首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A frontoparietal network of brain regions is often implicated in both auditory and visual information processing. Although it is possible that the same set of multimodal regions subserves both modalities, there is increasing evidence that there is a differentiation of sensory function within frontoparietal cortex. Magnetic resonance imaging (MRI) in humans was used to investigate whether different frontoparietal regions showed intrinsic biases in connectivity with visual or auditory modalities. Structural connectivity was assessed with diffusion tractography and functional connectivity was tested using functional MRI. A dorsal–ventral gradient of function was observed, where connectivity with visual cortex dominates dorsal frontal and parietal connections, while connectivity with auditory cortex dominates ventral frontal and parietal regions. A gradient was also observed along the posterior–anterior axis, although in opposite directions in prefrontal and parietal cortices. The results suggest that the location of neural activity within frontoparietal cortex may be influenced by these intrinsic biases toward visual and auditory processing. Thus, the location of activity in frontoparietal cortex may be influenced as much by stimulus modality as the cognitive demands of a task. It was concluded that stimulus modality was spatially encoded throughout frontal and parietal cortices, and was speculated that such an arrangement allows for top–down modulation of modality‐specific information to occur within higher‐order cortex. This could provide a potentially faster and more efficient pathway by which top–down selection between sensory modalities could occur, by constraining modulations to within frontal and parietal regions, rather than long‐range connections to sensory cortices. Hum Brain Mapp 38:255–270, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

2.
Objective: Patients with Parkinson's disease (PD) often suffer from impairments in executive functions, such as working memory deficits. It is widely held that dopamine depletion in the striatum contributes to these impairments through decreased activity and connectivity between task‐related brain networks. We investigated this hypothesis by studying task‐related network activity and connectivity within a sample of de novo patients with PD, versus healthy controls, during a visuospatial working memory task. Methods: Sixteen de novo PD patients and 35 matched healthy controls performed a visuospatial n‐back task while we measured their behavioral performance and neural activity using functional magnetic resonance imaging. We constructed regions‐of‐interest in the bilateral inferior parietal cortex (IPC), bilateral dorsolateral prefrontal cortex (DLPFC), and bilateral caudate nucleus to investigate group differences in task‐related activity. We studied network connectivity by assessing the functional connectivity of the bilateral DLPFC and by assessing effective connectivity within the frontoparietal and the frontostriatal networks. Results: PD patients, compared with controls, showed trend‐significantly decreased task accuracy, significantly increased task‐related activity in the left DLPFC and a trend‐significant increase in activity of the right DLPFC, left caudate nucleus, and left IPC. Furthermore, we found reduced functional connectivity of the DLPFC with other task‐related regions, such as the inferior and superior frontal gyri, in the PD group, and group differences in effective connectivity within the frontoparietal network. Interpretation: These findings suggest that the increase in working memory‐related brain activity in PD patients is compensatory to maintain behavioral performance in the presence of network deficits. Hum Brain Mapp 36:1554–1566, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
Language comprehension depends on tight functional interactions between distributed brain regions. While these interactions are established for semantic and syntactic processes, the functional network of speech intonation – the linguistic variation of pitch – has been scarcely defined. Particularly little is known about intonation in tonal languages, in which pitch not only serves intonation but also expresses meaning via lexical tones. The present study used psychophysiological interaction analyses of functional magnetic resonance imaging data to characterise the neural networks underlying intonation and tone processing in native Mandarin Chinese speakers. Participants categorised either intonation or tone of monosyllabic Mandarin words that gradually varied between statement and question and between Tone 2 and Tone 4. Intonation processing induced bilateral fronto‐temporal activity and increased functional connectivity between left inferior frontal gyrus and bilateral temporal regions, likely linking auditory perception and labelling of intonation categories in a phonological network. Tone processing induced bilateral temporal activity, associated with the auditory representation of tonal (phonemic) categories. Together, the present data demonstrate the breadth of the functional intonation network in a tonal language including higher‐level phonological processes in addition to auditory representations common to both intonation and tone.  相似文献   

4.
Math‐gifted subjects are characterized by above‐age performance in intelligence tests, exceptional creativity, and high task commitment. Neuroimaging studies reveal enhanced functional brain organization and white matter microstructure in the frontoparietal executive network of math‐gifted individuals. However, the cortical morphometry of these subjects remains largely unknown. The main goal of this study was to compare the cortical morphometry of math‐gifted adolescents with that of an age‐ and IQ‐matched control group. We used surface‐based methods to perform a vertex‐wise analysis of cortical thickness and surface area. Our results show that math‐gifted adolescents present a thinner cortex and a larger surface area in key regions of the frontoparietal and default mode networks, which are involved in executive processing and creative thinking, respectively. The combination of reduced cortical thickness and larger surface area suggests above‐age neural maturation of these networks in math‐gifted individuals. Hum Brain Mapp 37:1893–1902, 2016. © 2016 Wiley Periodicals, Inc .  相似文献   

5.
Hypercoupling of activity in speech‐perception‐specific brain networks has been proposed to play a role in the generation of auditory‐verbal hallucinations (AVHs) in schizophrenia; however, it is unclear whether this hypercoupling extends to nonverbal auditory perception. We investigated this by comparing schizophrenia patients with and without AVHs, and healthy controls, on task‐based functional magnetic resonance imaging (fMRI) data combining verbal speech perception (SP), inner verbal thought generation (VTG), and nonverbal auditory oddball detection (AO). Data from two previously published fMRI studies were simultaneously analyzed using group constrained principal component analysis for fMRI (group fMRI‐CPCA), which allowed for comparison of task‐related functional brain networks across groups and tasks while holding the brain networks under study constant, leading to determination of the degree to which networks are common to verbal and nonverbal perception conditions, and which show coordinated hyperactivity in hallucinations. Three functional brain networks emerged: (a) auditory‐motor, (b) language processing, and (c) default‐mode (DMN) networks. Combining the AO and sentence tasks allowed the auditory‐motor and language networks to separately emerge, whereas they were aggregated when individual tasks were analyzed. AVH patients showed greater coordinated activity (deactivity for DMN regions) than non‐AVH patients during SP in all networks, but this did not extend to VTG or AO. This suggests that the hypercoupling in AVH patients in speech‐perception‐related brain networks is specific to perceived speech, and does not extend to perceived nonspeech or inner verbal thought generation.  相似文献   

6.
A crucial function of our goal‐directed behavior is to select task‐relevant targets among distractor stimuli, some of which may share properties with the target and thus compete for attentional selection. Here, by applying functional magnetic resonance imaging (fMRI) to a visual search task in which a target was embedded in an array of distractors that were homogeneous or heterogeneous along the task‐relevant (orientation or form) and/or task‐irrelevant (color) dimensions, we demonstrate that for both (orientation) feature search and (form) conjunction search, the fusiform gyrus is involved in processing the task‐irrelevant color information, while the bilateral frontal eye fields (FEF), the cortex along the left intraparietal sulcus (IPS), and the left junction of intraparietal and transverse occipital sulci (IPTO) are involved in processing task‐relevant distracting information, especially for target‐absent trials. Moreover, in conjunction (but not in feature) search, activity in these frontoparietal regions is affected by stimulus heterogeneity along the task‐irrelevant dimension: heterogeneity of the task‐irrelevant information increases the activity in these regions only when the task‐relevant information is homogeneous, not when it is heterogeneous. These findings suggest that differential neural mechanisms are involved in processing task‐relevant and task‐irrelevant dimensions of the searched‐for objects. In addition, they show that the top‐down task set plays a dominant role in determining whether or not task‐irrelevant information can affect the processing of the task‐relevant dimension in the frontoparietal regions.  相似文献   

7.
Developmental dyslexia is a reading disorder often characterized by reduced awareness of speech units. Whether the neural source of this phonological disorder in dyslexic readers results from the malfunctioning of the primary auditory system or damaged feedback communication between higher‐order phonological regions (i.e., left inferior frontal regions) and the auditory cortex is still under dispute. Here we recorded magnetoencephalographic (MEG) signals from 20 dyslexic readers and 20 age‐matched controls while they were listening to ~10‐s‐long spoken sentences. Compared to controls, dyslexic readers had (1) an impaired neural entrainment to speech in the delta band (0.5–1 Hz); (2) a reduced delta synchronization in both the right auditory cortex and the left inferior frontal gyrus; and (3) an impaired feedforward functional coupling between neural oscillations in the right auditory cortex and the left inferior frontal regions. This shows that during speech listening, individuals with developmental dyslexia present reduced neural synchrony to low‐frequency speech oscillations in primary auditory regions that hinders higher‐order speech processing steps. The present findings, thus, strengthen proposals assuming that improper low‐frequency acoustic entrainment affects speech sampling. This low speech‐brain synchronization has the strong potential to cause severe consequences for both phonological and reading skills. Interestingly, the reduced speech‐brain synchronization in dyslexic readers compared to normal readers (and its higher‐order consequences across the speech processing network) appears preserved through the development from childhood to adulthood. Thus, the evaluation of speech‐brain synchronization could possibly serve as a diagnostic tool for early detection of children at risk of dyslexia. Hum Brain Mapp 37:2767–2783, 2016. © 2016 Wiley Periodicals, Inc .  相似文献   

8.
The aim of this study was to provide the first, comprehensive meta‐analysis of the neuroimaging literature regarding greater neural responses to a deviant stimulus in a stream of repeated, standard stimuli, termed here oddball effects. The meta‐analysis of 75 independent studies included a comparison of auditory and visual oddball effects and task‐relevant and task‐irrelevant oddball effects. The results were interpreted with reference to the model in which a large‐scale dorsal frontoparietal network embodies a mechanism for orienting attention to the environment, whereas a large‐scale ventral frontoparietal network supports the detection of salient, environmental changes. The meta‐analysis yielded three main sets of findings. First, ventral network regions were strongly associated with oddball effects and largely common to auditory and visual modalities, indicating a supramodal “alerting” system. Most ventral network components were more strongly associated with task‐relevant than task‐irrelevant oddball effects, indicating a dynamic interplay of stimulus saliency and internal goals in stimulus‐driven engagement of the network. Second, the bilateral inferior frontal junction, an anterior core of the dorsal network, was strongly associated with oddball effects, suggesting a central role in top‐down attentional control. However, other dorsal network regions showed no or only modest association with oddball effects, likely reflecting active engagement during both oddball and standard stimulus processing. Finally, prominent oddball effects outside the two networks included the sensory cortex regions, likely reflecting attentive and preattentive modulation of early sensory activity, and subcortical regions involving the putamen, thalamus, and other areas, likely reflecting subcortical involvement in alerting responses. Hum Brain Mapp 35:2265–2284, 2014. © 2013 Wiley Periodicals, Inc .  相似文献   

9.
In this study, we aimed to understand how whole‐brain neural networks compute sensory information integration based on the olfactory and visual system. Task‐related functional magnetic resonance imaging (fMRI) data was obtained during unimodal and bimodal sensory stimulation. Based on the identification of multisensory integration processing (MIP) specific hub‐like network nodes analyzed with network‐based statistics using region‐of‐interest based connectivity matrices, we conclude the following brain areas to be important for processing the presented bimodal sensory information: right precuneus connected contralaterally to the supramarginal gyrus for memory‐related imagery and phonology retrieval, and the left middle occipital gyrus connected ipsilaterally to the inferior frontal gyrus via the inferior fronto‐occipital fasciculus including functional aspects of working memory. Applied graph theory for quantification of the resulting complex network topologies indicates a significantly increased global efficiency and clustering coefficient in networks including aspects of MIP reflecting a simultaneous better integration and segregation. Graph theoretical analysis of positive and negative network correlations allowing for inferences about excitatory and inhibitory network architectures revealed—not significant, but very consistent—that MIP‐specific neural networks are dominated by inhibitory relationships between brain regions involved in stimulus processing.  相似文献   

10.
How the interactions between cortices through a specific white matter pathway change during cognitive processing in patients with epilepsy remains unclear. Here, we used surface‐based structural connectivity analysis to examine the change in structural connectivity with Broca's area/the right Broca's homologue in the lateral temporal and inferior parietal cortices through the arcuate fasciculus (AF) in 17 patients with left temporal lobe epilepsy (TLE) compared with 17 healthy controls. Then, we investigated its functional relevance to the changes in task‐related responses and task‐modulated functional connectivity with Broca's area/the right Broca's homologue during a semantic classification task of a single word. The structural connectivity through the AF pathway and task‐modulated functional connectivity with Broca's area decreased in the left midtemporal cortex. Furthermore, task‐related response decreased in the left mid temporal cortex that overlapped with the region showing a decrease in the structural connectivity. In contrast, the region showing an increase in the structural connectivity through the AF overlapped with the regions showing an increase in task‐modulated functional connectivity in the left inferior parietal cortex. These structural and functional changes in the overlapping regions were correlated. The results suggest that the change in the structural connectivity through the left frontal–temporal AF pathway underlies the altered functional networks between the frontal and temporal cortices during the language‐related processing in patients with left TLE. The left frontal–parietal AF pathway might be employed to connect anterior and posterior brain regions during language processing and compensate for the compromised left frontal–temporal AF pathway. Hum Brain Mapp 37:4425–4438, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

11.
Children make rapid transitions in their neural and intellectual development. Compared to other brain regions, the auditory cortex slowly matures, and children show immature auditory brain activity. This auditory neural plasticity largely occurs as a response to human‐voice stimuli, which are presented more often than other stimuli, and can even be observed in the brainstem. Early psychologists have proposed that sensory processing and intelligence are closely related to each other. In the present study, we identified brain activity related to human‐voice processing and investigated a crucial neural correlate of child development and intelligence. We also examined the neurophysiological activity patterns during human‐voice processing in young children aged 3 to 8 years. We investigated auditory evoked fields (AEFs) and oscillatory changes using child‐customized magnetoencephalography within a short recording time (<6 min). We examined the P1m component of AEFs, which is a predominant component observed in young children. The amplitude of the left P1m was highly correlated with age, and the amplitude of the right P1m was highly correlated with the intelligence quotient. For auditory‐related oscillatory changes, we found a positive correlation between the intelligence quotient and percent change of gamma increase relative to baseline in the right auditory cortex. We replicated the finding of age‐related changes in auditory brain activity in young children, which is related to the slow maturation of the auditory cortex. In addition, these results suggest a close link between intelligence and auditory sensory processing, especially in the right hemisphere.  相似文献   

12.
Mismatch responses reflect neural mechanisms of early cognitive processing in the auditory domain. Disturbances of these mechanisms on multiple levels of neural processing may contribute to clinical symptoms in major depression (MD). A functional magnetic resonance imaging (fMRI) study was conducted to identify neurobiological foundations of altered mismatch processing in MD. Twenty‐five patients with major depression and 25 matched healthy individuals completed an auditory mismatch paradigm optimized for fMRI. Brain activity during mismatch processing was compared between groups. Moreover, seed‐based connectivity analyses investigated depression‐specific brain networks. In patients, mismatch processing was associated with reduced activation in the right auditory cortex as well as in a fronto‐parietal attention network. Moreover, functional coupling between the right auditory cortex and frontal areas was reduced in patients. Seed‐to voxel analysis on the whole‐brain level revealed reduced connectivity between the auditory cortex and the thalamus as well as posterior cingulate. The present study indicates deficits in sensory processing on the level of the auditory cortex in depression. Hyposensitivity in a fronto‐parietal network presumably reflects altered attention mechanisms in depression. The observed impairments may contribute to psychopathology by reducing the ability of the affected individuals to orient attention toward important environmental cues.  相似文献   

13.
Modulation of vocal pitch is a key speech feature that conveys important linguistic and affective information. Auditory feedback is used to monitor and maintain pitch. We examined induced neural high gamma power (HGP) (65–150 Hz) using magnetoencephalography during pitch feedback control. Participants phonated into a microphone while hearing their auditory feedback through headphones. During each phonation, a single real‐time 400 ms pitch shift was applied to the auditory feedback. Participants compensated by rapidly changing their pitch to oppose the pitch shifts. This behavioral change required coordination of the neural speech motor control network, including integration of auditory and somatosensory feedback to initiate change in motor plans. We found increases in HGP across both hemispheres within 200 ms of pitch shifts, covering left sensory and right premotor, parietal, temporal, and frontal regions, involved in sensory detection and processing of the pitch shift. Later responses to pitch shifts (200–300 ms) were right dominant, in parietal, frontal, and temporal regions. Timing of activity in these regions indicates their role in coordinating motor change and detecting and processing of the sensory consequences of this change. Subtracting out cortical responses during passive listening to recordings of the phonations isolated HGP increases specific to speech production, highlighting right parietal and premotor cortex, and left posterior temporal cortex involvement in the motor response. Correlation of HGP with behavioral compensation demonstrated right frontal region involvement in modulating participant's compensatory response. This study highlights the bihemispheric sensorimotor cortical network involvement in auditory feedback‐based control of vocal pitch. Hum Brain Mapp 37:1474‐1485, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

14.
Several methods are available for the identification of functional networks of brain areas using functional magnetic resonance imaging (fMRI) time‐series. These typically assume a fixed relationship between the signal of the areas belonging to the same network during the entire time‐series (e.g., positive correlation between the areas belonging to the same network), or require a priori information about when this relationship may change (task‐dependent changes of connectivity). We present a fully data‐driven method that identifies transient network configurations that are triggered by the external input and that, therefore, include only regions involved in stimulus/task processing. Intersubject synchronization with short sliding time‐windows was used to identify if/when any area showed stimulus/task‐related responses. Next, a first clustering step grouped together areas that became engaged concurrently and repetitively during the time‐series (stimulus/task‐related networks). Finally, for each network, a second clustering step grouped together all the time‐windows with the same BOLD signal. The final output consists of a set of network configurations that show stimulus/task‐related activity at specific time‐points during the fMRI time‐series. We label these configurations: “brain modes” (bModes). The method was validated using simulated datasets and a real fMRI experiment with multiple tasks and conditions. Future applications include the investigation of brain functions using complex and naturalistic stimuli. Hum Brain Mapp 36:3404–3425, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.  相似文献   

15.
High‐density electrical mapping of event‐related potentials was used to investigate the neural processes that permit some elderly subjects to preserve high levels of executive functioning. Two possibilities pertain: (1) high‐performance in elderly subjects is underpinned by similar processing mechanisms to those seen in young adults; that is, these individuals display minimal functional decay across the lifespan, or (2) preserved function relies on successfully recruiting and amplifying control processes to compensate for normal sensory‐perceptual decline with age. Fifteen young and nineteen elderly participants, the latter split into groups of high and low performers, regularly alternated between a letter and a number categorization task, switching between tasks every third trial (AAA‐BBB‐AAA…). This allowed for interrogation of performance during switch, repeat, and preparatory pre‐switch trials. Robust effects of age were observed in both frontal and parietal components of the task‐switching network. Greatest differences originated over prefrontal regions, with elderly subjects generating amplified, earlier, and more differentiated patterns of activity. This prefrontal amplification was evident only in high‐performing (HP) elderly, and was strongest on pre‐switch trials when participants prepared for an upcoming task‐switch. Analysis of the early transient and late sustained activity using topographic analyses and source localization collectively supported a unique and elaborated pattern of activity across frontal and parietal scalp in HP‐elderly, wholly different to that seen in both young and low‐performing elderly. On this basis, we propose that preserved executive function in HP‐elderly is driven by large‐scale recruitment and enhancement of prefrontal cortical mechanisms. Hum Brain Mapp, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
A fundamental question with regard to perceptual development is how multisensory information is processed in the brain during the early stages of development. Although a growing body of evidence has shown the early emergence of modality‐specific functional differentiation of the cortical regions, the interplay between sensory inputs from different modalities in the developing brain is not well understood. To study the effects of auditory input during audio‐visual processing in 3‐month‐old infants, we evaluated the spatiotemporal cortical hemodynamic responses of 50 infants while they perceived visual objects with or without accompanying sounds. The responses were measured using 94‐channel near‐infrared spectroscopy over the occipital, temporal, and frontal cortices. The effects of sound manipulation were pervasive throughout the diverse cortical regions and were specific to each cortical region. Visual stimuli co‐occurring with sound induced the early‐onset activation of the early auditory region, followed by activation of the other regions. Removal of the sound stimulus resulted in focal deactivation in the auditory regions and reduced activation in the early visual region, the association region of the temporal and parietal cortices, and the anterior prefrontal regions, suggesting multisensory interplay. In contrast, equivalent activations were observed in the lateral occipital and lateral prefrontal regions, regardless of sound manipulation. Our findings indicate that auditory input did not generally enhance overall activation in relation to visual perception, but rather induced specific changes in each cortical region. The present study implies that 3‐month‐old infants may perceive audio‐visual multisensory inputs by using the global network of functionally differentiated cortical regions. Hum Brain Mapp, 2013. © 2011 Wiley Periodicals, Inc.  相似文献   

17.
Patients with post‐traumatic stress disorder (PTSD) suffer from a failure of cognitive control over emotional distracters. The physiological substrates of cognitive‐emotional interactions and their breakdown in disease are, however, unknown. Here, we studied brain activity in PTSD patients and healthy controls in response to emotion‐provoking pictures using electroencephalography and functional magnetic resonance imaging (fMRI). We demonstrate that in healthy individuals, emotion‐induced frontal theta rhythm modulates activity in the beta rhythm mainly in sensory‐motor regions. In contrast, in PTSD patients, beta activity is elevated irrespective of emotion, and is not modulated by frontal theta activity in response to negative emotion. EEG source localization and fMRI findings suggest that theta activity is localized to the prefrontal and anterior cingulate cortices while beta activity is localized to sensory‐motor regions. We further found that beta activity in sensory‐motor regions is related to the emotion‐induced slowing of the motor response in healthy controls while the excess frontal theta activity in PTSD is related to the intensity of negative emotional experience. These findings reveal for the first time the importance of brain electrical oscillations and coherence in emotional top‐down modulation and point to specific failure of these mechanisms in PTSD. Hum Brain Mapp, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
We sought to determine whether functional connectivity streams that link sensory, attentional, and higher‐order cognitive circuits are atypical in attention‐deficit/hyperactivity disorder (ADHD). We applied a graph‐theory method to the resting‐state functional magnetic resonance imaging data of 120 children with ADHD and 120 age‐matched typically developing children (TDC). Starting in unimodal primary cortex—visual, auditory, and somatosensory—we used stepwise functional connectivity to calculate functional connectivity paths at discrete numbers of relay stations (or link‐step distances). First, we characterized the functional connectivity streams that link sensory, attentional, and higher‐order cognitive circuits in TDC and found that systems do not reach the level of integration achieved by adults. Second, we searched for stepwise functional connectivity differences between children with ADHD and TDC. We found that, at the initial steps of sensory functional connectivity streams, patients display significant enhancements of connectivity degree within neighboring areas of primary cortex, while connectivity to attention‐regulatory areas is reduced. Third, at subsequent link‐step distances from primary sensory cortex, children with ADHD show decreased connectivity to executive processing areas and increased degree of connections to default mode regions. Fourth, in examining medication histories in children with ADHD, we found that children medicated with psychostimulants present functional connectivity streams with higher degree of connectivity to regions subserving attentional and executive processes compared to medication‐naïve children. We conclude that predominance of local sensory processing and lesser influx of information to attentional and executive regions may reduce the ability to organize and control the balance between external and internal sources of information in ADHD. Hum Brain Mapp 36:2544–2557, 2015. © 2015 Wiley Periodicals, Inc .  相似文献   

19.
Successful information processing requires the focusing of attention on a certain stimulus property and the simultaneous suppression of irrelevant information. The Stroop task is a useful paradigm to study such attentional top‐down control in the presence of interference. Here, we investigated the neural correlates of an auditory Stroop task using fMRI. Subjects focused either on tone pitch (relatively high or low; phonetic task) or on the meaning of a spoken word (high/low/good; semantic task), while ignoring the other stimulus feature. We differentiated between task‐related (phonetic incongruent vs. semantic incongruent) and sensory‐level interference (phonetic incongruent vs. phonetic congruent). Task‐related interference activated similar regions as in visual Stroop tasks, including the anterior cingulate cortex (ACC) and the presupplementary motor‐area (pre‐SMA). More specifically, we observed that the very caudal/posterior part of the ACC was activated and not the dorsal/anterior region. Because identical stimuli but different task demands are compared in this contrast, it reflects conflict at a relatively high processing level. A more conventional contrast between incongruent and congruent phonetic trials was associated with a different cluster in the pre‐SMA/ACC which was observed in a large number of previous studies. Finally, functional connectivity analysis revealed that activity within the regions activated in the phonetic incongruent vs. semantic incongruent contrast was more strongly interrelated during semantically vs. phonetically incongruent trials. Taken together, we found (besides activation of regions well‐known from visual Stroop tasks) activation of the very caudal and posterior part of the ACC due to task‐related interference in an auditory Stroop task. Hum Brain Mapp, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Using functional connectivity analysis of functional magnetic resonance imaging data, we investigated the role of the inferior frontal gyrus in categorization of simple sounds. We found stronger functional connectivity between left inferior frontal gyrus and auditory processing areas in the temporal cortex during categorization of speech (vowels, syllables) and nonspeech (tones, combinations of tones and sweeps) sounds relative to an auditory discrimination task; the hemispheric lateralization varied depending on the speech-like properties of the sounds. Our results attest to the importance of interactions between temporal cortex and left inferior frontal gyrus in sound categorization. Further, we found different functional connectivity patterns between left inferior frontal gyrus and other brain regions implicated in categorization of syllables compared with other stimuli, reflecting the greater facility for categorization of syllables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号