首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Diabetes induces early sufferance in the cholinergic septo‐hippocampal system, characterized by deficits in learning and memory, reduced hippocampal plasticity and abnormal pro‐nerve growth factor (proNGF) release from hippocampal cells, all linked to dysfunctions in the muscarinic cholinergic modulation of hippocampal physiology. These alterations are associated with dysregulation of several cholinergic markers, such as the NGF receptor system and the acetylcholine biosynthetic enzyme choline‐acetyl transferase (ChAT), in the medial septum and its target, the hippocampus. Controlled and repeated sensory stimulation by electroacupuncture has been proven effective in counteracting the consequences of diabetes on cholinergic system physiology in the brain. Here, we used a well‐established Type 1 diabetes model, obtained by injecting young adult male rats with streptozotocin, to induce sufferance in the septo‐hippocampal system. We then evaluated the effects of a 3‐week treatment with low‐frequency electroacupuncture on: (a) the expression and protein distribution of proNGF in the hippocampus, (b) the tissue distribution and content of NGF receptors in the medial septum, (c) the neuronal cholinergic and glial phenotype in the septo‐hippocampal circuitry. Twice‐a‐week treatment with low‐frequency electroacupuncture normalized, in both hippocampus and medial septum, the ratio between the neurotrophic NGF and its neurotoxic counterpart, the precursor proNGF. Electroacupuncture regulated the balance between the two major proNGF variants (proNGF‐A and proNGF‐B) at both gene expression and protein synthesis levels. In addition, electroacupuncture recovered to basal level the pro‐neurotrophic NGF receptor tropomyosin receptor kinase‐A content, down‐regulated in medial septum cholinergic neurons by diabetes. Electroacupuncture also regulated ChAT content in medial septum neurons and its anterograde transport toward the hippocampus. Our data indicate that repeated sensory stimulation can positively affect brain circuits involved in learning and memory, reverting early impairment induced by diabetes development. Electroacupuncture could exert its effects on the septo‐hippocampal cholinergic neurotransmission in diabetic rats, not only by rescuing the hippocampal muscarinic responsivity, as previously described, but also normalizing acetylcholine biosynthesis and NGF metabolism in the hippocampus.  相似文献   

2.
In the present study, we examined the analgesic effect of repeated electroacupuncture at bilateral Zusanli (ST36) and Yanglingquan (GB34) once a day for 14 consecutive days in a rat model of chronic sciatic nerve constriction injury-induced neuropathic pain. In addition, concomitant changes in calcium/calmodulin-dependent protein kinase II expression and synaptic ultrastructure of neurons in the hippocampal CA3 region were examined. The thermal pain threshold (paw withdrawal latency) was increased significantly in both groups at 2 weeks after electroacupuncture intervention compared with 2 days of electroacupuncture. In ovariectomized rats with chronic constriction injury, the analgesic effect was significantly reduced. Electroacupuncture for 2 weeks significantly diminished the injury-induced increase in synaptic cleft width and thinning of the postsynaptic density, and it significantly suppressed the down-regulation of intracellular calcium/ calmodulin-dependent protein kinase II expression in the hippocampal CA3 region. Repeated electroacupuncture intervention had a cumulative analgesic effect on injury-induced neuropathic pain reactions, and it led to synaptic remodeling of hippocampal neurons and upregulated calcium/calmodulin-dependent protein kinase II expression in the hippocampal CA3 region.  相似文献   

3.
The muscarinic acetylcholine receptor is linked via hydrolysis of phosphoinositides to the protein kinase C pathway. In a preceding paper (Beldhuis, H. J. A., H. G. J. Everts, E. A. Vander Zee, P. G. M. Luiten, and B. Bohus (1992) Amygdala kindling-induced seizures selectively impair spatial memory. 1. Behavioral characteristics and effects on hippocampal neuronal protein kinase C isoforms. Hippocampus 2:397-410), the role of different isoforms of protein kinase C in neurobiological processes associated with plasticity was studied using both a spatial learning paradigm and amygdala kindling in the rat. This study extended the findings on protein kinase C activity to the level of the muscarinic acetylcholine receptor. Rats were trained in a spatial learning paradigm and kindled simultaneously in the amygdala to develop generalized motor convulsions. Control rats were trained only in the spatial learning paradigm to acquire stable working and reference memory performance. Alteration in the expression of the muscarinic acetylcholine receptor was investigated using a monoclonal antibody to muscarinic acetylcholine receptor proteins. Trained control rats that were exposed repeatedly to the spatial learning paradigm showed an increase in immunoreactivity for the muscarinic acetylcholine receptor located in the same hippocampal regions in which the protein kinase C activity was increased. In fully kindled rats, however, this increase located in principal neurons was absent, whereas expression of muscarinic acetylcholine receptor proteins was increased in hippocampal astrocytes. Moreover, fully kindled rats showed an impairment in reference memory performance as compared to trained control rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Acupuncture has been used to treat neuropathic pain for a long time, but its mechanisms of action remain unknown. In this study, we observed the effects of electroacupuncture and manual acu-puncture on neuropathic pain and on ephrin-B/EphB signaling in rats models of chronic constriction injury-induced neuropathic pain. The results showed that manual acupuncture and elec-puncture significantly reduced mechanical hypersensitivity following chronic constriction injury, es-pecially electroacupuncture treatment. Real-time PCR results revealed that ephrin-B1/B3 and EphB1/B2 mRNA expression levels were significantly increased in the spinal dorsal horns of chronic constriction injury rats. Electroacupuncture and manual acupuncture suppressed the high sion of ephrin-B1 mRNA, and elevated EphB3/B4 mRNA expression. Electroacupuncture signifi-cantly enhanced the mRNA expression of ephrin-B3 and EphB3/B6 in the dorsal horns of neuro-pathic pain rats. Western blot results revealed that electroacupuncture in particular, and manual acupuncture, significantly up-regulated ephrin-B3 protein levels in rat spinal dorsal horns. The re-sults of this study suggest that acupuncture could activate ephrin-B/EphB signaling in neuropathic pain rats and improve neurological function.  相似文献   

5.
Orphanin FQ (OFQ) is an endogenous ligand for opioid receptor-like-1 (ORL1) receptor. Previous studies have shown that both OFQ immunoreactivity and preproorphanin FQ (ppOFQ) mRNA expression could be observed in the brain regions involved in pain modulation, e.g., nucleus of raphe magnus (NRM), dorsal raphe nucleus (DRN), and ventrolateral periaqueductal gray (vlPAG). It was reported that electroacupuncture (EA) has analgesic effect on neuropathic pain, and the analgesic effect was mediated by the endogenous opioid peptides. In the present study, we investigated the effects of EA on the changes of OFQ in the neuropathic pain rats. In the sciatic nerve chronic constriction injury (CCI) model, we investigated the changes of ppOFQ mRNA and OFQ immunoreactivity in NRM after EA by in situ hybridization (ISH) and immunohistochemistry methods, respectively. Then, the ppOFQ mRNA-positive and OFQ immunoreactive cells were counted under a computerized image analysis system. The results showed that expression of ppOFQ mRNA decreased and OFQ immunoreactivity increased after EA treatment in the neuropathic pain rats. These results indicated that EA modulated OFQ synthesis and OFQ peptide level in NRM of the neuropathic pain rats.  相似文献   

6.
Patients suffering from neuropathic pain have a higher incidence of mood disorders such as depression. Increased expression of tumor necrosis factor (TNF) has been reported in neuropathic pain and depressive-like conditions and most of the pro-inflammatory effects of TNF are mediated by the TNF receptor 1 (TNFR1). Here we sought to investigate: (1) the occurrence of depressive-like behavior in chronic neuropathic pain and the associated forms of hippocampal plasticity, and (2) the involvement of TNFR1-mediated TNF signaling as a possible regulator of such events. Neuropathic pain was induced by chronic constriction injury of the sciatic nerve in wild-type and TNFR1−/− mice. Anhedonia, weight loss and physical state were measured as symptoms of depression. Hippocampal neurogenesis, neuroplasticity, myelin remodeling and TNF/TNFRs expression were analyzed by immunohistochemical analysis and western blot assay.We found that neuropathic pain resulted in the development of depressive symptoms in a time dependent manner and was associated with profound hippocampal alterations such as impaired neurogenesis, reduced expression of neuroplasticity markers and myelin proteins. The onset of depressive-like behavior also coincided with increased hippocampal levels of TNF, and decreased expression of TNF receptor 2 (TNFR2), which were all fully restored after mice spontaneously recovered from pain. Notably, TNFR1−/− mice did not develop depressive-like symptoms after injury, nor were there changes in hippocampal neurogenesis and plasticity.Our data show that neuropathic pain induces a cluster of depressive-like symptoms and profound hippocampal plasticity that are dependent on TNF signaling through TNFR1.  相似文献   

7.
Hippocampus is a limbic structure involved in the baroreflex and chemoreflex control that receives extensive cholinergic input from basal forebrain. Hippocampal muscarinic receptors activation by acetylcholine might evoke nitric oxide synthesis, which is an important neuromodulator of cardiovascular responses. Thus, we hypothesize that cholinergic and nitrergic neurotransmission within the DH modulates the baroreflex and chemoreflex function. We have used vasoactive drugs (phenylephrine and sodium nitroprusside), and potassium cyanide infused peripherally to induce, respectively, baroreflex or chemoreflex responses in awake animals. Bilateral injection into the DH of the acetylcholinesterase inhibitor (neostigmine) reduced baroreflex responses. Meanwhile, the non‐selective muscarinic receptor antagonist (atropine) or the M1‐selective muscarinic receptor antagonist increased baroreflex responses (pirenzepine). Furthermore, the neuronal nitric oxide synthase inhibitor (N‐propyl) or the intracellular NO scavenger (carboxy‐PTIO) increased baroreflex responses, as well as the selective inhibitor of NO‐sensitive guanylyl cyclase (ODQ), increased the baroreflex responses. Besides, bilateral administration of an ineffective dose of a neuronal nitric oxide synthase inhibitor abolished the reduction in the baroreflex responses evoked by an acetylcholinesterase inhibitor. On the other hand, we have demonstrated that hippocampal cholinergic neurotransmission did not influence the chemoreflex function. Taken together, our findings suggest that nNOS‐derived nitric oxide in the DH participates in acetylcholine‐evoked baroreflex responses.  相似文献   

8.
Neurons situated in the principal sensory trigeminal nucleus (PSTN) convey orofacial sensory inputs to thalamic relay regions and higher brain centres, and the excitability of these ascending tract cells is modulated across sleep/wakefulness states and during pain conditions. Moreover, acetylcholine release changes profoundly across sleep/wakefulness states and ascending sensory neurotransmission is altered by cholinergic agonists. An intriguing possibility is, therefore, that cholinergic mechanisms mediate such state-dependent modulation of PSTN tract neurons. We tested the hypotheses that cholinergic agonists can modulate PSTN cell excitability and that such effects are mediated by muscarinic receptor subtypes, using patch-clamp methods in rat and mouse. In all examined cells, carbachol elicited an electrophysiological response that was independent of action potential generation as it persisted in the presence of tetrodotoxin. Responses were of three types: depolarization, hyperpolarization or a biphasic response consisting of hyperpolarization followed by depolarization. In voltage-clamp mode, carbachol evoked corresponding inward, outward or biphasic currents. Moreover, immunostaining for the vesicle-associated choline transporter showed cholinergic innervation of the PSTN. Using muscarinic receptor antagonists, we found that carbachol-elicited PSTN neuron hyperpolarization was mediated by M2 receptors and depolarization, in large part, by M1 receptors. These data suggest that acetylcholine acting on M1 and M2 receptors may contribute to selective excitability enhancement or depression in individual, rostrally projecting sensory neurons. Such selective gating effects via cholinergic input may play a functional role in modulation of ascending sensory transmission, including across behavioral states typified by distinct cholinergic tone, e.g. sleep/wakefulness arousal levels or neuropathic pain conditions.  相似文献   

9.
Antisense oligodeoxynucleotides against muscarinic m2 and m4 receptors were used to investigate the role of these receptor subtypes as negative autoreceptors in the regulation of acetylcholine (ACh) release in the rat hippocampus. Following the continuous infusion of antisenses into the third ventricle (1 microgram microliter-1 h-1, 3 days), 3H-AF-DX 384/muscarinic M2-like binding was significantly decreased in the medial septum by the antisense against the m2 receptor whereas M2-like binding in the dorsal striatum was decreased by the antisense against the m4 receptor. In contrast, 3H-pirenzepine/muscarinic M1-like binding was unaffected by either antisense treatment in any of the brain areas investigated. When perfused into the hippocampus via a dialysis probe, the purported muscarinic M2 receptor antagonist AF-DX 384 (100 nM) increased hippocampal ACh release in freely moving rats. This effect of AF-DX 384 was significantly attenuated by the m2, but not the m4, receptor antisense treatment. Hippocampal choline acetyltransferase activity was not affected by either antisense treatments. Taken together, these results suggest that the molecularly defined muscarinic m2 receptor regulates hippocampal ACh release by acting as a negative autoreceptor. In contrast, the molecularly defined m4 receptor is unlikely to be directly involved in the negative regulation of ACh release in the rat hippocampus. Therefore, inhibiting muscarinic m2 receptor function may be an alternative approach to regulate the release of ACh in neurodegenerative diseases associated with impaired cholinergic functions.  相似文献   

10.
The role of muscarinic and nicotinic cholinergic receptors in analgesia and neuropathic pain relief is relatively unknown. This review describes how such drugs induce analgesia or alleviate neuropathic pain by acting on the central cholinergic system. Several pharmacological strategies are discussed which increase synthesis and release of acetylcholine (ACh) from cholinergic neurons. The effects of their acute and chronic administration are described. The pharmacological strategies which facilitate the physiological functions of the cholinergic system without altering the normal modulation of cholinergic signals are highlighted. It is proposed that full agonists of muscarinic or nicotinic receptors should be avoided. Their activation is too intense and un-physiological because neuronal signals are distorted when these receptors are constantly activated. Good results can be achieved by using agents that are able to a) increase ACh synthesis, b) partially inhibit cholinesterase activity c) selectively block the autoreceptor or heteroreceptor feedback mechanisms. Activation of M(1) subtype muscarinic receptors induces analgesia. Chronic stimulation of nicotinic (N(1)) receptors has neuronal protective effects. Recent experimental results indicate a relationship between repeated cholinergic stimulation and neurotrophic activation of the glial derived neurotrophic factor (GDNF) family. At least 9 patents covering novel chemicals for cholinergic system modulation and pain control are discussed.  相似文献   

11.
Yan H  Zhang HY  Tang XC 《Neuroreport》2007,18(7):689-692
This study is to explore the involvement of muscarinic acetylcholine receptors/protein kinase C cascade and the mitogen-activated protein kinase pathway in the effect of huperzine A on the secretory amyloid precursor protein-alpha. Upregulation of secretory amyloid precursor protein-alpha by huperzine A was attenuated by muscarinic acetylcholine receptor antagonist (specifically by M1-muscarinic acetylcholine receptor antagonist), and markedly blocked (-37.7%) by protein kinase C inhibitor as well. Meanwhile, huperzine A can activate the phosphorylation of mitogen-activated protein kinase and, accordingly, partly restored PD98059-decreased secretory amyloid precursor protein-alpha secretion. In addition, huperzine A largely inhibited (-55.4%) acetylcholinesterase activity of the cell line. Our results suggest that activated M1-muscarinic acetylcholine receptor/protein kinase C pathway and mitogen-activated protein kinase signaling are involved in the process of huperzine A enhancing the secretory amyloid precursor protein-alpha secretion.  相似文献   

12.
Although there is evidence that nicotinic acetylcholine (Ach) receptors are influenced by ceramides, we do not currently know whether or not these sphingolipids can also regulate the muscarinic subtypes of Ach receptors. Using the whole-cell patch technique, we demonstrated that the effectiveness of the muscarinic receptor agonist pilocarpine, in enhancing spontaneous inhibitory postsynaptic currents in CA1 pyramidal cells, was completely abolished in hippocampal slices pre-exposed to the ceramide-generating enzyme sphingomyelinase (SMase). Western blot experiments, performed with biotinylated hippocampal membranes, showed that this electrophysiological defect possibly relies on the loss of M1 muscarinic Ach receptors at the cell surface. However, the effect appears to be relatively specific as the cell-surface expression of M4 muscarinic receptors was not found to be impacted by SMase treatment. Interestingly, we observed that G protein-coupled receptor kinases 2 and β-arrestin1/2 interactions with M1-immunoprecipitated proteins were substantially augmented in SMase-treated slices and that the reduction of cell-surface M1 muscarinic receptor expression generated was completely suppressed by the muscarinic antagonist atropine. Collectively, our data suggest that selective internalization of M1 muscarinic receptors can be accentuated in neurons subjected to high ceramide levels. The potential physiopathological implications of this finding are presented.  相似文献   

13.
Cholinergic markers and the expression of M(2)-M(5) muscarinic cholinergic receptor subtypes were investigated in human peripheral blood lymphocytes by Western blot analysis and immunocytochemistry. The totality of peripheral blood lymphocytes express acetylcholine (ACh) immunoreactivity, choline acetyltransferase (ChAT), acetylcholinesterase (AChE), vesicular ACh transporter (VAChT) and M(2)-M(5) muscarinic cholinergic receptor protein immunoreactivity. Western blot analysis performed independently on T and B lymphocytes using anti-ChAT and anti-AChE antibodies revealed labelling of single bands of approximately 68-70 and 70 kDa, respectively, whereas VAChT was bound to two bands of approximately 80 and 45 kDa. The pattern of immunoblotting was similar in membranes of lymphocytes and striatum, used as a reference brain tissue. Western blot analysis using anti M(2)-M(5) receptor antibodies revealed labelling of single bands of approximately 55, 85-90, 50 and 81 kDa, respectively. Confocal laser immunofluorescence showed the localization of ACh and VAChT immunoreactivity in punctiform areas likely corresponding to cytoplasmic vesicles. ChAT and AChE were diffused to the cytoplasm and plasma membrane. Muscarinic receptor immunoreactivity was located in lymphocyte plasma membrane. Although the role of lymphocyte cholinergic system is still unclear, the demonstration of cholinergic markers in T and B human blood lymphocytes supports the view that a cholinergic systems may contribute to the regulation of immune function. The characterization of these cholinergic markers may also contribute to define if their evaluation can be used for assessing the status of brain cholinergic system.  相似文献   

14.
Alterations in muscarinic M1 receptor protein and mRNA expression have been revealed in post-mortem brains of schizophrenia patients. Most patients had been treated with antipsychotics, so medication effects cannot be excluded as a possible explanation for these results. With in situ hybridization, this study investigated M1 receptor mRNA expression in rats treated with the typical antipsychotic haloperidol (0.3 mg/kg/day) and the atypical antipsychotics olanzapine (1.5 mg/kg/day) and aripiprazole (2.25 mg/kg/day) for 1 or 12 weeks. Compared with the control group, haloperidol significantly increased (approximately 13-21%, P < 0.05) M1 mRNA expression in the CA1, CA2, and CA3 regions of the hippocampus after both 1 and 12 weeks of treatment, and it also increased (approximately 17%, P < 0.01) M1 mRNA expression in the substantia nigra compacta after 1 week of treatment. Olanzapine significantly increased (14-22%, P < 0.05) M1 mRNA expression in the hippocampus (CA1, CA2, and CA3) and substantia nigra compacta after 12 weeks of treatment, but not after 1 week. Aripiprazole significantly increased (17%, P < 0.01) M1 mRNA expression in the hippocampus (CA1) after both 1 and 12 week treatments and increased (12%, P < 0.05) M1 mRNA expression in the nucleus accumbens after 1 week of treatment. Despite their different affinities for muscarinic M1 receptors, all three antipsychotic medications induced a similar trend of change in M1 mRNA expression in selected brain regions. These data suggest that the decreased M1 receptor protein and mRNA expression observed in schizophrenia patients is unlikely to be a consequence of drug treatments and implicates muscarinic M1 receptors in the pharmacotherapy of the disease.  相似文献   

15.
BACKGROUND: Having shown a decrease in [3H]pirenzepine binding in the hippocampus from subjects with schizophrenia, we wished to determine whether such a change in radioligand binding was associated with changes in hippocampal mRNA for the muscarinic1 (M1) and muscarinic4 (M4) receptors in tissue from different cohorts of subjects. METHOD: The [3H]pirenzepine binding using autoradiography and in situ hybridization with oligonucleotides specific for muscarinic M1 and M4 receptors were completed using hippocampal tissue obtained postmortem from 20 control subjects and 20 subjects with schizophrenia. RESULTS: The [3H]pirenzepine binding was decreased in the dentate gyrus (p < .05), CA3 (p < .01), CA2 (p < .05), and CA1 (p < .01) regions of the hippocampus from subjects with schizophrenia. Levels of M4 mRNA varied with the diagnosis of schizophrenia (p = .01), but significant region-specific changes were not apparent. Changes in levels of mRNA for the muscarinic M1 receptor were not detected with diagnosis. CONCLUSIONS: This study suggests that decreases in hippocampal [3H]pirenzepine binding in subjects with schizophrenia are most likely associated with widespread changes in expression levels of the M4 receptor. These data further implicate the hippocampal formation in the pathology of schizophrenia.  相似文献   

16.
BACKGROUND: Organophosphorus insecticides may promote the accumulation of acetylcholine at synapses and the neuromuscular junction by inhibiting acetylcholinesterase activity to cause disturbance of neural signal conduction and induce a toxic reaction. Organophosphorus insecticides may act on M2 muscarinic acetylcholine receptors, whose combination with G proteins is regulated by phosphorylation of G protein-coupled receptor kinase 2. OBJECTIVE: To investigate the effects of organophosphorus insecticides on the phosphorylation of G protein-coupled receptor kinase 2-mediated M2 muscarinic acetylcholine receptors and to reveal other possible actions of organophosphorus insecticides. DESIGN, TIME AND SETTING: An observational study, which was performed in the Central Laboratory of Shenyang Medical College, and Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University from June 2002 to December 2004. MATERIALS: Paraoxon, parathion, chlorpyrifos, and chlorpyrifos oxon were provided by Chem Service Company, USA, [γ -p^32] ATP and [^35S]GTP γ S by New England Nuclear Life Science Products, and recombinant β 2-adrenergic receptor membrane protein by Sigma Company, USA. METHODS: The M2 muscarinic acetylcholine receptor was extracted and purified from pig brain using affinity chromatography. Subsequently, the purified M2 muscarinic acetylcholine receptor, G protein-coupled receptor kinase 2, and [γ -p^32] ATP were incubated with different concentrations of paraoxon and chlorpyrifos oxon together. The mixture then underwent polyacrylamide gel electrophoresis, and the gel film was dried and radioactively autographed to detect phosphorylation of the M2 muscarinic acetylcholine receptor. Finally, the radio-labeled phosphorylated M2 receptor protein band was excised for counting with an isotope liquid scintillation counter. MAIN OUTCOME MEASURES: Effects of chlorpyrifos oxon, paraoxon, chlorpyrifos, and parathion in different concentrations on the phosphorylation of the M2 m  相似文献   

17.
Among the five different muscarinic receptors that have been cloned and characterized, M2 and M4 receptors are localized both post- and presynaptically and are believed to have a pronounced autoreceptor role. The functional importance of these receptors in the regulation of acetylcholine release in the hippocampus and in cognitive processes was investigated by using M2 and M4 receptor single knockout (KO) as well as M2/M4 receptor double KO mice. We found profound alterations in acetylcholine homeostasis in the hippocampus of both M2- and M4-KO mice as well as of the combined M2/M4-KOs, as assessed by in vivo microdialysis. Basal acetylcholine efflux in the hippocampus was significantly increased in M4-KO and was elevated further in M2/M4-KOs. The increase in hippocampal acetylcholine induced by local administration of scopolamine was markedly reduced in M2-KO and completely abolished in M2/M4-KOs. In M2-KO and much more in M2/M4-KOs, the increase in hippocampal acetylcholine triggered by exposure to a novel environment was more pronounced both in amplitude and duration, with a similar trend observed for M4-KOs. Dysregulation of cholinergic function in the hippocampus, as it could result from perturbed autoreceptor function, may be associated with cognitive deficits. Importantly, M2- and M2/M4-KO, but not M4-KO, animals showed an impaired performance in the passive avoidance test. Together these results suggest a crucial role for muscarinic M2 and M4 receptors in the tonic and phasic regulation of acetylcholine efflux in the hippocampus as well as in cognitive processes.  相似文献   

18.
19.
Loss of forebrain acetylcholine is an early neurochemical lesion in Alzheimer's disease (AD). As muscarinic acetylcholine receptors are involved in memory and cognition, a muscarinic agonist could therefore provide a "replacement therapy" in this disease. However, muscarinic receptors occur throughout the CNS and the periphery. A selective locus of action of a muscarinic agonist is therefore crucial in order to avoid intolerable side effects. The five subtypes of muscarinic receptors, M1-M5, have distinct regional distributions with M2 and M3 receptors mediating most of the peripheral effects. M1 receptors are the major receptor subtype in the cortex and hippocampus-the two brain regions most associated with memory and cognition. This localization has led to a, so far unsuccessful, search for a truly M1-selective muscarinic agonist. However, acetylcholinesterase inhibitors, such as donepezil (Aricept), which potentiate cholinergic neurotransmission, do have a therapeutic role in the management of AD and so the M1 receptor remains a viable therapeutic target. Our approach is to develop muscarinic allosteric enhancers-compounds that bind to the receptor at an "allosteric" site, which is distinct from the "primary" site to which ACh binds, and which enhance ACh affinity (or efficacy). Having discovered that a commercially available compound, WIN 62577, is an allosteric enhancer with micromolar potency at M3 receptors, we report here some results of a chemical synthesis project to develop this hit. Modification of WIN 62577 has led to compounds with over 1000-fold increased affinity but, so far, none of these extremely potent compounds are allosteric enhancers.  相似文献   

20.
The biochemical characteristics of the muscarinic acetylcholine receptors were studied on the E1 strain mouse brain by the binding assay using [3H]1- quinuclidinyl benzylate. Scatchard analyses showed that the receptor density (Bmax) of the hippocampus significantly decreased by 26.4% and the affinity (Kd) increased by 18.8% in E1(+) compared to dd-Y. It is suggested that this hippocampal subsensitivity found in E1(+) mouse might be strain-specific, because repeated megimide convulsions failed to produce the same down regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号