gp96 protein, a member of the HSP90 family. This receptor differed from the CNF1 receptor (37LRP) identified from human BMEC. Taken together, these data indicate that OmpA and CNF1 contribute to E. coli K1 invasion of BMEC in an additive manner by interacting with different BMEC receptors and using diverse host cell signaling mechanisms.  相似文献   

8.
Zhou Y  Tao J  Yu H  Ni J  Zeng L  Teng Q  Kim KS  Zhao GP  Guo X  Yao Y 《Infection and immunity》2012,80(3):1243-1251
Type VI secretion systems (T6SSs) are involved in the pathogenicity of several gram-negative bacteria. Based on sequence analysis, we found that a cluster of Escherichia coli virulence factors (EVF) encoding a putative T6SS exists in the genome of the meningitis-causing E. coli K1 strain RS218. The T6SS-associated deletion mutants exhibited significant defects in binding to and invasion of human brain microvascular endothelial cells (HBMEC) compared with the parent strain. Hcp family proteins (the hallmark of T6SS), including Hcp1 and Hcp2, were localized in the bacterial outer membrane, but the involvements of Hcp1 and Hcp2 have been shown to differ in E. coli-HBMEC interaction. The deletion mutant of hcp2 showed defects in the bacterial binding to and invasion of HBMEC, while Hcp1 was secreted in a T6SS-dependent manner and induced actin cytoskeleton rearrangement, apoptosis, and the release of interleukin-6 (IL-6) and IL-8 in HBMEC. These findings demonstrate that the T6SS is functional in E. coli K1, and two Hcp family proteins participate in different steps of E. coli interaction with HBMEC in a coordinate manner, e.g., binding to and invasion of HBMEC, the cytokine and chemokine release followed by cytoskeleton rearrangement, and apoptosis in HBMEC. This is the first demonstration of the role of T6SS in meningitis-causing E. coli K1, and T6SS-associated Hcp family proteins are likely to contribute to the pathogenesis of E. coli meningitis.  相似文献   

9.
Escherichia coli is the most common gram-negative bacteria causing meningitis during the neonatal period, but is unclear what microbial factors mediate traversal of E. coli across the blood-brain barrier. Outer membrane protein A (OmpA), a highly conserved 35-kDa protein, was examined for its role in E. coli K1 invasion of brain microvascular endothelial cells (BMEC). The invasive capability of the OmpA+ strains was 25- to 50-fold greater than that of OmpA- strains, and the invasive capability of OmpA- strains was restored to the level of the OmpA+ strain by complementation with the OmpA+ E. coli into BMEC. Two short synthetic peptides (a hexamer, Asn-27-Glu-32, and a pentamer, Gly-65-Asn-69) generated from the N-terminal amino acid sequence of OmpA exhibited significant inhibition of OmpA+ E. coli invasion, suggesting that these two sequences represent the OmpA domains involved in E. coli invasion of BMEC. These findings suggest that OmpA is the first microbial structure identified to enhance E. coli invasion of BMEC, an important event in the pathogenesis of E. coli meningitis.  相似文献   

10.
Bacterial binding to host cell surface is considered an important initial step in the pathogenesis of many infectious diseases including meningitis. Previous studies using a laboratory Escherichia coli (E. coli) strain HB101 possessing a recombinant plasmid carrying the cloned S fimbriae gene cluster have shown that S fimbriae are the major contributor to binding to bovine brain microvascular endothelial cells (BMEC) for HB101. Our present study, however, revealed that S fimbriae did not play a major role for E. coli K1's binding to human BMEC in vitro and crossing of the blood-brain barrier in vivo. This was shown by our demonstration that E. coli K1 strain and its S fimbriae-operon deletion mutant exhibited similar rates of binding to human BMEC and similar rates of penetration into the central nervous system in the experimental hematogenous meningitis model. Studies are needed to identify major determinants of E. coli K1 contributing to BMEC binding and subsequent crossing of the blood-brain barrier in vivo.  相似文献   

11.
The genome sequences of Escherichia coli pathotypes reveal extensive genetic variability in the argW-dsdCXA island. Interestingly, the archetype E. coli K1 neonatal meningitis strain, strain RS218, has two copies of the dsdCXA genes for d-serine utilization at the argW and leuX islands. Because the human brain contains d-serine, an epidemiological study emphasizing K1 isolates surveyed the dsdCXA copy number and function. Forty of 41 (97.5%) independent E. coli K1 isolates could utilize d-serine. Southern blot hybridization revealed physical variability within the argW-dsdC region, even among 22 E. coli O18:K1:H7 isolates. In addition, 30 of 41 K1 strains, including 21 of 22 O18:K1:H7 isolates, had two dsdCXA loci. Mutational analysis indicated that each of the dsdA genes is functional in a rifampin-resistant mutant of RS218, mutant E44. The high percentage of K1 strains that can use d-serine is in striking contrast to our previous observation that only 4 of 74 (5%) isolates in the diarrheagenic E. coli (DEC) collection have this activity. The genome sequence of diarrheagenic E. coli isolates indicates that the csrRAKB genes for sucrose utilization are often substituted for dsdC and a portion of dsdX present at the argW-dsdCXA island of extraintestinal isolates. Among DEC isolates there is a reciprocal pattern of sucrose fermentation versus d-serine utilization. The ability to use d-serine is a trait strongly selected for among E. coli K1 strains, which have the ability to infect a wide range of extraintestinal sites. Conversely, diarrheagenic E. coli pathotypes appear to have substituted sucrose for d-serine as a potential nutrient.  相似文献   

12.
In bacterial pathogens, strain-specific chromosomal segments often contain genes encoding strain-specific traits, and because these genes often appear to be dedicated to pathogenic interactions with eucaryotic hosts, the segments containing them may be considered so-called pathogenicity islands (G. Blum, M. Ott, A. Lischewski, A. Ritter, H. Imrich, H. Tschape, and J. Hacker, Infect. Immun. 62:606-614, 1994). We evaluated the contribution to pathogenesis of a recently identified strain-specific chromosomal segment from an Escherichia coli K1 mammalian-newborn sepsis strain: transfer of E. coli K-12 DNA sequences near 64 min, by P1 transduction, into K1 strain RS218 resulted in an RS218-K-12 chimera that (i) contained a shortened NotIotl restriction fragment (relative to wild-type RS218) encompassing the 64-min region; (ii) lacked invasiveness in newborn rats; and (iii) grew in vitro, in both rich and minimal laboratory media, indistinguishably from strain RS218. In addition, genomic DNA from the chimera failed to hybridize with sequences of the K1 capsule genes from strain RS218, suggesting that the chromosomal segment near 64 min which was lost contained these sequences and indeed contained K1-specific virulence genes. Transfer of K-12 sequences resulting in deletion of E. coli pathogen-specific chromosomal segments may afford a general method of detecting genes encoding virulence and/or other distinguishing traits.  相似文献   

13.
Escherichia coli K1 traversal across the blood-brain barrier is an essential step in the pathogenesis of neonatal meningitis. We have previously shown that invasive E. coli promotes the actin rearrangement of brain microvascular endothelial cells (BMEC), which constitute a lining of the blood-brain barrier, for invasion. However, signal transduction mechanisms involved in E. coli invasion are not defined. In this report we show that tyrosine kinases play a major role in E. coli invasion of human BMEC (HBMEC). E. coli induced tyrosine phosphorylation of HBMEC cytoskeletal proteins, focal adhesion kinase (FAK), and paxillin, with a concomitant increase in the association of paxillin with FAK. Overexpression of a dominant interfering form of the FAK C-terminal domain, FRNK (FAK-related nonkinase), significantly inhibited E. coli invasion of HBMEC. Furthermore, we found that FAK kinase activity and the autophosphorylation site (Tyr397) are important in E. coli invasion of HBMEC, whereas the Grb2 binding site (Tyr925) is not required. Immunocytochemical studies demonstrated that FAK is recruited to focal plaques at the site of bacterial entry. Consistent with the invasion results, overexpression of FRNK, a kinase-negative mutant (Arg454 FAK), and a Src binding mutant (Phe397 FAK) inhibited the accumulation of FAK at the bacterial entry site. The overexpression of FAK mutants in HBMEC also blocked the E. coli-induced tyrosine phosphorylation of FAK and its association with paxillin. These observations provide evidence that FAK tyrosine phosphorylation and its recruitment to the cytoskeleton play a key role in E. coli invasion of HBMEC.  相似文献   

14.
Escherichia coli is the most common gram-negative bacterium that causes meningitis during the neonatal period. We have previously shown that the entry of circulating E. coli organisms into the central nervous system is due to their ability to invade the blood-brain barrier, which is composed of a layer of brain microvascular endothelial cells (BMEC). In this report, we show by transmission electron microscopy that E. coli transmigrates through BMEC in an enclosed vacuole without intracellular multiplication. The microfilament-disrupting agents cytochalasin D and latrunculin A completely blocked E. coli invasion of BMEC. Cells treated with the microtubule inhibitors nocodazole, colchicine, vincristin, and vinblastine and the microtubule-stabilizing agent taxol also exhibited 50 to 60% inhibition of E. coli invasion. Confocal laser scanning fluorescence microscopy showed F-actin condensation associated with the invasive E. coli but no alterations in microtubule distribution. These results suggest that E. coli uses a microfilament-dependent phagocytosis-like endocytic mechanism for invasion of BMEC. Previously we showed that OmpA expression significantly enhances the E. coli invasion of BMEC. We therefore examined whether OmpA expression is related to the recruitment of F-actin. OmpA(+) E. coli induced the accumulation of actin in BMEC to a level similar to that induced by the parental strain, whereas OmpA(-) E. coli did not. Despite the presence of OmpA, a noninvasive E. coli isolate, however, did not show F-actin condensation. OmpA(+)-E. coli-associated condensation of F-actin was blocked by synthetic peptides corresponding to the N-terminal extracellular domains of OmpA as well as BMEC receptor analogues for OmpA, chitooligomers (GlcNAcbeta1-4GlcNAc oligomers). These findings suggest that OmpA interaction is critical for the expression or modulation of other bacterial proteins that will subsequently cause actin accumulation for the uptake of bacteria.  相似文献   

15.
Escherichia coli is a common Gram-negative organism that causes bacteremia. Prc, a bacterial periplasmic protease, and its homologues are known to be involved in the pathogenesis of Gram-negative bacterial infections. The present study examined the role of Prc in E. coli bacteremia and characterized the ability of the prc mutant of the pathogenic E. coli strain RS218 to cause bacteremia and survive in human serum. The prc mutant of RS218 exhibited a decreased ability to cause a high level of bacteremia and was more sensitive to serum killing than strain RS218. This sensitivity was due to the mutant's decreased ability to avoid the activation of the antibody-dependent and -independent classical complement cascades as well as its decreased resistance to killing mediated by the membrane attack complex, the end product of complement system activation. The demonstration of Prc in the evasion of classical complement-mediated serum killing of pathogenic E. coli makes this factor a potential target for the development of therapeutic and preventive measures against E. coli bacteremia.  相似文献   

16.
It is shown here for the first time that locusts can be used as a model to study Escherichia coli K1 pathogenesis. E. coli K-12 strain HB101 has very low pathogenicity to locusts and does not invade the locust brain, whereas the injection of 2 × 106 E. coli K1 strain RS218 (O18:K1:H7) kills almost 100% of locusts within 72 h and invades the brain within 24 h of injection. Both mortality and invasion of the brain in locusts after injection of E. coli K1 require at least two of the known virulence determinants shown for mammals. Thus, deletion mutants that lack outer membrane protein A or cytotoxic necrotizing factor 1 have reduced abilities to kill locusts and to invade the locust brain compared to the parent E. coli K1. Interestingly, deletion mutants lacking FimH or the NeuDB gene cluster are still able to cause high mortality. It is argued that the likely existence of additional virulence determinants can be investigated in vivo by using this insect system.  相似文献   

17.
The vast majority of cases of gram-negative meningitis in neonates are caused by K1-encapsulated Escherichia coli. The role of the K1 capsule in the pathogenesis of E. coli meningitis was examined with an in vivo model of experimental hematogenous E. coli K1 meningitis and an in vitro model of the blood-brain barrier. Bacteremia was induced in neonatal rats with the E. coli K1 strain C5 (O18:K1) or its K1(-) derivative, C5ME. Subsequently, blood and cerebrospinal fluid (CSF) were obtained for culture. Viable bacteria were recovered from the CSF of animals infected with E. coli K1 strains only; none of the animals infected with K1(-) strains had positive CSF cultures. However, despite the fact that their cultures were sterile, the presence of O18 E. coli was demonstrated immunocytochemically in the brains of animals infected with K1(-) strains and was seen by staining of CSF samples. In vitro, brain microvascular endothelial cells (BMEC) were incubated with K1(+) and K1(-) E. coli strains. The recovery of viable intracellular organisms of the K1(+) strain was significantly higher than that for the K1(-) strain (P = 0.0005). The recovery of viable intracellular K1(-) E. coli bacteria was increased by cycloheximide treatment of BMEC (P = 0.0059) but was not affected by nitric oxide synthase inhibitors or oxygen radical scavengers. We conclude that the K1 capsule is not necessary for the invasion of bacteria into brain endothelial cells but is responsible for helping to maintain bacterial viability during invasion of the blood-brain barrier.  相似文献   

18.
Meningitis-causing Escherichia coli K1 internalization of the blood-brain barrier is required for penetration into the brain, but the host-microbial interactions involved in E. coli entry of the blood-brain barrier remain incompletely understood. We show here that a meningitis-causing E. coli K1 strain RS218 activates Rac1 (GTP-Rac1) of human brain microvascular endothelial cells (HBMEC) in a time-dependent manner. Both activation and bacterial invasion were significantly inhibited in the presence of a Rac1 inhibitor. We further showed that the guanine nucleotide exchange factor Vav2, not β-Pix, was involved in E. coli K1-mediated Rac1 activation. Since activated STAT3 is known to bind GTP-Rac1, the relationship between STAT3 and Rac1 was examined in E. coli K1 invasion of HBMEC. Downregulation of STAT3 resulted in significantly decreased E. coli invasion compared to control HBMEC, as well as a corresponding decrease in GTP-Rac1, suggesting that Rac1 activation in response to E. coli is under the control of STAT3. More importantly, two E. coli determinants contributing to HBMEC invasion, IbeA and OmpA, were shown to affect both Rac1 activation and their association with STAT3. These findings demonstrate for the first time that specific E. coli determinants regulate a novel mechanism of STAT3 cross talk with Rac1 in E. coli K1 invasion of HBMEC.  相似文献   

19.
S S Bilge  J C Vary  Jr  S F Dowell    P I Tarr 《Infection and immunity》1996,64(11):4795-4801
Shiga-toxigenic Escherichia coli strains belonging to serotype O157 are important human pathogens, but the genetic basis of expression of the O157 antigen and the role played by the lipopolysaccharide O side chain in the adherence of this organism to epithelial cells are not understood. We performed TnphoA mutagenesis on E. coli O157:H7 strain 86-24 to identify a mutant (strain F12) deficient in O-antigen expression. Nucleotide sequence analysis demonstrated that the transposon inserted within an open reading frame with significant homology to rfbE of Vibrio cholerae O1 (U. H. Stroeher, L. E. Karageorgos, R. Morona, and P. A. Manning, Proc. Natl. Acad. Sci. USA 89:2566-2570, 1992), which is postulated to encode perosamine synthetase. This open reading frame was designated rfbE(EcO157:H7). The guanine-plus-cytosine fraction (0.35) suggests that rfbE(EcO157:H7) may have originated in a species other than E. coli. rfbE(EcO157:H7) is conserved in nontoxigenic E. coli O157 strains expressing a variety of other flagellar antigens but is not found in E. coli O55:H7 strains, which are more closely related to E. coli O157:H7. Strain F12 was significantly more adherent to HeLa cells in a quantitative adherence assay than was its E. coli O157:H7 parent, but they did not differ in other phenotypes. Restoration of the expression of the O side chain by complementation of the TnphoA mutation in strain F12 by a plasmid expressing intact rfbE(EcO157:H7) reduced the adherence of the hyperadherent strain F12. We conclude that rfbE(EcO157:H7) is necessary for the expression of the O157 antigen, that acquisition of E. coli rfb genes occurred independently in E. coli O157:H7 and unrelated O157 strains, and that the O side chain of E. coli O157:H7 lipopolysaccharide interferes with the adherence of E. coli O157:H7 to epithelial cells.  相似文献   

20.
Escherichia coli strains of serogroup O115:K(-):F165 have been associated with septicemia in calves and piglets. These strains express a capsular antigen referred to as K"V165" which inhibits agglutination of the O antigen by anti-O115 serum. We used hybrid transposon TnphoA mutants M48, 18b, and 2, and a spontaneous O-agglutinable mutant, 5131a, to evaluate the role of K"V165" in the pathogenicity of E. coli O115. Mutant M48 was as resistant to 90% rabbit serum and as virulent in day-old chickens as the parent strain 5131, mutants 18b and 5131a were less resistant to serum and less virulent in chickens, and mutant 2 was serum sensitive and avirulent. Analysis of outer membrane protein and lipopolysaccharide profiles failed to show any difference between the transposon mutants and the parent strain. In contrast, the spontaneous O-agglutinable mutant showed additional bands in the 16-kDa region of the polysaccharide ladder-like pattern. Mutants 2 and 5131a produced significantly less K"V165" capsular antigen than the parent strain, as demonstrated by a competitive enzyme-linked immunosorbent assay with adsorbed anti-K"V165" serum. In addition, electron microscopic analysis revealed that mutants 2 and 5131a had lost the capsular layer observed in the parent strain after fixation with glutaraldehyde-lysine. This capsule contained carbohydrate compounds and resembled an O-antigen capsule since it prevented O-antigen agglutination before the bacteria were heated at 100 degrees C and induced bacterial serum resistance. The capsule-defective mutants colonized the intestinal epithelium of experimentally infected gnotobiotic pigs but failed to induce clinical signs of septicemia. We concluded that E. coli strains of serogroup O115 expressed a polysaccharide capsular antigen which induced serum resistance and consequently contributed to the pathogenicity of the bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号