首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Tolerance induction can prevent acute kidney allograft rejection without chronic immunosuppression. It is uncertain whether specific tolerance can prevent chronic allograft nephropathy (CAN), which involves both nonimmune and immune injury. This report provides evidence that immunologically tolerant macaques, induced with immunotoxin and deoxyspergualin, developed neither acute rejection nor CAN. Long survivors, bearing MHC-mismatched grafts without chronic immunosuppression for 0.8 to 3.4 years, exhibited general immune competence with donor-specific T and B cell tolerance and no functional or histological evidence of CAN. Stringent criteria for tolerance were satisfied by specific prolongation of donor skin grafts with rapid rejection of third-party skin, followed by indefinite acceptance of a second donor kidney graft and establishment of microchimerism. Primate tolerance with documented absence of CAN may give impetus to the clinical application of tolerance.  相似文献   

2.
Long-term specific tolerance to one haplotype class I plus minor antigen disparate renal allografts develops without exogenous immunosuppression in approximately 35% of miniature swine (n = 128). Previous studies have suggested that this phenomenon is related to limited class I-specific helper T cell activity as evidenced by the failure of antibody class switching in vivo and the ability of exogenous interleukin 2 to elicit antidonor responses in vitro. To determine whether tolerance could be broken by inducing antidonor reactivity with donor antigen and a source of T cell help, multiple skin grafts bearing donor class I plus third-party class II antigens were placed on tolerant animals. Skin grafts were placed at least 3 months after the kidney transplant, at which time all recipients had normal renal function as measured by blood urea nitrogen and serum creatinine. First-set rejection of skin grafts by SLAad and SLAdd hosts occurred in 11.8 +/- 1.1 days (mean +/- SEM, n = 6) and in 9.3 +/- 0.9 days (n = 4), respectively. Coincident with skin rejection, most animals developed a transient rise in BUN to 62 +/- 11 mg/dl (n = 10) and a similar rise in Cr to 4.9 +/- 1.2 mg/dl (n = 10), with normal levels returning in all animals within two weeks. Subsequent skin grafts with the same disparity did not undergo second-set rejection and did not induce BUN or Cr elevations. Prior to skin grafting, animals showed no antidonor activity in mixed lymphocyte reaction or cell-mediated lymphocytotoxicity assays. After two skin grafts, all animals developed donor-specific CML and secondary MLR responses, and additional skin grafts amplified this cellular immunity. Development of marked antidonor immunity without a break in tolerance suggested that either graft adaptation or local suppression might be involved in maintaining tolerance to class I MHC antigens. In preliminary studies, an immunized SLAad animal and an immunized SLAdd animal were retransplanted with kidneys MHC matched to their first allografts. In both cases, the second graft was accepted permanently without immunosuppression, suggesting that graft adaptation is not necessary for the maintenance of tolerance to renal allografts in miniature swine.  相似文献   

3.
Split tolerance to a composite tissue allograft in a swine model   总被引:3,自引:0,他引:3  
BACKGROUND: The antigenicity of skin is a major obstacle to expanding human composite tissue transplantation. For example, multiple rejection episodes of the skin have been noted in clinical hand transplant patients. We have previously demonstrated tolerance to vascularized musculoskeletal allografts in major histocompatibility complex (MHC)-matched miniature swine treated with 12 days of cyclosporine. This regimen did not reproducibly lead to tolerance to subsequent frozen donor skin grafts. However, such skin grafts did not have a primary vascular supply. The aim of this study was to determine if tolerance to limb allografts with a vascularized skin component could be achieved with MHC matching and a 12-day course of immunosuppression. METHODS: Hind limb grafts harvested with a 100 cm(2) cutaneous paddle were transplanted heterotopically into six MHC-matched, minor antigen-mismatched miniature swine. All animals received a 12-day course of cyclosporine. One control animal was not immunosuppressed. Grafts were evaluated with biweekly biopsies and tissue viability determined by histologic analysis. To test for sensitization, frozen donor skin grafts were applied to all animals that survived to postoperative day 100. RESULTS: All treated animals (n=6) were tolerant to their musculoskeletal allografts at the time of necropsy (>100 days) regardless of the status of the epidermis. One animal demonstrated tolerance to the skin for more than 180 days. The other five animals demonstrated prolonged survival of the epidermal portion of the graft. The control animal rejected the graft epidermis at 10 days postoperatively. Frozen donor skin grafts demonstrated accelerated rejection (<10 days) in three of the animals and led to simultaneous rejection of both the epidermis of the allograft and the skin graft in the long-term tolerant animal. The rejection of the skin grafts did not break tolerance to the musculoskeletal portion in any of the animals. CONCLUSIONS: All animals exhibited indefinite survival of the musculoskeletal portion of their allografts but only prolonged survival of the epidermis. The loss of the graft skin appears to be the result of an isolated immune reaction to the skin, and, in particular, the epidermis. This observation is further substantiated by the accelerated rejection of secondarily placed frozen donor skin grafts.  相似文献   

4.
Renal allografts were performed between and among animals from three herds of miniature swine that were selectively inbred to homozygosity at the major histocompatibility complex, MSLA. The results suggest several genetic factors which influence the survival of renal allografts in these animals. As expected, the major histocompatibility complex (MHC) was of dominant importance, and all MSLA-mismatched grafts were rejected promptly (12 +/- 3.7 days). Some MSLA-matched grafts were also rejected (30 +/- 15.0 days), indicating that non-MSLA loci also determine antigens which can lead to kidney rejection. Other MSLA-matched grafts were accepted indefinitely. At least one immune response gene that determined ability to reject kidneys across non-MSLA differences seemed to be segregating in our swine population. Animals that had accepted MSLA-matched renal grafts for extended periods demonstrated markedly prolonged survival of subsequent donor skin grafts compared to skin graft survival across the same non-MSLA difference in normal animals. This finding suggests that failure to reject kidneys across non-MSLA differences indicates systemic tolerance, and that there may be a relationship between the induction of such tolerance and the proposed immune response gene controlling rejection.  相似文献   

5.
Future research in immunology for composite tissue allotransplantation   总被引:1,自引:0,他引:1  
Hand and composite tissue allotransplantation (CTA) holds great potential for reconstructive surgery but its development is currently limited by the side-effects of the immunosuppressive drugs. Induction of specific tolerance, a situation where the recipient does not mount an immune response against the allograft but remains fully immunocompetent, holds exciting promise. Generation of mixed hematopoietic chimerism by infusing the recipient with donor bone marrow cells has been shown to induce tolerance without chronic immunosuppression. Genetic matching of the donor and the recipient is another option for transplanting composite tissues with only an initial course of immunosuppression. Experiments demonstrated long-term survival of musculoskeletal allografts between MHC-matched miniature swine. Finally, new immunosuppressive agents with a more targeted action will reduce side-effects and may prevent the development of chronic rejection. Skin-specific immunosuppression is particularly useful for limb transplants since skin, regarded as the most antigenic component, is easily accessible to topical or irradiation therapies.  相似文献   

6.
7.
A reproducible animal model is essential for the study of the pathogenesis of chronic rejection. This study investigates: (i) the optimal pre-transplant blood transfusion conditions to induce tolerance in a strongly rejecting rat kidney allograft model (Dark Agouti to Albino-Surgery) and avoiding post-transplant immunosuppression; (ii) the functional and histological changes that occur in long-term surviving kidneys and their similarity to chronic rejection; and (iii) the maintenance of tolerance. Prolonged survival occurred after administration of at least two donor blood transfusions with concomitant cyclosporin A (5 mg/kg per day). The time-span between transfusions appeared to be critical: 4 days was more effective than 2 or 7 days. Ineffective treatment led to death within the first 2 weeks post-transplant with histological evidence of acute graft rejection. Seventy-five per cent of long-term survivors experienced impaired renal function in the first week which improved spontaneously and remained stable in 93% of the surviving animals after 100 days and in 668 after 200 days. The morphology of long-term allografts was extremely variable from minor to extensive tubular atrophy, interstitial fibrosis, glomerular hypertrophy, focal and segmental glomerulosclerosis and vascular changes. Glomerular hypertrophy occurred in uninephrectomized controls and probably denoted a response to uninephrectomy. Glomerulosclerosis increased with time and was absent in controls. Although chronic damage was evident, the rats remained tolerant to fresh donor skin. Replacement of the original kidney allograft with a fresh donor kidney resulted in 70% survival. These second grafts showed less severe renal dysfunction and morphological damage than the original allografts in the long-term follow up.  相似文献   

8.
BACKGROUND: In nonprimates, organ allografts are often not rejected after withdrawal of immunosuppression. In this study, we examined whether such a phenomenon also occurs in primates. METHODS: Vervet monkeys were transplanted with renal allografts and treated for 60 days with tacrolimus, or tacrolimus plus sirolimus. The drugs were totally withdrawn on day 61. The survival of the monkeys was monitored, and their response to donor- or third party-derived alloantigens was examined in vivo and in vitro. RESULTS: The majority (80-100%) of the grafts survived for at least additional 30 days with no signs of acute rejection. The compromised rejection is donor-specific, because recipient monkeys failed to reject a donor-derived skin graft, but a third-party skin graft was rejected. In vitro mixed lymphocyte reaction and interleukin-2 production in the mixed lymphocyte reaction between the recipients and their donors or between the recipients and a third party had no discernable patterns, and thus did not reflect the in vivo status of the immune system. Although the recipients could not reject the graft acutely after drug withdrawal, the kidney grafts and the donor-derived skin grafts had pathological findings of chronic rejection. CONCLUSIONS: The rejection response of the monkeys to an established graft after withdrawal of immunosuppression is compromised. The compromised rejection is specific and is not due to a permanent alteration of the immune system by the initial drug treatment. The allografts are not inert but have low levels of interaction with the recipient immune system.  相似文献   

9.
BACKGROUND: Although transplantation of musculoskeletal allografts in humans is technically feasible, the adverse effects of long-term immunosuppression subject the patient to high risks for correcting a non-life-threatening condition. Achieving immunologic tolerance to musculoskeletal allografts, without the need for chronic immunosuppression, could expand the clinical application of limb tissue allografting. Tolerance to musculoskeletal allografts has been accomplished previously in miniature swine in our laboratory. Although stable, mixed chimerism has been suggested as the mechanism underlying long-term tolerance in a rat limb model, the mechanism of this tolerance induction has not been established. This report explores the possible relationship between hematopoietic chimerism and tolerance to musculoskeletal allografts in swine. METHODS: Twelve miniature swine underwent vascularized musculoskeletal allograft transplantation from histocompatibility complex (MHC) matched, minor antigen-mismatched donors. Eight animals received a 12-day coprse of cyclosporine, one of which was excluded due to subtherapeutic levels. Four recipients were not immunosuppressed. Serial biopsies to assess graft viability and flow cytometry to assess chimerism were performed. Donor and third-party skin grafts were placed on recipients with surviving allografts greater than 100 days to validate tolerance. RESULTS: Both groups developed early peripheral chimerism, but this chimerism became undetectable by postoperative day 19 in the cyclosporine group and by day 13 in the control group. Animals receiving cyclosporine developed permanent tolerance to their allografts, whereas those not receiving cyclosporine rejected their allografts in 6-9 weeks. Animals demonstrating tolerance to their bone allografts also demonstrated prolonged donor skin graft survival. CONCLUSIONS: Induction of tolerance to musculoskeletal allografts can be achieved in the MHC matched swine. Although hematopoietic chimerism is present in the immediate postoperative period, persistent, long-term chimerism does not seem to be necessary for maintenance of such tolerance.  相似文献   

10.
Hand and composite tissue allotransplantation (CTA) holds great potential for reconstructive surgery but its development is currently limited by the side effects of the immunosuppressive drugs. Induction of specific tolerance, a situation where the recipient does not mount an immune response against the allograft but remains fully immunocompetent, holds exciting promise. Generation of mixed hematopoietic chimerism by infusing the recipient with donor bone marrow cells has been shown to induce tolerance without chronic immunosuppression. Genetic matching of the donor and the recipient is another option for transplanting composite tissues with only an initial course of immunosuppression. Experiments demonstrated long-term survival of musculoskeletal allografts between MHC-matched miniature swine. Finally, new immunosuppressive agents with a more targeted action will reduce side effects and may prevent the development of chronic rejection. Skin-specific immunosuppression is particularly useful for limb transplants since skin, regarded as the most antigenic component, is easily accessible to topical or irradiation therapies.  相似文献   

11.
BACKGROUND: We have previously reported the successful induction of mixed chimerism and long-term acceptance of renal allografts in MHC-mismatched nonhuman primates after nonmyeloablative conditioning and donor bone marrow transplantation. In this study, we extended our regimen to cardiac allotransplantation and compared the immunological responses of heart and kidney allograft recipients. METHODS: Five cynomolgus monkeys were conditioned with low-dose total body irradiation (1.5 Gy on days -6 and -5), supplemental thymic irradiation (7 Gy on day -1), antithymocyte globulin (50 mg/kg on days -2, -1, and 0), splenectomy (day 0), donor bone marrow transplantation (day 0), and a 4-week posttransplant course of cyclosporine. Heart allografts from MHC-mismatched donors were transplanted heterotopically on day 0. RESULTS: Two monkeys failed to develop multilineage chimerism and rejected their allografts soon after cyclosporine was stopped (postoperative days [PODs] 43 and 56). Three monkeys developed multilineage chimerism, which persisted 20 to 43 days posttransplant by flow cytometric analysis and to POD 124 by polymerase chain reaction analysis. Allograft survival in these recipients was prolonged to 138, 428, and 509 days, and in vitro mixed leukocyte reaction and cell-mediated lympholysis (CML) assays demonstrated donor-specific hyporesponsiveness. However, in contrast to kidney allograft recipients, long-term heart allograft recipients eventually developed humoral and cellular immunity against the donor and rejected the grafts. At the time of rejection, 1.3% to 9.5% of donor coronary arteries exhibited intimal proliferation. CONCLUSIONS: The induction of transient mixed hematopoietic chimerism leads to long-term heart allograft survival in MHC disparate monkeys without chronic immunosuppression. However, unlike kidney allografts, full tolerance to cardiac allografts was not achieved. Organ-specific modifications of the preparative regimen may be necessary to prevent the chronic cellular and humoral immune responses elicited by cardiac allografts.  相似文献   

12.
Hand and composite tissue allotransplantation (CTA) holds great potential for reconstructive surgery but its development currently is limited by the side effects of the immunosuppressive drugs. Induction of specific tolerance, a situation in which the recipient does not mount an immune response against the allograft but remains fully immunocompetent, holds exciting promise. The generation of mixed hematopoietic chimerism by infusing the recipient with donor bone marrow cells has been shown to induce tolerance without chronic immunosuppression. Genetic matching of the donor and the recipient is another option for transplanting composite tissues with only an initial course of immunosuppression. Experiments showed long-term survival of musculoskeletal allografts between major histocompatibility complex (MHC)-matched miniature swine. Finally, new immunosuppressive agents with a more targeted action will reduce side effects and may prevent the development of chronic rejection. Skin-specific immunosuppression is particularly useful for limb transplants because skin, regarded as the most antigenic component, is easily accessible to topical or irradiation therapies.  相似文献   

13.
The study was designed to compare second heart and skin grafts and in vitro assays as a means of assessing peripheral tolerance in C57BL/6 mice. Vascularized heterotopic BALB/c hearts were placed in C57BL/6 recipients treated with anti-CD4, GK1.5 (1 mg total per 20 g mouse i.p. on days 0, 1, 2, 3). Those mice in which hearts survived for >60 days were challenged with donor and third-party (CBA) skin grafts or with second heart grafts, of donor or third-party origin, attached to the carotid artery and jugular vein. In vitro alloreactivity was assessed by mixed lymphocyte reactions (MLR) and cell mediated lympholysis (CML) using recipient spleen cells. Parenchymal damage, cellular infiltration and vascular disease were assessed from the histology of long-term allografts and isografts. Allografts in untreated recipients were rapidly rejected while isografts survived > 100 days. Primary allografts in anti-CD4 treated recipients also survived > 100 days, as did donor strain secondary heart transplants given at >60 days after the first graft. Third-party hearts were rapidly rejected, as were donor and third-party skin grafts placed on recipients with long-term allografts. These recipients showed low MLR response to both donor and third-party stimulators and donor-specific suppression of CML at 60 days post graft. Long-surviving heart allografts all showed evidence of parenchymal damage and vascular intimal thickening. Thus in the BALB/c to C57BL/6 donor-recipient strain combination, hearts, but not skin grafts, could be used to demonstrate peripheral tolerance, which seemed to be both organ and major histocompatibility complex (MHC) specific. Despite long survival, BALB/c hearts all showed evidence of parenchymal damage and vascular intimal thickening, a sign of chronic rejection.  相似文献   

14.
Improvements in immunosuppression have modified short‐term survival of deceased‐donor allografts, but not their rate of long‐term failure. Mismatches between donor and recipient HLA play an important role in the acute and chronic allogeneic immune response against the graft. Perfect matching at clinically relevant HLA loci does not obviate the need for immunosuppression, suggesting that additional genetic variation plays a critical role in both short‐ and long‐term graft outcomes. By combining patient data and samples from supranational cohorts across the United Kingdom and European Union, we performed the first large‐scale genome‐wide association study analyzing both donor and recipient DNA in 2094 complete renal transplant‐pairs with replication in 5866 complete pairs. We studied deceased‐donor grafts allocated on the basis of preferential HLA matching, which provided some control for HLA genetic effects. No strong donor or recipient genetic effects contributing to long‐ or short‐term allograft survival were found outside the HLA region. We discuss the implications for future research and clinical application.  相似文献   

15.
Effective immunomodulation to induce tolerance to tissue/organ allografts is attained by infusion of donor lymphocytes endowed with killing capacity through ectopic expression of a short-lived Fas-ligand (FasL) protein. The same approach has proven effective in improving hematopoietic stem and progenitor cell engraftment. This study evaluates the possibility of substitution of immune cells for bone marrow cells (BMC) to induce FasL-mediated tolerance to solid organ grafts. Expression of FasL protein on BMC increased the survival of simultaneously grafted vascularized heterotopic cardiac grafts to 90%, as compared to 30% in recipients of naïve BMC. Similar results were obtained for skin allografts implanted into radiation chimeras at 1 week after bone marrow transplantation. Further reduction of preparative conditioning to busulfan resulted in acceptance of donor skin implanted at 2 weeks after transplantation of naïve and FasL-coated BMC, whereas third-party grafts were acutely rejected. The levels of donor chimerism were in the range of 0.7% to 12% at the time of skin grafting, with higher levels in recipients of FasL-coated BMC. It is concluded that FasL-mediated abrogation of alloimmune responses can be effectively attained with BMC. There is no threshold of donor chimerism, but tolerance to solid organs evolves during the process of donor-host mutual acceptance.  相似文献   

16.
BACKGROUND: We have previously shown that a 12-day treatment with cyclosporine A (CyA) facilitates induction of tolerance to class-I disparate kidneys, as demonstrated by acceptance of second, donor-matched kidneys without immunosuppression. In the present study, we have examined 1) the duration of tolerance in the absence of donor antigen and 2) the pathway of antigen recognition determining maintenance or loss of tolerance. METHODS: Seventeen miniature swine received class-I mismatched kidneys with 12 days of CyA, and received second donor-matched kidneys without immunosuppression at 0, 1, 3, or 4 months after nephrectomy of the primary graft. Five were sensitized 6 weeks after nephrectomy of the primary graft, three with donor-matched skin grafts, and two with donor class-I peptides to eliminate direct pathway involvement. In addition, two long-term tolerant animals received class-I peptides. RESULTS: Rejection of second grafts required at least a 3 month absence of donor antigen. Although donor-matched skin grafts in animals tolerant to kidneys induced antidonor cytotoxic T lymphocyte responses, second renal transplants revealed no evidence of sensitization. In contrast, immunization of recipients with donor class-I peptides after nephrectomy of the primary graft led to loss of tolerance at both T-cell and B-cell levels, as evidenced by rejection of the second graft in 5 days and development of antidonor immunoglobulin G. Peptide immunization of long-term tolerant in recipients bearing long-term renal grafts did not break tolerance. CONCLUSIONS: These data indicate that the renal allograft is required for the indefinite maintenance of tolerance, that indirect antigen presentation is capable of breaking tolerance, and that in tolerant animals, direct antigen presentation may suppress rejection, allowing tolerance to persist.  相似文献   

17.
The concept of using total lymphoid irradiation (TLI) for immunosuppression is based on the prolonged and profound immunosuppressive effects observed after TLI in the treatment of patients with Hodgkin's disease. Pre-operative TLI of allograft recipients has been shown to be immunosuppressive when used alone or together with chemical immunosuppression. Fractionated TLI and allogeneic bone marrow injections produce stable chimaerism without graft-versus-host disease in inbred mice, rats and mongrel dogs and transplantation tolerance of skin and cardiac grafts in rats. In the primate, TLI and bone marrow injection result in significant tolerance of liver and kidney allografts. In 1959 sublethal whole-body irradiation was used as an immunosuppressive agent for the first successful related-human renal allografts between non-identical twins. Despite the dangers of myelosuppression, recent clinical experience has shown TLI to be a useful immunosuppressant for organ transplantation, allowing decreased dosage of concomitant immunosuppressive drugs.  相似文献   

18.
Pancreatic islet allografts pretreated in vitro with monoclonal Ia antibody and transplanted beneath the renal capsule result in normoglycemia beyond 100 days in streptozotocin-induced diabetic recipient mice that differ only at H-2 K, H-2 K + I, or H-2 K + I + D from the donors. Mice with established islet allografts are not tolerant of donor-specific skin or islet antigens, but rather reject donor skin grafts in an accelerated fashion. Established anti-Ia antibody pretreated islet allografts continue to express target antigens and remain susceptible to rejection after challenge with donor skin grafts.  相似文献   

19.
BACKGROUND: Inbred miniature swine provide a large animal model in which the effects of selective major histocompatibility complex (MHC) matching can be reproducibly studied. We have previously demonstrated that although a 12-day course of cyclosporine uniformly induces tolerance to class I-mismatched renal allografts, it does not induce tolerance across full MHC barriers. In this study, we assessed whether and at what dose tacrolimus might permit allografts to induce tolerance across different MHC barriers. METHODS: Recipients of MHC disparate renal allografts were treated with a 12-day course of tacrolimus by continuous intravenous infusion. Groups were divided as follows: (1) class I-mismatched kidneys with 0.3 mg/kg/day tacrolimus (n=3); (2) fully MHC-mismatched kidneys with 0.3 mg/kg/day tacrolimus (n=2); and (3) fully MHC-mismatched kidneys with 0.12-0.16 mg/kg/day tacrolimus (n=4). RESULTS: In groups 1 and 2, recipients with tacrolimus levels of 45-80 ng/ml accepted renal allografts long-term with stable renal function. Donor-specific hyporesponsiveness was demonstrated by cell-mediated lymphocytotoxicity and mixed lymphocyte response, and subsequent donor-matched grafts were also accepted, without further immunosuppression (n=4), confirming systemic tolerance. In group 3, recipients that achieved tacrolimus levels of 35 ng/ml (n=2) accepted their grafts without chronic changes, whereas recipients with levels of 20-26 ng/ml (n=2) developed chronic allograft glomerulopathy, suggesting 35 ng/ml as the threshold blood level for tolerance induction. In vitro assays demonstrated that peripheral blood lymphocytes from tolerant animals produced inhibitory cytokines, suggesting the involvement of regulatory mechanisms. CONCLUSIONS: To our knowledge, this study represents the first demonstration of the induction of transplant tolerance across a two-haplotype full MHC barrier with a short course of immunosuppression in a large animal model. These studies may also have clinical applicability, because the time course required to induce tolerance was sufficiently short that the high drug levels required might be expected to be tolerated clinically with only transient toxicity.  相似文献   

20.
BACKGROUND: Canine models of bone marrow and renal transplantation have provided important preclinical data relevant to developing novel therapeutic protocols for hematopoietic and solid organ transplantation in human beings. Nonmyeloablative transplantation has been shown to induce stable mixed hematopoietic chimerism in normal dogs and correct the phenotype of canine pyruvate kinase deficiency and Glanzman's thrombasthenia. In this study, we investigated the potential for inducing renal allograft tolerance using a nonmyeloablative bone marrow transplantation strategy that induces mixed chimerism in DLA-identical dogs. METHODS: Reciprocal renal allografts were performed in 4 DLA-identical and 4 DLA-haploidentical dogs with nonmyeloablative conditioning (200 cGy total body irradiation [TBI]) and transient immunosuppression with cyclosporine (CSP) and mycophenolate mofetil (MMF) with and without simultaneous bone marrow transplantation. Two DLA-identical control dogs received reciprocal renal allografts without TBI or immunosuppression with CSP and MMF. Serum creatinine (Cr) concentration was monitored to assess renal allograft function. RESULTS: The renal allografts were acutely rejected in the 2 DLA-identical dogs without TBI or immunosuppression. There was long-term (>1 year) renal allograft survival as evidenced by a normal (<2.0 mg/dL) serum Cr concentration in both the DLA-identical and DLA-haploidentical dogs that underwent 200 cGy TBI and transient immunosuppression with CSP and MMF either with or without simultaneous bone marrow transplantation. CONCLUSIONS: Nonmyeloablative conditioning (200 cGy TBI) and transient immunosuppression with CSP and MMF induce renal allograft tolerance in DLA-identical and DLA-haploidentical dogs without donor/host mixed hematopoietic chimerism. These findings suggest it may be possible to induce tolerance to solid organ transplants without the need for chronic immunosuppressive therapy or stable hematopoietic chimerism in the setting of both DLA-matched and haploidentical transplants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号