首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patients with temporal lobe epilepsy (TLE) often show increased cardiovascular sympathetic modulation during the interictal period, that decreases after epilepsy surgery. In this study, we evaluated whether temporal lobectomy changes autonomic modulation of cerebral blood flow velocity (CBFV) and cerebral autoregulation. We studied 16 TLE patients 3-4 months before and after surgery. We monitored heart rate (HR), blood pressure (BP), respiration, transcutaneous oxygen saturation (sat-O(2)), end-expiratory carbon dioxide partial pressure (pCO(2)) and middle cerebral artery CBFV. Spectral analysis was used to determine sympathetic and parasympathetic modulation of HR, BP and CBFV as powers of signal oscillations in the low frequency (LF) ranges from 0.04-0.15Hz (LF-power) and in the high frequency ranges from (HF) 0.15-0.5Hz (HF-power). LF-transfer function gain and phase shift between BP and CBFV were calculated as parameters of cerebral autoregulation. After surgery, HR, BP(mean), CBFV(mean), respiration, sat-O(2), pCO(2) and HF powers remained unchanged. LF-powers of HR, BP, CBFV and LF-transfer function gain had decreased while the phase angle had increased (p<0.05). The reduction of LF powers and LF-gain and the higher phase angle showed reduced sympathetic modulation and improved cerebral autoregulation. The enhanced cerebrovascular stability after surgery may improve autonomic balance in epilepsy patients.  相似文献   

2.
OBJECTIVES: This study was designed to evaluate the correlations between cerebral hemodynamics and cardiac autonomic functions in aging process using transfer function techniques. METHODS: Arterial blood pressure (ABP), middle cerebral artery flow velocity (MCAFV) detected by transcranial Doppler sonography and electrocardiogram were recorded simultaneously in 20 young (27.5 +/- 0.9 years) and 20 middle-old-aged (54.3 +/- 1.5 years) healthy volunteers. Variability of ABP, MCAFV and heart rate (HR) were diffracted into very low (VLF, 0.016-0.04 Hz), low (LF, 0.04-0.15 Hz) and high frequency (HF, 0.15-0.4 Hz) components. Cerebral vasomotor reserve was quantified by specific ABP-MCAFV transfer function measurements. RESULTS: The young group had significantly higher LF transfer phase and HF transfer magnitudes of ABP-MCAFV transfer function; higher HF powers of HR variability; and higher baroreflex sensitivity than those of the middle-old-aged group. LF phase and HF magnitude of ABP-MCAFV transfer function were positively correlated with HF powers of HR variability. DISCUSSION: Although aging process is not obviously associated with changes in the static values of ABP, MCAFV and HR in this study, it is accompanied by significant declines in cerebral vasomotor reserve, cardiac vagal activity and baroreflex sensitivity. Besides, age-related changes in cerebral vasomotor reserve are positively related to those in cardiac vagal activity.  相似文献   

3.
This study evaluates the validity of the transfer function analysis of spontaneous fluctuations of arterial blood pressure (ABP) and blood flow velocity of the middle cerebral artery (MCAFV) as a simple, convenient method to assess human cerebral autoregulation in patients with carotid stenosis. Eighty-three consecutive patients with various degrees of carotid stenosis and 37 healthy controls were enrolled. The carotid stenosis was graded based on the diagnostic criteria of duplex ultrasound. Instantaneous bilateral MCAFV and ABP of all participants were assessed noninvasively using transcranial Doppler sonography and the servocontrolled infrared finger plethysmography, respectively. Spectral analyses of ABP and MCAFV were performed by fast Fourier transform. The fluctuations in ABP as well as in MCAFV were diffracted into three components at specific frequency ranges designated as high-frequency (HF; 0.15 to 0.4 Hz), low-frequency (LF; 0.04 to 0.15 Hz), and very low-frequency (VLF; 0.016 to 0.04 Hz). Cross-spectral analysis was applied to quantify the coherence, transfer phase, and magnitude in individual HF, LF, and VLF components. Transcranial Doppler CO2 vasomotor reactivity was measured with 5% CO2 inhalation. The LF phase angle (r=-0.53, P<0.001); magnitude of VLF (r=-0.29, P=0.002), LF (r=-0.35, P<0.001), and HF (r=-0.47, P<0.001); and CO2 vasomotor reactivity (r=-0.66, P<0.001) were negatively correlated with the severity of stenosis. Patients with unilateral high-grade (greater than 90% stenosis) carotid stenosis demonstrated significant reduction in LF phase angle (P<0.001) and HF magnitude (P=0.018) on the ipsilateral side of the affected vessel compared with their contralateral side. The study also revealed a high sensitivity, specificity, and accuracy using LF phase angle and HF magnitude to detect a high-grade carotid stenosis. A strong correlation existed between the LF phase angle and the CO2 vasomotor reactivity test (r=0.62, P<0.001), and the correlation between the HF magnitude and the CO2 vasomotor reactivity (r=0.44, P<0.001) was statistically significant as well. We conclude that transfer function analysis of spontaneous fluctuations of MCAFV and ABP could be used to identify hemodynamically significant high-grade carotid stenosis with impaired cerebral autoregulation or vasomotor reserve.  相似文献   

4.
Spontaneous blood pressure oscillations and cerebral autoregulation   总被引:10,自引:0,他引:10  
The relationship between spontaneous oscillations in cerebral blood flow velocity (CBFV) and arterial blood pressure (ABP) was analysed in normal subjects in order to evaluate whether these relationships provide information about cerebral autoregulation. CBFV was measured using transcranial Doppler sonography and continuous ABP and heart rate using Finapres in 50 volunteers. Measurements were made over 5 min in a supine position and 6 min in a tilted position. Coefficients of variation were calculated using power- and cross-spectral analysis in order to quantify amplitudes within two frequency ranges: 3–9 cycles per min (cpm) (M-waves); and 9–20 cpm (R-waves). Correlations, coherence values, phase angle shifts and gains were also computed between corresponding waves in CBFV and in ABP. A clear correlation was seen for M-waves and R-waves between CBFV and ABP and coherence values were large enough to calculate phase angle shifts and gains. Phase angles for M-waves were larger and gains lower than was the case for R-waves, either tilted or supine. These data are consistent with a highpass filter model of cerebral autoregulation. Relatively high CBFV/ABP gain values (between 1.4 and 2.0) suggest that the principle of frequency-dependent vascular input impedances has to be considered in addition to autoregulatory feedback mechanisms. Spontaneous ABP oscillations in the M-wave and R-wave ranges may serve as a basis for continuous autoregulation monitoring.  相似文献   

5.
Abstract. In Fabry disease, there is glycosphingolipid storage in vascular endothelial and smooth muscle cells and neurons of the autonomic nervous system. Vascular or autonomic dysfunction is likely to compromise cerebral blood flow velocities and cerebral autoregulation. This study was performed to evaluate cerebral blood flow velocities and cerebral autoregulation in Fabry patients. In 22 Fabry patients and 24 controls, we monitored resting respiratory frequency, electrocardiographic RR-intervals, blood pressure, and cerebral blood flow velocities (CBFV) in the middle cerebral artery using transcranial Doppler sonography. We assessed the Resistance Index, Pulsatility Index, Cerebrovascular Resistance, and spectral powers of oscillations in RR-intervals, mean blood pressure and mean CBFV in the high (0.15–0.5 Hz) and sympathetically mediated low frequency (0.04–0.15 Hz) ranges using autoregressive analysis. Cerebral autoregulation was determined from the transfer function gain between the low frequency oscillations in mean blood pressure and mean CBFV. Mean CBFV (P < 0.05) and the powers of mean blood pressure (P < 0.01) and mean CBFV oscillations (P < 0.05) in the low frequency range were lower,while RR-intervals, Resistance Index (P < 0.01), Pulsatility Index, Cerebrovascular Resistance (P < 0.05), and the transfer function gain between low frequency oscillations in mean blood pressure and mean CBFV (P < 0.01) were higher in patients than in controls. Mean blood pressure, respiratory frequency and spectral powers of RR-intervals did not differ between the two groups (P > 0.05). The decrease of CBFV might result from downstream stenoses of resistance vessels and dilatation of the insonated segment of the middle cerebral artery due to reduced sympathetic tone and vessel wall pathology with decreased elasticity. The augmented gain between blood pressure and CBFV oscillations indicates inability to dampen blood pressure fluctuations by cerebral autoregulation. Both, reduced CBFV and impaired cerebral autoregulation, are likely to be involved in the increased risk of stroke in patients with Fabry disease.  相似文献   

6.
Objectives: Autonomic and endothelial dysfunction is likely to contribute to the pathophysiology of normal pressure glaucoma (NPG) and primary open angle glaucoma (POAG). Although there is evidence of vasomotor dysregulation with decreased peripheral and ocular blood flow, cerebral autoregulation (CA) has not yet been evaluated. The aim of our study was to assess dynamic CA in patients with NPG and POAG. Materials and Methods: In 10 NPG patients, 11 POAG patients and 11 controls, we assessed the response of cerebral blood flow velocity (CBFV) to oscillations in mean arterial pressure (MAP) induced by deep breathing at 0.1 Hz. CA was assessed from the autoregressive cross-spectral gain between 0.1 Hz oscillations in MAP and CBFV. Results: 0.1 Hz spectral powers of MAP did not differ between NPG, POAG and controls; 0.1 Hz CBFV power was higher in patients with NPG (5.68±1.2 cm2 s−2) and POAG (6.79±2.1 cm2 s−2) than in controls (2.40±0.4 cm2 s−2). Furthermore, the MAP–CBFV gain was higher in NPG (2.44±0.5 arbitrary units [a.u.]) and POAG (1.99±0.2 a.u.) than in controls (1.21±0.1 a.u.). Conclusion: Enhanced transmission of oscillations in MAP onto CBFV in NPG and POAG indicates impaired cerebral autoregulation and might contribute to an increased risk of cerebrovascular disorders in these diseases.  相似文献   

7.
OBJECTIVES: Enhanced external counterpulsation (EECP) rhythmically augments blood pressure (BP) by diastolic lower-body compression. Recently, we showed decreased mean cerebral blood flow velocity (CBFVmean) in young healthy persons during EECP, but unchanged CBFVmean in atherosclerotic patients. In this study, we assessed EECP effects on dynamic cerebral autoregulation (CA). MATERIAL& METHODS: In 23 healthy persons and 15 atherosclerotic patients we monitored heart rate (HR), mean BP (BPmean) and CBFVmean before and during 5 min EECP. We analyzed spectral powers of HR, BPmean and CBFVmean in the low (LF: 0.04-0.15 Hz) and high (HF: 0.15-0.5 Hz) frequency ranges to determine CA from the LF-transfer function gain and phase shift between BPmean and CBFVmean oscillations. RESULTS: EECP increased HR and BPmean, while transfer function gain and phase shift remained stable. CONCLUSIONS: Stable gain and phase values suggest that EECP does not compromise CA and, therefore, does not seem to bear cerebrovascular risks.  相似文献   

8.
This study evaluates the effect of orthostasis on the low frequency (LF, 0.04 to 0.15 Hz) fluctuations in the blood flow velocity of the middle cerebral artery (MCAFV) in relation to its arterial blood pressure (ABP) equivalent to further define and quantify this relationship in cerebrovascular regulation. Spectral analysis was performed on 22 healthy subjects during supine rest and head-up tilt. The power in the LF range can be used to quantify the LF fluctuations, and four types of LF power data could be obtained for each individual: LF power of supine MCAFV, LF power of supine ABP, LF power of tilt MCAFV, and LF power of tilt ABP. By comparing LF power of MCAFV with LF power of ABP, two power ratios could be generated to describe the flow-pressure relationship during supine rest and head-up tilt, respectively, supine power ratio (LF power of supine MCAFV/ LF power of supine ABP) and tilt power ratio (LF power of tilt MCAFV/ LF power of tilt ABP). In addition, an index for dynamic autoregulation in response to orthostasis can be calculated from these two power ratios (tilt power ratio/supine power ratio). The authors found that this index was dependent on the extent of orthostatic MCAFV changes, and the dependency could be mathematically expressed (r = 0.61, P = .0001), suggesting its involvement in cerebrovascular regulation. Moreover, these data further support the previous observation that the LF fluctuations of MCAFV might result from modulation of its ABP equivalent, and the modulation effect could be quantified as the power ratio (LF power of MCAFV/ LF power of ABP). These observations could be an important step toward further insight into cerebrovascular regulation, which warrants more research in the future.  相似文献   

9.
Slow and rhythmic spontaneous oscillations of cerebral and peripheral blood flow occur within frequencies of 0.5-3 min-1 (0.008-0.05 Hz, B-waves) and 3-9 min-1 (0.05-0.15 Hz, M-waves). The generators and pathways of such oscillations are not fully understood. We compared the coefficient of variance (CoV), which serves as an indicator for the amplitude of oscillations and is calculated as the percent standard deviation of oscillations within a particular frequency band from the mean, to study the impairment of generators or pathways of such oscillations in normal subjects and comatose patients in a controlled fashion. With local ethic committee approval, data were collected from 19 healthy volunteers and nine comatose patients suffering from severe traumatic brain injury (n = 3), severe subarachnoid hemorrhage (n = 3), and intracerebral hemorrhage (n = 3). Cerebral blood flow velocities were measured by transcranial Doppler ultrasound (TCD), peripheral vasomotion by finger tip laser Doppler flowmetry (LDF), and ABP by either non-invasive continuous blood pressure recordings (Finapres method) in control subjects, or by direct radial artery recordings in comatose patients. Each recording session lasted approximately 20-30 min. Data were stored in the TCD device for offline analysis of CoV. For CoV in the cerebral B-wave frequency range there was no difference between coma patients and controls, however there was a highly significant reduction in the amplitude of peripheral B-wave LDF and ABP vasomotion (3.8 +/- 2.1 vs. 28.2 +/- 16.1 for LDF, p < 0.001; and 1.2 +/- 0.7 vs. 4.6 +/- 2.8 for ABP, p < 0.001). This observation was confirmed for spontaneous cerebral and peripheral oscillations in the M-wave frequency range. The CoV reduction in peripheral LDF and ABP oscillations suggest a severe impairment of the proposed sympathetic pathway in comatose patients. The preservation of central TCD oscillations argues in favor of different pathways and/or generators of cerebral and peripheral B- and M-waves.  相似文献   

10.
MethodsWe enrolled recent ischemic stroke patients and healthy controls. Changes in the blood flow velocities in bilateral middle cerebral arteries and the continuous beat-to-beat blood pressure before, during, and after ECP were monitored. Power spectral analysis revealed that the BPV included oscillations at very low frequency (VLF; <0.04 Hz), low frequency (LF; 0.04–0.15 Hz), and high frequency (HF; 0.15–0.40 Hz), and the total power spectral density (TP; <0.40 Hz) and LF/HF ratio were calculated.ResultsWe found that ECP significantly increased the systolic and diastolic blood pressures in both stroke patients and controls. ECP decreased markedly the systolic and diastolic BPVs at VLF and LF and the TP, and the diastolic BPV at HF when compared with baseline. The decreases in diastolic and systolic BPV reached 37.56% and 23.20%, respectively, at VLF, 21.15% and 12.19% at LF, 8.76% and 16.59% at HF, and 31.92% and 23.62% for the total TP in stroke patients, which did not differ from those in healthy controls. The change in flow velocity on the contralateral side was positively correlated with the total TP systolic BPV change induced by ECP (r=0.312, p=0.035).ConclusionsECP reduces the beat-to-beat BPV when increasing the blood pressure and cerebral blood flow velocity in ischemic stroke patients. ECP might be able to improve the clinical outcome by decreasing the beat-to-beat BPV in stroke patients, and this should be explored further in future studies.  相似文献   

11.
Abstract

Slow and rhythmic spontaneous oscillations of cerebral and peripheral blood flow occur within frequencies of 0.5-3 min~1 (0.008-0.05 Hz, B-waves) and 3-9 min~1 (0.05-0.15 Hz, M-waves). The generators and pathways of such oscillations are not fully understood. We compared the coefficient of variance (CoV), which serves as an indicator for the amplitude of oscillations and is calculated as the percent standard deviation of oscillations within a particular frequency band from the mean, to study the impairment of generators or pathways of such oscillations in normal subjects and comatose patients in a controlled fashion. With local ethic committee approval, data were collected from 19 healthy volunteers and nine comatose patients suffering from severe traumatic brain injury (n = 3), severe subarachnoid hemorrhage (n = 3), and intracerebral hemorrhage (n = 3). Cerebral blood flow velocities were measured by transcranial Doppler ultrasound (TCD), peripheral vasomotion by finger tip laser Doppler flowmetry (LDF), and ABP by either non-invasive continuous blood pressure recordings (Finapres method) in control subjects, or by direct radial artery recordings in comatose patients. Each recording session lasted ~ 20-30 min. Data were stored in the TCD device for offline analysis of CoV. For CoV in the cerebral B-wave frequency range there was no difference between coma patients and controls, however there was a highly significant reduction in the amplitude of peripheral B-wave LDF and ABP vasomotion (3.8 ±2.1 vs. 28.2 ± 76.7 for LDF, p < 0.00 7; and 1.2±0.7 vs. 4.6±2.8 for ABP, p < 0.001) This observation was confirmed for spontaneous cerebral and peripheral oscillations in the M-wave frequency range. The CoV reduction in peripheral LDF and ABP oscillations suggest a severe impairment of the proposed sympathetic pathway in comatose patients. The preservation of central TCD oscillations argues in favor of different pathways and/or generators of cerebral and peripheral B- and M-waves. [Neurol Res 1999; 21: 665-669]  相似文献   

12.
In diabetic patients, vascular disease and autonomic dysfunction might compromise cerebral autoregulation and contribute to orthostatic intolerance. The aim of our study was to determine whether impaired cerebral autoregulation contributes to orthostatic intolerance during lower body negative pressure in diabetic patients. Thirteen patients with early-stage type 2 diabetes were studied. We continuously recorded RR-interval, mean blood pressure and mean middle cerebral artery blood flow velocity at rest and during lower body negative pressure applied at -20 and -40 mm Hg. Spectral powers of RR-interval, blood pressure and cerebral blood flow velocity were analyzed in the sympathetically mediated low (LF: 0.04-0.15 Hz) and the high (HF: 0.15-0.5 Hz) frequency ranges. Cerebral autoregulation was assessed from the transfer function gain and phase shift between LF oscillations of blood pressure and cerebral blood flow velocity. In the diabetic patients, lower body negative pressure decreased the RR-interval, i.e. increased heart rate, while blood pressure and cerebral blood flow velocity decreased. Transfer function gain and phase shift remained stable. Lower body negative pressure did not induce the normal increase in sympathetically mediated LF-powers of blood pressure and cerebral blood flow velocity in our patients indicating sympathetic dysfunction. The stable phase shift, however, suggests intact cerebral autoregulation. The dying back pathology in diabetic neuropathy may explain an earlier and greater impairment of peripheral vasomotor than cerebrovascular control, thus maintaining cerebral blood flow constant and protecting patients from symptoms of presyncope.  相似文献   

13.
BACKGROUND AND PURPOSE: Recent transcranial Doppler studies in patients with neurocardiogenic syncopes (NCS) have demonstrated that the cerebrovascular response to sudden systemic hypotension is vasoconstriction instead of compensatory vasodilation (autoregulation). We tried to characterize the conditions leading to this unexpected response in NCS patients further by continuously monitoring autoregulation and autonomic parameters during a standardized tilt-table test (TTT). METHODS: Sixteen patients below the age of 50 years with a history of at least three syncopes of undetermined cause and tilt-table verified NCS and 20 normal controls were studied. Arterial blood pressure (ABP) and heart rate (HR) were monitored by Finapres and cerebral blood flow velocity (CBFV) of the left middle cerebral artery by transcranial Doppler. Baroreflex sensitivity and autoregulation parameters were measured continuously, using cross-spectral analysis of Mayer waves (3-9 cycles per minute oscillations) in ABP, HR and CBFV, respectively. Pulsatility indices (PI) of CBFV and ABP were determined continuously. Measurements were taken during 5 min in supine and during 5 min in tilted position. In patients, tilting was continued for a maximum of 45 min until the onset of syncope or presyncope. RESULTS: According to the maximum increase in heart rate (deltaHR) during the first 5 min of standing, heart rate responses were classified as postural tachycardia syndrome (POTS) (deltaHR > 35/min) or as normal. Only one out of 20 control subjects showed a POTS (5%) in contrast to seven patients (44%). Patients with a POTS had significantly lower PI values in ABP and higher ratios between the PI of CBFV and the PI of ABP both in supine and in tilted positions. Baroreflex sensitivity during standing decreased significantly in POTS patients when compared to controls. Although autoregulation remained intact during standing, mean CBFV decreased significantly and continuously. The nine patients without a POTS showed almost the same cardiovascular and cerebrovascular responses as the control subjects. All 16 patients showed similar circulatory responses during syncope (sudden hypotension, relative or absolute bradycardia, reduced CBFV and increased PI in CBFV). CONCLUSIONS: The development of a POTS during tilting indicates a high risk for fainting. The characteristic hemodynamic features in the initial phase of standing in these patients can be interpreted in terms of central hypovolemia (low PI of ABP) with sufficient ABP regulation and increased cerebrovascular resistance (defined as the ratio between PI of CBFV and ABP). Cerebral autoregulation seems not to be affected in patients suffering from NCS.  相似文献   

14.
In order to characterize autonomic responses to acute volume loss, supine ECG, blood pressure (BP) and uncalibrated breathing signal (UBS) recordings were taken before and after blood donation in 48 healthy volunteers. Time and frequency domain parameters of RR interval (RRI), BP and UBS variability were determined. Baroreflex gain was calculated by the technique of the spontaneous sequences and cross-spectral analysis. The systolic (SAP), diastolic (DAP) and mean BP (MAP) increased after the blood withdrawal. The central frequency of breathing and mean heart rate did not change. RRI variability increased in low frequency band (LF), tended to decrease in high frequency band (HF). Systolic BP variability increased in both frequency bands, but was statistically significant only in the high frequency band. Diastolic BP power increased in both frequencies. From the different baroreflex gain estimates, up sequence BRS and HF alpha index decreased significantly. The phase angle between RRI and systolic blood pressure powers in LF band did not change (-58 +/- 24 degrees and -54 +/- 26 degrees ). In the high frequency range, the phase became more negative (-1 +/- 29 degrees and -17 +/- 32 degrees, p = 0.001). The withdrawal of 350-400 ml blood in 5 min resulted in sympathetic activation, which was reflected in increased systolic, diastolic and mean BP. The increased BP oscillation was a sensitive marker of the minor volume depletion. This was coupled by increased RRI oscillation via baroreflex mechanisms in the LF band. Changes in the RRI and BP oscillations in the HF band showed no similar coupling. That points to the fact that RRI oscillations in this band should not be explained entirely by baroreflex mechanisms. Vagal withdrawal was reflected in decreased root mean square of successive differences (RMSSD), decreased HF RRI power and decreased up sequence BRS.  相似文献   

15.
White matter hyperintensities (WMH) in elderly individuals with vascular diseases are presumed to be due to ischemic small vessel diseases; however, their etiology is unknown. We examined the cross-sectional relationship between cerebrovascular hemodynamics and white matter structural integrity in elderly individuals with vascular risk factors. White matter hyperintensity volumes, fractional anisotropy (FA), and mean diffusivity (MD) were obtained from MRI in 48 subjects (75±7years). Pulsatility index (PI) and dynamic cerebral autoregulation (dCA) was assessed using transcranial Doppler ultrasound of the middle cerebral artery. Dynamic cerebral autoregulation was calculated from transfer function analysis (phase and gain) of spontaneous blood pressure and flow velocity oscillations in the low (LF, 0.03 to 0.15 Hz) and high (HF, 0.16 to 0.5 Hz) frequency ranges. Higher PI was associated with greater WMH (P<0.005). Higher phase across all frequency ranges was associated with greater FA and lower MD (P<0.005). Lower gain was associated with higher FA in the LF range (P=0.001). These relationships between phase and FA were significant in the territories limited to the middle cerebral artery as well as across the entire brain. Our results show a strong relationship between impaired cerebrovascular hemodynamics (PI and dCA) and loss of cerebral white matter structural integrity (WMH and DTI metrics) in elderly individuals.  相似文献   

16.
Low‐frequency oscillations with a dominant frequency at 0.1 Hz are one of the most influential intrinsic blood‐oxygen‐level‐dependent (BOLD) signals. This raises the question if vascular BOLD oscillations (originating from blood flow in the brain) and intrinsic slow neural activity fluctuations (neural BOLD oscillations) can be differentiated. In this study, we report on two different approaches: first, on computing the phase‐locking value in the frequency band 0.07–0.13 Hz between heart beat‐to‐beat interval (RRI) and BOLD oscillations and second, between multiple BOLD oscillations (functional connectivity) in four resting states in 23 scanner‐naïve, anxious healthy subjects. The first method revealed that vascular 0.1‐Hz BOLD oscillations preceded those in RRI signals by 1.7 ± 0.6 s and neural BOLD oscillations lagged RRI oscillations by 0.8 ± 0.5 s. Together, vascular BOLD oscillations preceded neural BOLD oscillations by ~90° or ~2.5 s. To verify this discrimination, connectivity patterns of neural and vascular 0.1‐Hz BOLD oscillations were compared in 26 regions involved in processing of emotions. Neural BOLD oscillations revealed significant phase‐coupling between amygdala and medial frontal cortex, while vascular BOLD oscillations showed highly significant phase‐coupling between amygdala and multiple regions in the supply areas of the anterior and medial cerebral arteries. This suggests that not only slow neural and vascular BOLD oscillations can be dissociated but also that two strategies may exist to optimize regulation of anxiety, that is increased functional connectivity between amygdala and medial frontal cortex, and increased cerebral blood flow in amygdala and related structures.  相似文献   

17.
Abstract Aim To determine cerebral blood-flow velocity (CBFV) and parameters of dynamic cerebral autoregulation (CA) during and after exhausting resistance exercise. Methods Strength endurance (23 repetitions) and maximal strength training (8 repetitions) in 16 female and 16 male athletes on a leg curler (m. quadriceps training; approx. 2 s contraction) in the upright position. Registration of ECG, blood pressure by Finapres®, CBFV by transcranial Doppler (TCD), and breathing by a Zak® breathing-belt. Additional repetitive ergospirometry (O2-uptake, CO2-elimination, ventilation) and blood gas analyses were performed in a subgroup of seven athletes. From BP and CBFV cerebrovascular resistance (CVR), pulsatility index (PI) as well as LF-power, gain and phase-angle (frequency analysis) were derived. Results All athletes showed significant (p<0.01) 15 % to 30 % increases in CBFV during both training sets without signs of flow depression due to Valsalva maneuvers. In the early recovery, when blood pressure rapidly decreased, CBFV amplitude significantly (p<0.01) increased for 60–80 seconds with mean flow (Vm) at the exercise level, while CVR and PI showed conflicting results, similar to a presyncopal reaction. Ergospirometry and blood gas analyses revealed no evidence of major changes in pCO2, but phase angle was reduced (p<0.001) after exercise, together with an LF power increase (p<0.001). Conclusion An unexpected increase in CBFV amplitude and in Vm occurs directly after dynamic resistance exercise without increased pCO2, which is comparable to a maximum leg press with hypercapnia. CVR and PI results as well as data from frequency analysis show similarities to presyncopal reactions, on the one hand, and point towards a temporarily disturbed cerebral autoregulation, on the other.  相似文献   

18.
OBJECTIVE: A recent study using near infrared spectroscopy (NIRS) showed that low frequency oscillations of regional cerebral blood flow (CBF) decline with age. Using transcranial Doppler ultrasound (TCD), it is possible to monitor similar fluctuations in cerebral blood velocity (CBV) in basal cerebral vessels. Such oscillations have been used widely in the assessment of cerebral autoregulation. We postulated that it should be possible to observe similar age related reductions in the amplitude of slow waves recorded using TCD. METHODS: We studied 187 patients with head injury, who were admitted to Addenbrooke's Neuro Critical Care unit between 1992 and 1998. Intermittent recordings of CBV were undertaken using TCD, which were subsequently analysed using software developed in-house. Power spectra were computed in the very low frequency (VLF: 0.01-0.05 Hz) and low frequency (LF: 0.07-0.11 Hz) ranges for all signals and a regression analysis was performed to assess the correlation between power in each frequency band and age. RESULTS: No significant correlation was found between VLF or LF power and age (VLF: r=0.037; p=0.63; LF: r=-0.05, p=0.517). DISCUSSION: While remaining cogniscent of the complex nature of our patient group, we find that age dependent reductions in CBF oscillations seen using NIRS do not translate to recordings of CBV in the middle cerebral artery in patients with head injury.  相似文献   

19.
Objective –  To evaluate the impact of vagus nerve stimulation (VNS) on heart rate and blood pressure (BP) modulation in epilepsy patients.
Material and methods –  Twenty-one epilepsy patients with VNS were tested during on (60 s) and off (5 min) phases. We monitored BP, RR intervals (RRI) and respiration. Spectral analysis was performed in low- (LF: 0.04–0.15 Hz) and high-frequency bands (HF: 0.15–0.5 Hz). For coherences above 0.5, we calculated the LF transfer function between systolic BP and RRI, and the HF transfer function gain and phase between RRI and respiration. Differences between the on and off phases were evaluated using Wilcoxon test.
Results –  VNS did not change RRI and BP values. The LF power of BP and the LF and HF power of RRI increased significantly. There was a slight change in the RRI/BP LF gain and the RRI/respiration HF gain (ns). The HF phase between RRI and respiration decreased significantly.
Conclusions –  Our findings show that VNS influences both sympathetic and parasympathetic cardiovascular modulation. However, our results also show that VNS does not negatively influence autonomic cardiovascular regulation.  相似文献   

20.
Intact cerebral autoregulation is essential to prevent cerebral hypoperfusion during pronounced changes in arterial blood pressure (ABP) in patients with autonomic failure (AF). It is still a matter of debate whether and to what extent cerebral autoregulation is disturbed in these patients. This study evaluates the interaction between cerebral blood flow velocity (CBFV) and ABP during Valsalva maneuver (VM) and tilt-table testing in nine patients with multiple system atrophy including AF and in 14 age-matched controls. CBFV and ABP were recorded noninvasively using transcranial Doppler sonography and the Finapres device. Responses to VM were graded by the autoregulation slope index (ASI). Cerebrovascular resistance changes were estimated by the conventional ratio ABP/CBFV and by the dynamic pressure-velocity relationship. To challenge cerebral autoregulation further, tests were repeated under hypercapnic predilation of cerebral arterioles. During VM, CBFV reincreased in patients despite a pronounced ABP drop and showed an overshoot after the strain, thus, being similar to controls. The ASI was higher in patients than in controls ( p < 0.05). During 70 degrees head-up tilt, ABP dropped markedly, but the decrease in CBFV was small and did not differ significantly from controls. In patients, both tests were associated with a substantial decrease of the dynamic but not of the conventional pressure-velocity relationship. Under hypercapnia, the CBFV response in patients remained unchanged. We conclude that 1). cerebral arterioles have the capacity for adequate vasodilation during ABP drops in patients with AF and that this ability is still present under hypercapnic predilation. 2). The mechanism of cerebral autoregulation in itself does not seem to be affected by the AF but is rather well exercised. 3) The VM presents, in addition to tilt-table testing, a simple test for clinical evaluation of cerebral autoregulation in patients with AF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号