首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemoresistance and therapeutic selectivity are major obstacles to successful chemotherapy of ovarian cancer. Manganese superoxide disumutase (MnSOD) is an important antioxidant enzyme responsible for the elimination of superoxide radicals. We reported here that MnSOD was significantly elevated in ovarian cancer cells and its overexpression was one of the mechanisms that increased resistance to apoptosis in cancer cells. Knockdown of MnSOD by small-interfering RNA (siRNA) led to an increase in superoxide generation and sensitisation of ovarian cancer cells to the two front-line anti-cancer agents doxorubicin and paclitaxel whose action involved free-radical generation. This synergistic effect was not observed in non-transformed ovarian surface epithelial cells. Furthermore, our results revealed that this combination at the cellular level augmented activation of caspase-3 and caspase-9, but not caspase-8, suggesting involvement of an intrinsic apoptotic pathway. Evaluation of signalling pathways showed that MnSOD siRNA enhanced doxorubicin- and paclitaxel-induced phosphorylation of extracellular signal-regulated kinase 1/2. Akt activation was not affected. These results identify a novel chemoresistance mechanism in ovarian cancer, and show that combination of drugs capable of suppressing MnSOD with conventional chemotherapeutic agents may provide a novel strategy with a superior therapeutic index and advantage for the treatment of refractory ovarian cancer.  相似文献   

2.
3.
4.
To investigate the detailed molecular mechanism of mammary carcinogenesis and discover novel therapeutic targets, we previously analysed gene expression profiles of breast cancers. We here report characterization of a significant role of DTL/RAMP (denticleless/RA-regulated nuclear matrix associated protein) in mammary carcinogenesis. Semiquantitative RT-PCR and northern blot analyses confirmed upregulation of DTL/RAMP in the majority of breast cancer cases and all of breast cancer cell lines examined. Immunocytochemical and western blot analyses using anti-DTL/RAMP polyclonal antibody revealed cell-cycle-dependent localization of endogenous DTL/RAMP protein in breast cancer cells; nuclear localization was observed in cells at interphase and the protein was concentrated at the contractile ring in cytokinesis process. The expression level of DTL/RAMP protein became highest at G(1)/S phases, whereas its phosphorylation level was enhanced during mitotic phase. Treatment of breast cancer cells, T47D and HBC4, with small-interfering RNAs against DTL/RAMP effectively suppressed its expression and caused accumulation of G(2)/M cells, resulting in growth inhibition of cancer cells. We further demonstrate the in vitro phosphorylation of DTL/RAMP through an interaction with the mitotic kinase, Aurora kinase-B (AURKB). Interestingly, depletion of AURKB expression with siRNA in breast cancer cells reduced the phosphorylation of DTL/RAMP and decreased the stability of DTL/RAMP protein. These findings imply important roles of DTL/RAMP in growth of breast cancer cells and suggest that DTL/RAMP might be a promising molecular target for treatment of breast cancer.  相似文献   

5.
6.
Cyclin D1/CDK4 activity is upregulated in up to 50% of breast cancers and CDK4-mediated phosphorylation negatively regulates the TGFβ superfamily member Smad3. We sought to determine if CDK4 inhibition and doxorubicin chemotherapy could impact Smad3-mediated cell/colony growth and apoptosis in breast cancer cells. Parental and cyclin D1-overexpressing MCF7 cells were treated with CDK4 inhibitor, doxorubicin, or combination therapy and cell proliferation, apoptosis, colony formation, and expression of apoptotic proteins were evaluated using an MTS assay, TUNEL staining, 3D Matrigel assay, and apoptosis array/immunoblotting. Study cells were also transduced with WT Smad3 or a Smad3 construct resistant to CDK4 phosphorylation (5M) and colony formation and expression of apoptotic proteins were assessed. Treatment with CDK4 inhibitor/doxorubicin combination therapy, or transduction with 5M Smad3, resulted in a similar decrease in colony formation. Treating cyclin D overexpressing breast cancer cells with combination therapy also resulted in the greatest increase in apoptosis, resulted in decreased expression of anti-apoptotic proteins survivin and XIAP, and impacted subcellular localization of pro-apoptotic Smac/DIABLO. Additionally, transduction of 5M Smad3 and doxorubicin treatment resulted in the greatest change in apoptotic protein expression. Collectively, this work showed the impact of CDK4 inhibitor-mediated, Smad3-regulated tumor suppression, which was augmented in doxorubicin-treated cyclin D-overexpressing study cells.  相似文献   

7.
We have previously demonstrated that a hPRL antagonist (hPRL-G129R) was able to inhibit PRL induced breast cancer cell proliferation through induction of apoptosis. In the present study, we test the hypothesis that the inhibitory effect of hPRL-G129R in breast cancer cells occurs, at least in part, through the inhibition of oncogene STAT3 activation. We first demonstrated that STAT5 and STAT3 could be activated by either hGH or hPRL in T-47D breast cancer cells. Although the patterns of STAT5 activation by hGH and hPRL are similar, we observed a nearly 10-fold greater efficacy of hPRL in STAT3 activation as compared to that of hGH. More importantly, we have demonstrated that activation of STAT3 by hPRL could be inhibited by hPRL-G129R. Since T-47D cells coexpress GHR and PRLR, an attempt was made to dissect the molecular events mediated through hGHR or hPRLR using mouse L-cells expressing a single population of receptors (hGHR or hPRLR). To our surprise, only STAT5, not STAT3 phosphorylation was observed in these L-cells. In conclusion, our results suggest that: a) STAT3 is preferably activated through hPRLR in T-47D cells; b) hPRL-G129R is effective in inhibiting STAT3 phosphorylation; and c) the mechanism of STAT3 activation is different from that of STAT5.  相似文献   

8.
Pharmacologic induction of cancer cell differentiation has potential in the treatment of breast cancer. Doxorubicin, a widely used anthracycline antibiotic, was previously reported to induce differentiation of MCF-7 breast cancer cells. We demonstrate in this study that inhibition of MCF-7 breast cancer cell growth by low dose doxorubicin (0.01 µg/ml) was accompanied by an increase in cytokeratin 8/18 and milk fat globule membrane protein expression, biomarkers for differentiation of breast cancer, as well as an increase in JNK/SAPK phosphorylation. High dose doxorubicin (10.0 µg/ml) induced apoptosis in these cells. Overexpression of dominant-inhibitory forms of JNK1 and c-Jun blocked both the differentiation and apoptotic effects of doxorubicin. These results suggest that JNK/SAPK pathway signaling plays a prominent role in doxorubicin-induced cell cycle withdrawal, differentiation and control of apoptosis in this cell system. These findings support the possibility that JNK/SAPK pathway activation may be a means of therapeutic intervention in breast cancer.  相似文献   

9.
Loss of caspase-8 expression - which has been demonstrated in a subset of Medulloblastoma (MB) - might block important apoptotic signalling pathways and therefore contribute to treatment resistance. In this study, IFN-gamma mediated up-regulation of caspase-8 in human MB cells was found to result in chemosensitization to cisplatin, doxorubicin and etoposide, and sensitisation to radiation. These effects were more prominent in D425 and D341 MB cells (low basal caspase-8 expression) when compared to DAOY MB cells (high basal caspase-8 expression). IFN-gamma mediated chemosensitization and radiosensitization effects were reduced by treatment with the caspase-8 specific inhibitor z-IETD-fmk. Treatment of IFN-gamma resulted in activation of STAT1 in DAOY MB cells and to a lesser extent in D425, but not in D341, indicating that IFN-gamma acts in MB cells through STAT1-dependent and -independent signalling pathways. Taken together, our results demonstrate that IFN-gamma mediated restoration of caspase-8 in MB cells might enhance apoptotic pathways relevant to the response to chemo- and radiotherapy.  相似文献   

10.
11.
In this study, ??2-AR level was found to be up-regulated in MCF-7 cells overexpressing Her2 (MCF-7/Her2). Correlation of ??2-AR level with Her2 status was demonstrated in breast cancer tissue samples. Constitutive phosphorylation of ERK, mRNA expression up-regulation of catecholamine-synthesis enzymes, and increased epinephrine release were detected in MCF-7/Her2 cells. ??2-AR expression induced by epinephrine and involvement of ERK signaling were validated. The data indicate that Her2 overexpression and excessive phosphorylation of ERK cause epinephrine autocrine release from breast cancer cells, resulting in up-regulation of ??2-AR expression. The data also showed that catecholamine prominently stimulated Her2 mRNA expression and promoter activity. The activation and nuclear translocation of STAT3 triggered by isoproterenol were observed. Enhanced binding activities of STAT3 to the Her2 promoter after isoproterenol stimulation were verified. Using STAT3 shRNA and dominant negative STAT3 mutant, the role of STAT3 in isoproterenol-induced Her2 expression was further confirmed. The data support a model where ??2-AR and Her2 comprise a positive feedback loop in human breast cancer cells.  相似文献   

12.
We investigated whether the combination of zoledronic acid and doxorubicin induced apoptosis of breast and prostate cancer cell lines, and if synergistic interaction was present. We investigated whether the levels of cell death altered depending on the sequence in which the drugs were administered and the possible mechanism of action responsible for the increased cell death following combined treatments. Breast and prostate cancer cells were treated with zoledronic acid alone, doxorubicin alone, or drugs in sequence (doxorubicin before, after, or with zoledronic acid), and the levels of apoptotic death were determined by evaluation of nuclear morphology. We found that clinically relevant concentrations of doxorubicin and zoledronic acid induced sequence- and schedule-dependent apoptosis of breast and prostate cancer cells. For maximal apoptosis, cells had to be pretreated for 24 hr with doxorubicin before immediate treatment with zoledronic acid for 1 hr. This observation is a characteristic feature of cell cycle phase-specific synergistic effect. Replacing zoledronic acid with the nonnitrogen-containing bisphosphonate clodronate did not induce increased apoptosis. Induction of apoptosis was mainly via inhibition of the mevalonate (MVA) pathway, as addition of the MVA pathway intermediary geranylgeraniol inhibited the induction of apoptosis by doxorubicin followed by zoledronic acid. In conclusion, combined treatment of breast and prostate cancer cell lines with clinically relevant doses of doxorubicin and zoledronic acid induces apoptosis in a synergistic fashion. These findings may have relevance for the clinical setting, particularly breast cancer patients receiving these drugs in the adjuvant setting.  相似文献   

13.
Interleukin-7-receptor-signaling plays a pivotal role in T-cell development and maintenance of T-cell memory. We studied IL-7Ralpha (CD127) expression in PBMCs obtained from patients with breast cancer and examined IL-7 receptor-mediated downstream effects defined by STAT5 phosphorylation (p-STAT5). Reduced numbers of IL-7Ralpha-positive cells were identified in CD4+ T-cells as well as in a CD8+ T-cell subset defined by CD8alpha/alpha homodimer expression in patients with breast cancer. PBMCs obtained from healthy donors (n = 19) and from patients with breast cancer (n = 19) exhibited constitutive p-STAT5 expression in the range of 0-6.4% in CD4+ T-cells and 0-4% in CD8+ T-cells. Stimulation with recombinant human IL-7 for 15 min increased p-STAT5 expression up to 36-97% in CD4+T-cells and to 26-90% in CD8+T-cells obtained from healthy control donors (n = 19). In contrast, PBMCs obtained from 13/19 patients with breast cancer did not respond to IL-7 as defined by STAT5 phosphorylation, despite expression of IL-7Ralpha on T-lymphocytes. T-cells were further characterized for IL- 2 and IFN-gamma production induced by PMA/Ionomycin. PBMCs from 9/19 patients with breast cancer showed decreased IL-2 and IFN-gamma production combined with IL-7-signaling defects; PBMCs from 4 patients with breast cancer exhibited deficient IL-7-signaling, yet intact cytokine production. Reduced numbers of IL-7Ralpha-positive cells and nonresponsiveness to IL-7, defined by lack of STAT5 phosphorylation, characterizes the immunological profile in T-cells from patients with breast cancer.  相似文献   

14.
The overexpression of reduced expression in immortalized cells (REIC)/Dickkopf-3 (Dkk-3), a tumor suppressor gene, induced apoptosis in human prostatic and testicular cancer cells. The aim of this study is to examine the potential of REIC/Dkk-3 as a therapeutic target against breast cancer. First, the in vitro apoptotic effect of Ad-REIC treatment was investigated in breast cancer cell lines and the adenovirus-mediated overexpression of REIC/Dkk-3 was thus found to lead to apoptotic cell death in a c-Jun-NH(2)-kinase (JNK) phosphorylaion-dependent manner. Moreover, an in vivo apoptotic effect and MCF/Wt tumor growth inhibition were observed in the mouse model after intratumoral Ad-REIC injection. As multidrug resistance (MDR) is a major problem in the chemotherapy of progressive breast cancer, the in vitro effects of Ad-REIC treatment were investigated in terms of the sensitivity of multidrug-resistant MCF7/ADR cells to doxorubicin and of the P-glycoprotein expression. Ad-REIC treatment in MCF7/ADR cells also downregulated P-glycoprotein expresssion through JNK activation, and sensitized its drug resistance against doxorubicin. Therefore, not only apoptosis induction but also the reversal of anticancer drug resistance was achieved using Ad-REIC. We suggest that REIC/Dkk-3 is a novel target for breast cancer treatment and that Ad-REIC might be an attractive agent against drug-resistant cancer in combination with conventional antineoplastic agents.  相似文献   

15.
16.
17.
The purpose of this study was to discover novel nuclear receptor targets in triple-negative breast cancer. Expression microarray, Western blot, qRT-PCR analyses, MTT growth assay, soft agar anchorage-independent growth assay, TRE reporter transactivation assay, and statistical analysis were performed in this study. We performed microarray analysis using 227 triple-negative breast tumors, and clustered the tumors into five groups according to their nuclear receptor expression. Thyroid hormone receptor beta (TRβ) was one of the most differentially expressed nuclear receptors in group 5 compared to other groups. TRβ low expressing patients were associated with poor outcome. We evaluated the role of TRβ in triple-negative breast cancer cell lines representing group 5 tumors. Knockdown of TRβ increased soft agar colony and reduced sensitivity to docetaxel and doxorubicin treatment. Docetaxel or doxorubicin long-term cultured cell lines also expressed decreased TRβ protein. Microarray analysis revealed cAMP/PKA signaling was the only KEGG pathways upregulated in TRβ knockdown cells. Inhibitors of cAMP or PKA, in combination with doxorubicin further enhanced cell apoptosis and restored sensitivity to chemotherapy. TRβ-specific agonists enhanced TRβ expression, and further sensitized cells to both docetaxel and doxorubicin. Sensitization was mediated by increased apoptosis with elevated cleaved PARP and caspase 3. TRβ represents a novel nuclear receptor target in triple-negative breast cancer; low TRβ levels were associated with enhanced resistance to both docetaxel and doxorubicin treatment. TRβ-specific agonists enhance chemosensitivity to these two agents. Mechanistically enhanced cAMP/PKA signaling was associated with TRβ’s effects on response to chemotherapy.  相似文献   

18.
19.
20.
Beta-lapachone (beta-Lap) triggers apoptosis in a number of human breast and prostate cancer cell lines through a unique apoptotic pathway that is dependent upon NQO1, a two-electron reductase. Recently, our laboratory showed that beta-lap-exposed MCF-7 cells exhibited an early increase in intracellular cytosolic Ca(2+) from endoplasmic reticulum stores, and that BAPTA-AM (an intracellular Ca(2+) chelator) blocked these early increases and partially inhibited all aspects of beta-lap-induced apoptosis. We now show that exposure of NQO1-expressing breast cancer cells to beta-lap stimulates a unique proteolytic apoptotic pathway involving mu-calpain activation. No apparent activation of m-calpain was noted. Upon activation, mu-calpain translocated to the nucleus concomitant with specific nuclear proteolytic events. Apoptotic responses in beta-lap-exposed NQO1-expressing cells were significantly delayed and survival enhanced by exogenous over-expression of calpastatin, a natural inhibitor of mu- and m-calpains. Furthermore, purified mu-calpain cleaved PARP to a unique fragment (approximately 60 kDa), not previously reported for calpains. We provide evidence that beta-lap-induced, mu-calpain-stimulated apoptosis does not involve any known apoptotic caspases; the activated fragments of caspases were not observed after beta-lap exposures, nor were there any changes in the pro-enzyme forms as measured by Western blot analyses. The ability of beta-lap to trigger an apparently novel, p53-independent, calpain-mediated apoptotic cell death further support the development of this drug for improved breast cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号