首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mast cells are involved in early events crucial to inflammation and autoimmune disease. Recently, proteinase-activated receptor-2 (PAR(2)), a G-protein coupled receptor important to injury responses, was shown to be activated by mast cell tryptase. To investigate whether mast cells and PAR(2) are involved in the development and/or aggravation of testicular inflammation, we studied acute and chronic inflammatory models in the rat. In normal testes, PAR(2) was detected immunohistochemically in macrophages, in peritubular cells (PTCs) and in spermatid acrosomes. In experimentally induced autoimmune orchitis (EAO), PAR(2) was strongly upregulated in macrophages and peritubular-like cells, forming concentric layers around granulomas. Mast cells increased 10-fold in number, were more widely distributed throughout the interstitial tissue, and were partially degranulated. Isolated PTCs expressed functional PAR(2), responded to PAR(2) activation by phosphorylating extracellular signal-regulated kinases 1/2 (ERK1/2) and activating protein kinase c, and increased intracellular Ca(2+) concentrations as well as monocyte chemoattractant protein-1 (MCP-1), transforming growth factor beta(2) (TGFbeta(2)), and cyclooxygenase-2 (COX-2) mRNA expression. Expression of these inflammatory mediators, together with iNOS, also increased significantly in testes 50 days after EAO. In vivo, expression of cytokines and inflammatory mediators was upregulated after injection of recombinant tryptase (MCP-1, TGFbeta(2), and COX-2) and a specific PAR(2) peptide agonist (MCP-1, TGFbeta(2)) in the testis after 5 h. These results suggest that PAR(2) activation elicited on PTCs by mast cell tryptase contributes to acute testicular inflammation and that this pathogenetic mechanism may also play a role in autoimmune orchitis.  相似文献   

2.
Protease-activated receptors (PARs) are G protein-coupled receptors that are activated by proteolytical cleavage of the amino-terminus and thereby act as sensors for extracellular proteases. While coagulation proteases activate PARs to regulate hemostasis, thrombosis, and cardiovascular function, PAR2 is also activated in extravascular locations by a broad array of serine proteases, including trypsin, tissue kallikreins, coagulation factors VIIa and Xa, mast cell tryptase, and transmembrane serine proteases. Administration of PAR2-specific agonistic and antagonistic peptides, as well as studies in PAR2 knockout mice, identified critical functions of PAR2 in development, inflammation, immunity, and angiogenesis. Here, we review these roles of PAR2 with an emphasis on the role of coagulation and other extracellular protease pathways that cleave PAR2 in epithelial, immune, and neuronal cells to regulate physiological and pathophysiological processes.  相似文献   

3.
Proteinase-activated receptor-2 (PAR2) belongs to a novel subfamily of G-protein-coupled receptors with seven-transmembrane domains. PAR2 can be activated by serine proteases such as trypsin, mast cell tryptase, and allergic or bacterial proteases. This receptor is expressed by various cells and seems to be crucially involved during inflammation and the immune response. As previously reported, human neutrophils express functional PAR2. However, the precise physiological role of PAR2 on human neutrophils and its implication in human diseases remain unclear. We demonstrate that PAR2 agonist-stimulated human neutrophils show significantly enhanced migration in 3-D collagen lattices. PAR2 agonist stimulation also induced down-regulation of L-selectin display and up-regulation of membrane-activated complex-1 very late antigen-4 integrin expression on the neutrophil cell surface. Moreover, PAR2 stimulation results in an increased secretion of the cytokines interleukin (IL)-1beta, IL-8, and IL-6 by human neutrophils. These data indicate that PAR2 plays an important role in human neutrophil activation and may affect key neutrophil functions by regulating cell motility in the extracellular matrix, selectin shedding, and up-regulation of integrin expression and by stimulating the secretion of inflammatory mediators. Thus, PAR2 may represent a potential therapeutic target for the treatment of diseases involving activated neutrophils.  相似文献   

4.
Allergic eye disease has a variety of clinical manifestations including seasonal atopic conjunctivitis (SAC), perennial atopic conjunctivitis (PAC), atopic keratoconjunctivitis (AKC). and atopic blepharoconjunctivitis (ABC). We have investigated the number, distribution and protease expression of mast cells in normal and diseased conjunctiva with the use of immunohistochemistry in water-miscible resin sections. The median mast cell densities in normal subjects were 17mm -2 in the bulbar substantia propria and 9mm-2 in tarsal substantia propria. Mast cells were absent from the normal conjunctival epithelium at both sites. Mast cell densities were increased in the bulbar substantia propria in SAC, AKC and ABC. Tarsal substantia propria showed a significant increase in mast cells in ABC and AKC disease states. Mast cells express a range of proteases which varies according to their anatomic site. Mast cells in connective tissue are described to contain tryptase, chymase. cathepsin-G and carboxypeptidase-A, whereas mucosal mast cells contain only tryptase. In the diseased conjunctiva there was a marked reduction in proteases other than tryptase in the intraepithelial mast cells. There were also significant reductions in protease expression other than tryplase in the bulbar substantia propria in AKC and ABC. There appear to be specific alterations in the distribution of mast cells in the sub-categories of allergic eye disease. The distinction between mucosal and connective tissue mast cell pheno-types is not clear-cut and may depend on the functional state of the mast cells in relation to the microenvironment.  相似文献   

5.
There is compelling evidence that human mast cells contribute to the pathophysiology of asthma. Mast cells, but not T cells or eosinophils, localize within the bronchial smooth muscle bundles in patients with asthma but not in normal subjects or those with eosinophilic bronchitis, a factor likely to be important in determining the asthmatic phenotype. The mechanism of mast cell recruitment by asthmatic airway smooth muscle involves the CXCL10/CXCR3 axis, and several mast cell mediators have profound effects on airway smooth muscle function. The autacoids are established as potent bronchoconstrictors, whereas the proteases tryptase and chymase are being demonstrated to have a range of actions consistent with key roles in inflammation, tissue remodeling, and bronchial hyperresponsiveness. IL-4 and IL-13, known mast cell products, also induce bronchial hyperresponsiveness in the mouse independent of the inflammatory response and enhance the magnitude of agonist-induced intracellular Ca2+ responses in cultured human airway smooth muscle. There are therefore many pathways by which the close approximation of mast cells with airway smooth muscle cells might lead to disordered airway smooth muscle function. Mast cells also infiltrate the airway mucous glands in subjects with asthma, showing features of degranulation, and a positive correlation with the degree of mucus obstructing the airway lumen, suggesting that mast cells play an important role in regulating mucous gland secretion. The development of potent and specific inhibitors of mast cell secretion, which remain active when administered long-term to asthmatic airways, should offer a novel approach to the treatment of asthma.  相似文献   

6.
Human mast cell proteases and mast cell heterogeneity   总被引:1,自引:0,他引:1  
Mast cell neutral proteases are distinctive markers of the MC(T) and MC(TC) cells in humans. Measurements of tryptase levels in vivo serve as an overall indicator of mast cell activity. Further research is needed to evaluate the functional role of these proteases as well as each mast cell type in situations related to both health and disease.  相似文献   

7.
Mast cells possess an array of potent inflammatory mediators capable of inducing acute symptoms after cell activation, including urticaria, angioedema, bronchoconstriction, diarrhea, vomiting, hypotension, cardiovascular collapse, and death in few minutes. In contrast, mast cells can provide an array of beneficial mediators in the setting of acute infections, cardiovascular diseases, and cancer. The balance between the detrimental and beneficial roles of mast cells is not completely understood. Although the symptoms of acute mast cell mediator release can be reversed with epinephrine, adrenergic agonists, and mediator blockers, the continued release of histamine, proteases, prostaglandins, leukotrienes, cytokines, and chemokines leads to chronic and debilitating disease, such as mastocytosis. Identification of the molecular factors and mechanisms that control the synthesis and release of mast cell mediators should benefit all patients with mast cell activation syndromes and mastocytosis.  相似文献   

8.
Proteinase-activated receptor (PAR) 2 has been implicated in eosinophil migration. Mast cell (MC) tryptase has been similarly implicated in allergic diseases through the activation of PAR-2, but the role of this receptor in MC tryptase-induced inflammation is not well elucidated. This study aims to investigate the ability of MC tryptase or PAR-2 activating peptide (SLIGRL-NH2) to induce eosinophil recruitment to the pleural cavity of mice. Mast cell tryptase-injected mice were pretreated with PAR-2 antagonist ENMD-1068. Mice injected with SLIGRL-NH2 were pretreated with mast cell tryptase inhibitor APC 366, and eosinophil migration into the pleural cavity and PAR-2 expression was analyzed after 24 or 48 h. SLIGRL-NH2-induced eosinophil recruitment was inhibited by APC 366, and MC tryptase-induced eosinophil recruitment was abolished by ENMD-1068. MC tryptase induced PAR-2 expression on pleural eosinophils. Our results demonstrate a key role for PAR-2 in mediating eosinophil recruitment in MC tryptase-induced pleurisy in mice. The ability of MC tryptase to inducing PAR-2 expression on eosinophils corroborates the relevance of MC tryptase and PAR-2 on modulating eosinophil migration.  相似文献   

9.
Mast cells and basophils play a pathogenetic role in allergic, inflammatory, and autoimmune disorders. These cells have different development, anatomical location and life span but share many similarities in mechanisms of activation and type of mediators. Mediators secreted by mast cells and basophils correlate with clinical severity in asthma, chronic urticaria, anaphylaxis, and other diseases. Therefore, effective biomarkers to measure mast cell and basophil activation in vivo could potentially have high diagnostic and prognostic values. An ideal biomarker should be specific for mast cells or basophils, easily and reproducibly detectable in blood or biological fluids and should be metabolically stable. Markers of mast cell and basophil include molecules secreted by stimulated cells and surface molecules expressed upon activation. Some markers, such as histamine and lipid mediators are common to mast cells and basophils whereas others, such as tryptase and other proteases, are relatively specific for mast cells. The best surface markers of activation expressed on mast cells and basophils are CD63 and CD203. While these mediators and surface molecules have been associated to a variety of diseases, none of them fulfills requirements for an optimal biomarker and search for better indicators of mast cell/basophil activation in vivo is ongoing.  相似文献   

10.
Proteinase-activated receptor (PAR)-2, a G-protein-coupled receptor for trypsin and mast cell tryptase, is highly expressed in the intestine. Luminal trypsin and tryptase are elevated in the colon of inflammatory bowel disease patients. We hypothesized that luminal proteinases activate PAR-2 and induce colonic inflammation. Mice received intracolonically PAR-2 agonists (trypsin, tryptase, and a selective PAR-2-activating peptide) or control drugs (boiled enzymes, inactive peptide) and inflammatory parameters were followed at various times after this treatment. Colonic administration of PAR-2 agonists up-regulated PAR-2 expression and induced an inflammatory reaction characterized by granulocyte infiltration, increased wall thickness, tissue damage, and elevated T-helper cell type 1 cytokine. The inflammation was maximal between 4 and 6 hours and was resolved 48 hours after the intracolonic administration. PAR-2 activation also increased paracellular permeability of the colon and induced bacterial trans-location into peritoneal organs. These proinflammatory and pathophysiological changes observed in wild-type mice were not detected in PAR-2-deficient mice. Luminal proteinases activate PAR-2 in the mouse colon to induce inflammation and disrupt the integrity of the intestinal barrier. Because trypsin and tryptase are found at high levels in the colon lumen of patients with Crohn's disease or ulcerative colitis, our data may bear directly on the pathophysiology of human inflammatory bowel diseases.  相似文献   

11.
Mast cells are a component of cancer microenvironment the role of which is complex and poorly understood. Mast cells promote cancer growth by stimulation of neoangiogenesis, tissue remodeling and by modulation of the host immune response. The mediators of cancer promotion include protease-activated receptors, mitogen activated protein kinases, prostaglandins and histamine. Histamine may induce tumor proliferation and immunosuppression through H1 and H2 receptors, respectively. The mast cell-derived modulators of immune response include also interleukin 10 (IL-10), tumor necrosis factor α (TNF-α) and CD30L. Possibly stimulation of angiogenesis is the most important. Mast cells release potent proangiogenic factors such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), transforming growth factor β (TGF-β), TNF- α and IL-8, and mast cells' enzymes, like metaloproteinases (MMPs), tryptase and chymase participate in vessels' formation. The anti-cancer actions of mast cells include direct growth inhibition, immunologic stimulation, inhibition of apoptosis and decreased cell mobility; the mediators of these processes include chymase, tryptase, TNF-α, IL-1 and IL-6. The very same mediators may exert both pro- or anti-cancer effects depending on concentration, presence of cofactors or location of secreting cells. In fact, peri- and intra-tumoral mast cells may have dissimilar effects. Understanding of the role of mast cells in cancer could lead to improved prognostication and development of therapeutic methods targeting the mast cells.  相似文献   

12.
BACKGROUND: Mast cells and eosinophils are important effector cells in asthma. Understanding their interactions is essential for studying asthma pathophysiology. Inflammatory mediators released from mast cells, such as arachidonic acid metabolites, TNF and IL-5, are important in eosinophil biology. However, little is known about the effects of mast cell-specific mediators, such as tryptase, on eosinophils. Our objective was to investigate the effects of mast cell tryptase on human peripheral blood eosinophils. METHODS: Peripheral blood eosinophils isolated from asthmatic individuals were activated using various concentrations of tryptase- and protease-activated receptor-2 (PAR-2)-activating peptides (PAR-2 AP). Eosinophil activation was evaluated by the release of granule mediators, superoxide release, estimation of eosinophil survival, changes in intracellular Ca2+ concentration and mitogen-activated protein kinase activation. RESULTS: Tryptase induced the release of eosinophil peroxidase and beta-hexosaminidase from peripheral blood eosinophils but had no effect on RANTES release. Eosinophils isolated from two thirds of our donors responded to tryptase, while the remainder appeared not to respond. Release of granule mediators was dependent on tryptase enzymatic activity. To identify the mechanism of eosinophil activation by tryptase, we studied the expression of PAR-2 by eosinophils and its function. Using RT-PCR, we amplified PAR-2 from eosinophils. However, flow cytometry failed to detect significant PAR-2 expression on the surface of eosinophils. The PAR-2 AP SLIGRL-NH2 did not induce eosinophil activation by any of the methods we employed. CONCLUSION: Our data indicate that mast cell tryptase may affect eosinophil activation status independently of PAR-2.  相似文献   

13.
Mast cells and macrophages infiltrate healing myocardial infarcts and may play an important role in regulating fibrous tissue deposition and extracellular matrix remodelling. This study examined the time-course of macrophage and mast cell accumulation in healing infarcts and studied the histological characteristics and protease expression profile of mast cells in a canine model of experimental infarction. Although macrophages were more numerous than mast cells in infarct granulation tissue, macrophage density decreased during maturation of the scar, whereas mast cell numbers remained persistently elevated. During the inflammatory phase of infarction, newly recruited leucocytes infiltrated the injured myocardium and appeared to be clustered in close proximity to degranulating cardiac mast cells. During the proliferative phase of healing, mast cells had decreased granular content and were localized close to infarct neovessels. In contrast, macrophages showed no selective localization. Mast cells in healing canine infarcts were alcian blue/safranin-positive cells that expressed both tryptase and chymase. In order to explain the pro-inflammatory and angiogenic actions of tryptase--the major secretory protein of mast cells--its effects on endothelial chemokine expression were examined. Chemokines are chemotactic cytokines that play an important role in leucocyte trafficking and angiogenesis and are highly induced in infarcts. Tryptase, a proteinase-activated receptor (PAR)-2 agonist, induced endothelial expression of the angiogenic chemokines CCL2/MCP-1 and CXCL8/IL-8, but not the angiostatic chemokine CXCL10/IP-10. Endothelial PAR-2 stimulation with the agonist peptide SLIGKV induced a similar chemokine expression profile. Mast cell tryptase may exert its angiogenic effects in part through selective stimulation of angiogenic chemokines.  相似文献   

14.
BACKGROUND: Although the role of mediators and cytokines produced by mast cells is well established in asthmatic bronchial inflammation, the contribution of mast cell-derived proteases to the development of hyperresponsiveness remains unclear. There have been reports indicating that tryptase alters the mechanical activity of animal airway smooth muscle or spontaneously sensitized human isolated airways. OBJECTIVE: The aim of this study was to analyse the effect of purified mast cell tryptase on non-sensitized human isolated bronchi. METHODS: Both central and peripheral bronchi, dissected from lung specimens obtained at thoracotomy, were studied in terms of both mechanical activity i.e. isometric contraction in response to a variety of agonists and distribution of inflammatory cells i.e. immunohistochemistry. RESULTS: In both proximal and distal bronchi, the reactivity to histamine was significantly increased by a previous incubation in the presence of 1 microg/mL of tryptase (increase in maximal force, DeltaFmax was 12.1 +/- 3.8%, and 8.8 +/- 3.1%, respectively). This effect of tryptase on histamine-induced contraction was completely abrogated in the presence of the protease inhibitor benzamidine (100 micromol/L). Histological examination of specimens exposed to tryptase demonstrated an increase in mast cell number within the subepithelial tissue whereas mast cell numbers in the epithelial layer concomittently decreased. CONCLUSION: These results indicate that human mast cell tryptase alters the contractile response of non-sensitized human isolated bronchi and that this alteration is accompanied by a change in the mast cell distribution within the airway wall.  相似文献   

15.
Inflammation underlines all major bladder pathologies and represents a defense reaction to injury involving a mandatory participation of mast cells and sensory nerves. Mast cells are particularly frequent in close proximity to epithelial surfaces where they are strategically located in the bladder and release their mediators in response to inflammation. Tryptase is specifically produced by mast cells and modulates inflammation by activating protease-activated receptors (PARs). We recently found that PAR-4 mRNA is up-regulated in experimental bladder inflammation regardless of the initiating stimulus. Because it has been reported that PAR-1, PAR-2, and PAR-3 may also be involved in the processes of inflammation, we used immunohistochemistry to characterize the expression of all known PARs in normal, acute, and chronic inflamed mouse bladder. We found that all four PARs are present in the control mouse bladder, and follow a unique distribution. All four PARs are co-expressed in the urothelium, whereas PAR-1 and PAR-2 are predominant in the detrusor muscle, and PAR-4 is expressed in peripheral nerves and plexus cell bodies. The strong expression of PARs in the detrusor muscle indicates the need for studies on the role of these receptors in motility whereas the presence of PAR-4 in nerves may indicate its participation in neurogenic inflammation. In addition, PARs are differentially modulated during inflammation. PAR-1 and PAR-2 are down-regulated in acute inflammation whereas PAR-3 and PAR-4 are up-regulated. Bladder fibroblasts were found to present a clear demarcation in PAR expression secondary to acute and chronic inflammation. Our findings provide evidence of participation of PARs in the urinary system, provide a working model for mast cell tryptase signaling in the mouse bladder, and evoke testable hypotheses regarding the roles of PARs in bladder inflammation. It is timely to understand the role of tryptase signaling and PARs in the context of bladder biology.  相似文献   

16.
17.
In the current study, we asked whether mast cells might modulate remodeling of extracellular matrix by affecting fibroblast-mediated contraction of three-dimensional collagen gels. Mast cells and human lung fibroblasts were co-cultured in floating type I collagen gels. The area of the gels was measured by an image analyzer. Mast cells in co-culture augmented fibroblast contractility (P < 0.001) in a timeand concentration dependent manner. The tryptase inhibitor bis(5-amidino-2-benzimidazo-lyl)methane (BABIM) were unable to block the augmented fibroblast contractility induced by co-cultured mast cells and tryptase added alone in the culture system had no effect on contractility, suggesting that other mediators besides tryptase might be involved. The amount of collagen in dissolved gels, measured as hydroxyproline, did not change after co-culture indicating that degradation of collagen may not be a major mechanism. Our findings support the hypothesis that the activity of mast cells may drive rearrangement of extracellular matrix and this and could subsequently lead to fibrosis and tissue dysfunction.  相似文献   

18.
Gan X  Liu D  Huang P  Gao W  Chen X  Hei Z 《Inflammation》2012,35(3):1144-1153
Mast cell has been demonstrated to be involved in the small intestinal ischemia–reperfusion (IIR) injury, however, the precise role of tryptase released from mast cell on acute lung injury(ALI) induced by IIR remains to be elucidated, our study aimed to observe the roles of tryptase on ALI triggered by IIR and its underlying mechanism. Adult SD rats were randomized into sham-operated group, sole IIR group in which rats were subjected to 75 min superior mesenteric artery occlusion followed by 4 h reperfusion, or IIR being respectively treated with cromolyn sodium, protamine, and compound 48/80. The above agents were, respectively, administrated intravenously 5 min before reperfusion. At the end of experiment, lung tissue was obtained for assays for protein expressions of tryptase and mast cell protease 7 (MCP7) and protease-activated receptor 2 (PAR-2). Pulmonary mast cell number and levels of IL-8 were quantified. Lung histologic injury scores and lung water content were measured. IIR resulted in lung injury evidenced as significant increases in lung histological scores and lung water contents, accompanied with concomitant increases of expressions of tryptase and MCP7, and elevations in PAR-2 expressions and IL-8 levels in lungs. Stabilizing mast cell with cromolyn sodium and inhibiting tryptase with protamine significantly reduced IIR-mediated ALI and the above biochemical changes while activating mast cell with compound 48/80 further aggravated IIR-mediated ALI and the increases of above parameters. Tryptase released from mast cells mediates ALI induced by intestinal ischemia–reperfusion by activating PAR-2 to produce IL-8.  相似文献   

19.
Mast cells are involved in allergic reactions where they release numerous vasoactive and other mediators in response to IgE and antigen. They are also activated by neuropeptides and are found in close contact with neurons. Mast cell heterogeneity has now been documented for mucosal mast cells and connective tissue mast cells. Rat brain mast cells were studied in a perfusion system and were shown to release serotonin in response to the mast cell secretagogue compound 48/80 (C48/80). High-potassium neuronal depolarization also released serotonin, but this was calcium dependent, not associated with beta-hexosaminidase, and was unaffected by prior treatment with C48/80. Neuronal depolarization, however, was associated with somatostatin secretion and substantially reduced subsequent C48/80 stimulation, an effect abolished by neonatal treatment of the animals with capsaicin. Perfusion with somatostatin and substance P also induced brain mast cell serotonin release. C48/80 stimulation of combined thalamic and hypothalamic slices after neuronal depolarization substantially reduced the C48/80 effect, suggesting the possible presence of endogenous inhibitors released from the hypothalamus. Finally, the alpha 2-receptor agonist clonidine had a slight stimulatory effect. These results indicate that brain mast cell serotonin release may be regulated by endogenous neurotransmitters and/or neuromodulators.  相似文献   

20.
This paper reviews the role of mast cells in the development and progression of basal cell carcinoma, squamous cell carcinoma and malignant melanoma. Mast cells accumulate around cutaneous malignancies. Current evidence suggests that mast cells contribute to the tumorigenesis of cutaneous malignancies through four mechanisms. (1) Immunosuppression: Ultraviolet-B radiation, the most important initiator of cutaneous malignancies, activates mast cells. Upon irradiation of the skin, trans-urocanic acid in the epidermis isomerizes to cis-urocanic acid, which stimulates neuropeptide release from neural c-fibers. These neuropeptides in turn trigger histamine secretion from mast cells, leading to suppression of the cellular immune system. (2) Angiogenesis: Mast cells are the major source of vascular endothelial growth factor in basal cell carcinoma and malignant melanoma. Vascular endothelial growth factor is one of the most potent angiogenic factors, which also induces leakage of other angiogenic factors across the endothelial cell wall into the matrix. Mast cell proteases reorganize the stroma to facilitate endothelial cell migration. As well, heparin, the dominant mast cell proteoglycan, assists in blood-borne metastasis. (3) Degradation of extracellular matrix: Through its own proteases, and indirectly via interaction with other cells, mast cells participate in degradation of the matrix, which is required for tumor spread. (4) Mitogenesis: Mast cell mediators including fibroblast growth factor-2 and interleukin-8 are mitogenic to melanoma cells. Current evidence supports an accessory role for mast cells in the development and progression of cutaneous malignancies. Emerging data, however, also suggest that mast cells might, in fact, have opposing roles in tumor biology, and the microenvironment could polarize mast cells to possess either promoting or inhibitory effects on tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号