首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For developing a multifunctional bioreducible targeted and synergistic co-delivery system for anticancer drug paclitaxel (PTX) and p53 gene for potential cancer therapy, supramolecular self-assembled inclusion complex was prepared from PTX and star-shaped cationic polymer containing γ-cyclodextrin (γ-CD) and multiple oligoethylenimine (OEI) arms with folic acid (FA) conjugated via a disulfide linker. The inclusion complex, termed as γ-CD-OEI-SS-FA/PTX, was formed between PTX and the hydrophobic cavity of γ-CD core of the star polymer. The γ-CD-OEI-SS-FA/PTX complex further formed polyplexes with pDNA to give positively charged nanoparticles, becoming multifunctional supramolecular self-assembled co-delivery system for PTX and pDNA targeting to cancer cells that overexpress folate receptors (FRs). The results showed that the FA-targeted function induced higher gene transfection efficiency in the FR-positive KB cells. The redox-sensitive disulfide linker in the self-assembly system led to the detachment of the FA groups from the carrier after the FR-mediated endocytosis, which resulted in the release of the bound FRs followed by the recycling of the FRs from the cytosol onto the cell membrane surface, facilitating continuous FR-mediated endocytosis to achieve enhanced gene transfection. In addition, the complexed PTX was co-delivered to the cells with pDNA, which further enhanced the gene transfection even at low N/P ratios in the FR-positive KB cells. Further, the efficient delivery of wild-type p53 gene resulted in large cell population at sub G1 and G2/M phases, inducing significant cell apoptosis. Therefore, the multifunctional γ-CD-OEI-SS-FA/PTX self-assembly system with the synergistic effects of redox-sensitive FA-targeted and PTX-enhanced p53 gene delivery may be promising for cancer therapeutic application.  相似文献   

2.
We discovered a vector coated by γ-polyglutamic acid (γ-PGA) for effective and safe gene delivery. In order to develop a useful non-viral vector, we prepared several ternary complexes constructed with pDNA, polyethylenimine (PEI), and various polyanions, such as polyadenylic acid, polyinosinic–polycytidylic acid, α-polyaspartic acid, α-polyglutamic acid, and γ-PGA. The pDNA/PEI complex had a strong cationic surface charge and showed extremely high transgene efficiency although it agglutinated with erythrocytes and had extremely high cytotoxicity. Those polyanions changed the positive ζ-potential of pDNA/PEI complex to negative although they did not affect the size. They had no agglutination activities and lower cytotoxicities but most of the ternary complexes did not show any uptake and gene expression; however, the pDNA/PEI/γ-PGA complex showed high uptake and gene expression. Most of the pDNA/PEI/γ-PGA complexes were located in the cytoplasm without dissociation and a few complexes were observed in the nuclei. Hypothermia and the addition of γ-PGA significantly inhibited the uptake of pDNA/PEI/γ-PGA by the cells, although l-glutamic acid had no effect. These results strongly indicate that the pDNA/PEI/γ-PGA complex was taken up by γ-PGA-specific receptor-mediated energy-dependent process. Thus, the pDNA/PEI/γ-PGA complex is useful as a gene delivery system with high transfection efficiency and low toxicity.  相似文献   

3.
目的构建一种由脂质体Lipofectamine2000、低分子质量壳聚糖、pDNA组成的三元新型复合载体用于核酸递送能力研究。方法复合物形态采用原子力显微镜轻敲模式下表征、载体与核酸结合能力采用凝胶延滞法表征,Hep-2细胞报告基因表达利用倒置荧光显微镜检测。细胞毒性研究采用3-甲基-2-噻唑硫酮(MTT)法。结果复合载体与pDNA结合能力强,可完全延滞pDNA。脂质体/壳聚糖/pDNA复合载体形态呈现出未完全压缩的球形,短棒状和不规则的聚集块。新型载体转染Hep-2细胞提高了绿色荧光蛋白报告基因的表达效率。与脂质体对照载体比较,基因转染效率提高了2~4倍,对照壳聚糖载体无明显转染效果。细胞毒性表明壳聚糖降低了脂质体的细胞毒性。结论基于脂质体的壳聚糖新型复合载体具有核酸递送潜力。  相似文献   

4.
Mishra D  Kang HC  Bae YH 《Biomaterials》2011,32(15):3845-3854
This study investigated the potential of creating a charged polymeric micelle-based nucleic acid delivery system that could easily be reconstituted by the addition of water. (PLGA(36kDa))(2)-b-bPEI(25kDa) (PLGA MW 36 kDa, bPEI M(w) 25 kDa, PLGA:bPEI block ratio = 2) was synthesized and used to prepare cationic micelles. The copolymer retained proton-buffering capability from the bPEI block within the endosomal pH range. Micelle/pDNA complexes retained their particle size (100-150 nm) and surface charge (30-40 mV) following reconstitution. It was found that adding a small amount of low molecular weight bPEI (1.8 kDa) completely shielded pDNA in the micelle/pDNA complexes and enhanced transfection efficiency 50-100 fold for both fresh and reconstituted complexes without affecting complex size. Transfection efficiency for "reconstituted" micelle/pDNA/bPEI(1.8kDa) (WR 1) complexes was 16-fold higher than its "fresh" counterpart. Although transfection levels achieved using "reconstituted" micelle/pDNA/bPEI(1.8kDa) complexes were 3.6-fold lower than control "fresh" bPEI(25kDa)/pDNA (N/P 5) complexes, transfection levels were 39-fold higher than "reconstituted" bPEI(25kDa)/pDNA (N/P 5) complexes. The micelle/pDNA/bPEI(1.8kDa) system showed very low cytotoxicity in MCF7 cells even with pDNA doses up to 20 μg, and transfection levels increased linearly with increasing pDNA dose. These results indicate that this PLGA-b-bPEI polymeric micelle-based system is well suited as a reconstitutable gene delivery system, and has high potential for use as a delivery system for gene therapy applications.  相似文献   

5.
A novel functional diblock polymer P(PEGMA-b-MAH) is prepared and incorporated to improve the gene delivery efficiency of poly(ethyleneimine) PEI via non-covalent assembly strategy. First, P(PEGMA-b-MAH) is prepared from l-methacrylamidohistidine methyl ester (MAH) by reversible addition fragmentation chain transfer polymerization, with poly[poly(ethylene glycol) methyl ether methacrylate] (P(PEGMA)) as the macroinitiator. Then P(PEGMA-b-MAH) is assembled with plasmid DNA (pDNA) and PEI (Mw = 10 kDa) to form PEI/P(PEGMA-b-MAH)/pDNA ternary complexes. The agarose gel retardation assay shows that the presence of P(PEGMA-b-MAH) does not interfere with DNA condensation by the PEI. Dynamic light scattering tests show that PEI/P(PEGMA-b-MAH)/pDNA ternary complexes have excellent serum stability. In vitro transfection indicates that, compared to the P(PEGMA-b-MAH) free PEI-25k/pDNA binary complexes, PEI-10k/P(PEGMA-b-MAH)/pDNA ternary complexes have lower cytotoxicity and higher gene transfection efficiency, especially under serum conditions. The ternary complexes proposed here can inspire a new strategy for the development of gene and drug delivery vectors.  相似文献   

6.
The purpose of this study was to develop a gene vector electrostatically assembled with a polysaccharide capsule. We used pDNA/polyethylenimine (PEI) complexes as efficient non-viral vectors. The pDNA/PEI complex was electrostatically encapsulated with various polysaccharides such as fucoidan, λ-carrageenan, xanthan gum, alginic acid, hyaluronic acid, and chondroitin sulfate (CS). The pDNA/PEI complex was shown as nanoparticles with positive ζ-potential, although the ternary complexes encapsulated with polysaccharides were shown as nanoparticles with negative ζ-potential. The pDNA/PEI complex showed high agglutination activity and cytotoxicity, although the ternary complexes encapsulated with polysaccharides had no agglutination activities and lower cytotoxicities. The pDNA/PEI complex showed high uptake and high transgene efficiency in B16-F10 cells. On the other hand, most of the ternary complexes show little uptake and gene expression. The ternary complex encapsulated by CS, however, showed comparable transgene efficiency to the pDNA/PEI complex. The uptake and gene expression of the ternary complex encapsulated by CS were significantly inhibited by hypothermia and the addition of CS, suggesting that the ternary complex was taken by CS-specific receptor-mediated energy-dependent process.  相似文献   

7.
A multifunctional copolymer–anticancer conjugate chitosan-graft-polyethyleneimine-candesartan (CPC) containing low molecular weight chitosan (CS) backbone and polyethyleneimine (PEI) arms with candesartan (CD) conjugated via an amide bond was fabricated as a targeted co-delivery nanovector of drug and gene for potential cancer therapy. Here, CD was utilized to specifically bind to overexpressed angiotensin II type 1 receptor (AT1R) of tumor cells, strengthen endosomal buffering capacity of CPC and suppress tumor angiogenesis. The self-assembled CPC/pDNA complexes exhibited desirable and homogenous particle size, moderate positive charges, superior stability, and efficient release of drug and gene in vitro. Flow cytometry and confocal laser scanning microscopy analyses confirmed that CD-targeted function and CD-enhanced buffering capacity induced high transfection, specific cellular uptake and efficient intracellular delivery of CPC/pDNA complexes in AT1R-overexpressed PANC-1 cells. In addition, CPC/wt-p53 complexes co-delivering CD and wild type p53 (wt-p53) gene achieved synergistic angiogenesis suppression by more effectively downregulating the expression of vascular endothelial growth factor (VEGF) mRNA and protein via different pathways in vitro, as compared to mono-delivery and mixed-delivery systems. In vivo investigation on nude mice bearing PANC-1 tumor xenografts revealed that CPC/wt-p53 complexes possessed high tumor-targeting capacity and strong anti-tumor activity. Additional analysis of microvessel density (MVD) demonstrated that CPC/wt-p53 complexes significantly inhibited tumor-associated angiogenesis. These findings suggested that CPC could be an ideal tumor-targeting nanovector for simultaneous transfer of drug and gene, and a multifunctional CPC/wt-p53 co-delivery system with tumor-specific targetability, enhanced endosomal buffering capacity and synergistic anti-angiogenesis efficacy might be a new promising strategy for effective tumor therapy.  相似文献   

8.
Li JM  Wang YY  Zhao MX  Tan CP  Li YQ  Le XY  Ji LN  Mao ZW 《Biomaterials》2012,33(9):2780-2790
Co-delivery of siRNA and chemotherapeutic agents has been developed to combat multidrug resistance in cancer therapy. Recently, we developed a series of quantum dots (QDs) functionalized by β-cyclodextrin (β-CD) coupled to amino acids, some of which can be used to facilitate the delivery of siRNA. In this study, two CdSe/ZnSe QDs modified with β-CD coupled to L-Arg or L-His were used to simultaneously deliver doxorubicin (Dox) and siRNA targeting the MDR1 gene to reverse the multidrug resistance of HeLa cells. In this co-delivery system, Dox was firstly encapsulated into the hydrophobic cavities of β-CD, resulting in bypass of P-glycoprotein (P-gp)-mediated drug efflux. After complex formation of the mdr1 siRNA with Dox-loaded QDs via electrostatic interaction, significant down-regulation of mdr1 mRNA levels and P-gp expression was achieved as shown by RT-PCR and Western blotting experiments, respectively. The number of apoptotic HeLa cells after treatment with the complexes substantially exceeded the number of apoptotic cells induced by free Dox only. The intrinsic fluorescence of the QDs provided an approach to track the system by laser confocal microscopy. These multifunctional QDs are promising vehicles for the co-delivery of nucleic acids and chemotherapeutics and for real-time tracking of treatment.  相似文献   

9.
Wang Y  Ke CY  Weijie Beh C  Liu SQ  Goh SH  Yang YY 《Biomaterials》2007,28(35):5358-5368
Cationic micelles self-assembled from a biodegradable amphiphilic copolymer, poly{(N-methyldietheneamine sebacate)-co-[(cholesteryl oxocarbonylamido ethyl) methyl bis(ethylene) ammonium bromide] sebacate} (P(MDS-co-CES)) have recently been reported for efficient gene delivery and co-delivery of drug and nucleic acid. In this study, poly(ethylene glycol) (PEG) of various molecular weights (Mn=550, 1100 and 2000) was conjugated to P(MDS-co-CES) having different cholesterol grafting degrees to improve the stability of micelle/DNA complexes in the blood for systemic in vivo gene delivery. DNA binding ability, gene transfection efficiency and cytotoxicity of P(MDS-co-CES), PMDS, PEGylated PMDS and PEGylated P(MDS-co-CES) micelles were studied and compared. As with P(MDS-co-CES), PEG-P(MDS-co-CES) polymers could also self-assemble into stable micelles of small size. However, PMDS and PEG-PMDS without cholesterol could not form stable micelles but formed large particles. PEGylation of polymers significantly decreased their gene transfection efficiency in HEK293, HepG2, HeLa, MDA-MB-231 and 4T1 cells. However, increasing N/P ratio promoted gene transfection. An increased cholesterol grafting degree led to greater gene expression level possibly because of the more stable core-shell structure of the micelles. PEG550-P(MDS-co-CES) micelles induced high gene transfection level, comparable to that provided by P(MDS-co-CES) micelles. PEGylated polymers were much less cytotoxic than P(MDS-co-CES). PEGylated P(MDS-co-CES) micelles may provide a promising non-viral vector for systemic in vivo gene delivery.  相似文献   

10.
Polyethyleneimine (PEI)-g-All-trans-retinoic acid (ATRA) (designated as PRA) was synthesized as a gene carrier. ATRA at its low concentration is known to be linked to nuclear translocation and cell cycle control (either proliferation or growth arrest) depending on its binding protein in cells. The cytotoxicity of PRA conjugates was lower than that of PEI and was gradually reduced as increasing ATRA graft ratios. The resulting nanosized and positively charged PRA/pDNA complexes showed lower transfection efficiency than the PEI/pDNA complexes (N/P = 10) against NIH3T3 which is less sensitive to ATRA in cell growth and more sensitive HeLa cells. However, when a mixed gene complex of PEI and PRA was applied in an effort to reduce the ATRA contents, their NIH3T3 transfection evidenced effective nuclear translocation and induced 2- to 4-fold better transfection efficiency as compared with the PEI/pDNA complexes. When the PEI/pDNA complexes were utilized to transfect HeLa cells, free ATRA treatment reduced their cellular uptake and transfection efficiency. These findings show that the NIH3T3 cells against ATRA-mediated growth arrest would not damage the PRA-mediated transfection enhancement resulting from the facilitated nuclear translocation of polyplexes or pDNA. The more ATRA-sensitivity in growth arrest of HeLa cells would reduce the transfection efficiency of ATRA-incorporated polyplexes. The transfection capability of gene by newly synthesized PRA conjugates to cells is differentiated by their ATRA-sensitivity to nuclear translocation and cell growth control.  相似文献   

11.
Elfinger M  Maucksch C  Rudolph C 《Biomaterials》2007,28(23):3448-3455
In this study lactoferrin (Lf) was investigated as a targeting ligand for receptor-mediated gene delivery to human bronchial epithelial cells. A high number of lactoferrin receptors (LfRs) were detected on bronchial epithelial (BEAS-2B), but not on alveolar epithelial (A549) cells by fluorescence microscopy and FACS measurements, suggesting potential targeting selectivity for bronchial epithelial cells. Molecular conjugates with ratios of Lf to branched polyethylenimine 25 kDa (PEI) ranging from 4:1 to 1:40 (mol/mol) were synthesized and analyzed for complexation of plasmid DNA (pDNA), transfection efficiency, and cytotoxicity. Whereas particle size increased with the degree of Lf coupling from 45 to 225 nm, surface charge was not significantly influenced. Transfection studies on BEAS-2B cells revealed that Lf-PEI 1:20 exhibited the highest luciferase gene expression which was 5-fold higher at an N/P ratio (molar ratio of PEI nitrogen to pDNA phosphate) of 4 than PEI and could be inhibited by an excess of free Lf. With A549 cells, no significant enhancement in transfection efficiency between Lf-PEI/pDNA and PEI/pDNA complexes could be observed. Increasing the degree of Lf coupling to PEI resulted in reduced transfection efficiency in both alveolar and bronchial epithelial cells. Cell viability assays resulted in significantly lower cellular toxicity of Lf-PEI/pDNA compared with PEI/pDNA complexes. We suggest that Lf represents a potent targeting ligand for receptor-mediated gene delivery to bronchial epithelial cells and might be a promising candidate for lung gene transfer in vivo.  相似文献   

12.
Wang JL  Tang GP  Shen J  Hu QL  Xu FJ  Wang QQ  Li ZH  Yang WT 《Biomaterials》2012,33(18):4597-4607
To enhance tumor-targeting abilities and therapeutic efficiency, a monoclonal antibody-conjugated gene nanocomplex was herein designed. The biodegradable cationic polyethylenimine-grafted-α,β-poly(N-3-hydroxypropyl)-DL-aspartamide (PHPA-PEI) was used for complexing pDNA to form the PHPA-PEI/pDNA nanoparticle, and then 9B9 mAb, an anti-epidermal growth factor receptor (anti-EGFR) monoclonal antibody, was conjugated to produce the PHPA-PEI/pDNA/9B9 mAb (PP9mN) complex. The PP9mN complex with the diameter of around 300 nm at its optimal weight ratio could be uptaken effectively by SMMC-7721 cells. The cytotoxicity of the PP9mN complex was much lower than that of PEI 25 kD in SMMC-7721, HepG2, Bel-7404 and COS-7 cell lines. The PP9mN complex possessed the highly efficient in vitro gene delivery ability to the hepatocellular carcinoma cells. The in vivo gene expression indicated that PP9mN could target to the tumor tissues effectively. By using the therapeutic AChE gene, it was found that the PP9mN complexes significantly enhanced the anti-tumor effect on tumor-bearing nude mice. Such monoclonal antibody-conjugated gene complex should have great potential applications in liver cancer therapy.  相似文献   

13.
K Hagiwara  M Nakata  Y Koyama  T Sato 《Biomaterials》2012,33(29):7251-7260
pDNA/chitosan complexes have been investigated as promising non-viral vectors for gene delivery. However, an increase in transfection efficiency and enhancement of physicochemical stability are required for their practical use. In this study, chondroitin sulfate (CS) was employed as a coating agent to increase the stability and transfection efficiency of a pDNA/chitosan complex. The pDNA/chitosan/CS ternary complexes formed with six kinds of CSs having different limiting viscosities (0.2-1.6) and sulfation degrees (5.0-7.0%) showed considerable differences in particle size, surface charge, and morphology. Among them, CS having a medium limiting viscosity (0.5-0.6) and a high sulfation degree (6.9%) showed significant enhancements in cell transfection efficiency. Analyses of cellular uptake and intracellular trafficking revealed that increased cellular uptake via macropinocytosis, together with reduced entry into lysosomes, may explain the promotion of transfection efficiency of ternary complexes.  相似文献   

14.
Arote R  Kim TH  Kim YK  Hwang SK  Jiang HL  Song HH  Nah JW  Cho MH  Cho CS 《Biomaterials》2007,28(4):735-744
The aim of research was to develop and optimize delivery systems for plasmid DNA (pDNA) based on biodegradable polymers, in particular, poly(ester amine)s (PEAs), suitable for non-viral gene therapy. Poly(ester amine)s were successfully synthesized by Michael addition reaction between polycaprolactone (PCL) diacrylate and low molecular weight polyethylenimine (PEI). PEA/DNA complexes showed effective and stable DNA condensation with the particle sizes below 200nm, implicating its potential for intracellular delivery. PEAs showed controlled degradation and were essentially non-toxic in all three cells (293T: Human kidney carcinoma, HepG2: Human hepatoblastoma and HeLa: Human cervix epithelial carcinoma cell lines) at higher doses in contrast to PEI 25K. PEAs also revealed much higher transfection efficiencies in three cell lines as compared to PEI 25K. The highest reporter gene expression was observed for PCL/PEI-1.2 (MW 1200) complex having transfection efficiency 15-25 folds higher than PEI 25K in vitro. Also PEA/DNA complexes successfully transfected cells in vivo after aerosol administration than PEI 25K. These PEAs can be used as most efficient polymeric vectors which provide a versatile platform for further investigation of structure property relationship along with the controlled degradation, significant low cytotoxicity and high transfection efficiency.  相似文献   

15.
Hyun H  Lee J  Hwang do W  Kim S  Hyun DK  Choi JS  Lee JK  Lee M 《Biomaterials》2011,32(1):306-315
Combinational therapies using genes and drugs are promising therapeutic strategies for various diseases. In this research, a co-delivery carrier of dexamethasone and plasmid DNA (pDNA) was developed by conjugation of dexamethasone to polyethylenimine (2 kDa, PEI2k) for combinational therapy of ischemic brain. Dynamic light scattering, atomic force microscopy and flow cytometry studies showed that the pDNA/dexamethasone-conjugated PEI2k (PEI2k-Dexa) complex was 150 nm in size and was taken up by cells more easily than PEI2k-Dexa only. The tumor necrosis factor-α (TNF-α) level was decreased more efficiently by pDNA/PEI2k-Dexa complex than dexamethasone only in hypoxia activated Raw 264.7 macrophage cells, suggesting that pDNA/PEI2k-Dexa complex increased the delivery efficiency and therapeutic effect of dexamethasone. In in vitro transfection assay, PEI2k-Dexa had higher transfection efficiency than PEI2k and lipofectamine. However, the simple mixture of PEI2k and dexamethasone did not show this effect, suggesting that the conjugation of dexamethasone to polyethylenimine increased DNA delivery efficiency of PEI2k. To evaluate the effects of combinational therapy in vivo, pDNA/PEI2k-Dexa complex was applied to a transient focal ischemia animal model. At 24 h after the injection, mean infarction volume and the TNF-α level were reduced more efficiently in the pDNA/PEI2k-Dexa injection group, compared with the control, pDNA/PEI2k, or dexamethasone injection group. The infarction volume and inflammatory cytokines were further decreased by delivery of pSV-HO-1 using PEI2k-Dexa. Magnetic resonance imaging and microPET studies confirmed the therapeutic effect of pSV-HO-1/PEI2k-Dexa complex at 10 days after the injection. Therefore, pSV-HO-1/PEI2k-Dexa complexes may be useful in combinational therapy for ischemic diseases such as stroke.  相似文献   

16.
Tian H  Xiong W  Wei J  Wang Y  Chen X  Jing X  Zhu Q 《Biomaterials》2007,28(18):2899-2907
The complex copolymer of hyperbranched polyethylenimine (PEI) with hydrophobic poly(gamma-benzyl L-glutamate) segment (PBLG) at their chain ends was synthesized. This water-soluble copolymer PEI-PBLG (PP) was characterized for DNA complexation (gel retardation assay, particle size, DNA release and DNase I protection), cell viability and in vitro transfection efficiency. The experiments showed that PP can effectively condense pDNA into particles. Size measurement of the complexes particles indicated that PP/DNA tended to form smaller nanoparticles than those of PEI/DNA, which was caused by the hydrophobic PBLG segments compressing the PP/DNA complex particles in aqueous solution. The representative average size of PP/DNA complex prepared using plasmid DNA (pEGFP-N1, pDNA) was about 96 nm. The condensed pDNA in the PP/pDNA complexes was significantly protected from enzymatic degradation by DNase I. Cytotoxicity studies by MTT colorimetric assays suggested that the PP had much lower toxicity than PEI. The in vitro transfection efficiency of PP/pDNA complexes improved a lot in HeLa cells, Vero cells and 293T cells as compared to that of PEI-25K by the expression of Green Fluorescent Protein (GFP) as determined by flow cytometry. Thus, the water-soluble PP copolymer showed considerable potential as carriers for gene delivery.  相似文献   

17.
Chang Kang H  Bae YH 《Biomaterials》2011,32(21):4914-4924
Cationic polymers are potential intracellular carriers for small interfering RNA (siRNA). The short and rigid nature of an siRNA chain often results in larger and more loosely packed particles compared to plasmid DNA (pDNA) after complexing with carrier polycations, and in turn, poor silencing effects are seen against the target mRNAs. A helper polyanion, pDNA, was incorporated along with siRNA to form compact nanosized polyplexes. At C/A (cation/anion) ratios of 2 and 5, poly(l-lysine) (PLL)/siRNA-pGFP and PLL/siRNA-pGFP-OSDZ (oligomeric sulfadiazine (OSDZ) for endosomolysis) complexes produced particles 90-150 nm in size with a 15-45 mV surface charge, while PLL/siRNA complexes yielded particles 1-2 μm in size at the same C/A ratios. The PLL/siRNA-pGFP (C/A 2) complexes showed significantly higher specific gene silencing (50-90% vs. 10-25%) than the complexes formed at C/A 5. PLL/siRNA-pGFP-OSDZ (C/A 2) complexes improved the specific gene silencing (90%) more dramatically than PLL/siRNA-pGFP (C/A 2) complexes (50%), demonstrating a potential role for OSDZ. PLL/siRNA-pGFP-OSDZ (C/A 2) complexes sustained higher specific gene silencing compared with PLL/siRNA-pGFP (C/A 2) complexes. Other oligomeric sulfonamides (OSA) with varying pK(a) used in PLL/siRNA-pGFP-OSA complexes also caused effective gene silencing. The pGFP in the PLL/siRNA-pGFP complexes successfully expressed GFP protein without interfering with the siRNA. In conclusion, this study demonstrates that long pDNA helps effectively form nanosized siRNA particles and that OSA enhances specific gene silencing. In a single nucleic acid carrier formulation, co-delivery of siRNA and pDNA is feasible to maximize therapeutic effects or to include therapeutic or diagnostic functionalities.  相似文献   

18.
Folate (FA) modified amphiphilic linoleic acid (LA) and poly (β-malic acid) (PMLA) double grafted chitosan (LMC) nanoparticles (NPs) with optimum grafting degrees of hydrophobic LA and hydrophilic PMLA were developed for the co-delivery of paclitaxel (PTX) and survivin shRNA-expressing plasmid (iSur-pDNA). The resultant NPs exhibited particle size of 161 nm and zeta potential of 43 mV. FA modification and the increasing grafting degrees of LA and PMLA were correlated with the suppressed protein adsorption, the inhibited release of PTX, and the accelerated dissociation of pDNA. PTX loading, cellular uptake, nuclear accumulation of pDNA, in vitro gene silencing efficiency, and cell growth inhibition were promoted by FA modification and higher grafting degree of LA, but impeded by increasing grafting degree of PMLA. In tumor-bearing mice, co-delivery of PTX and iSur-pDNA exhibited enhanced antitumor efficacy and prolonged survival period as compared with single delivery of PTX or iSur-pDNA. These results indicated that amphiphilic LMC NPs could serve as a promising platform for the co-delivery of antitumor drugs and genes, and highlighted the importance of adjusting the hydrophobic and hydrophilic grafting degrees.  相似文献   

19.
Han L  Huang R  Li J  Liu S  Huang S  Jiang C 《Biomaterials》2011,32(4):1242-1252
A combination cancer therapy was investigated via co-delivery of therapeutic gene encoding human tumor necrosis factor-related apoptosis-inducing ligand (pORF-hTRAIL) and doxorubicin (DOX) using a tumor-targeting carrier, peptide HAIYPRH (T7)-conjugated polyethylene glycol-modified polyamidoamine dendrimer (PAMAM-PEG-T7). T7, a transferrin receptor-specific peptide, was chosen as the ligand to target the co-delivery system to the tumor cells expressing transferrin receptors. The result of fluorescence scanning showed that about 375 DOX molecules were bound to one pORF-hTRAIL molecule. The co-delivery system was constructed based on the electrostatic interactions between pORF-hTRAIL-DOX complex and cationic PAMAM-PEG-T7. T7-modified co-delivery system showed higher efficiency in cellular uptake and gene expression than unmodified co-delivery system in human liver cancer Bel-7402 cells, and accumulated in tumor more efficiently in vivo. In comparison with single DOX or pORF-hTRAIL delivery system, co-delivery system induced apoptosis of tumor cells in vitro and inhibited tumor growth in vivo more efficiently. In mice bearing Bel-7402 xenografts, lower doses of co-delivery system (4 μg DOX/mouse, about 0.16 mg/kg) effectively inhibited tumor growth comparable to high doses (5 mg/kg) of free doxorubicin (77% versus 69%). These results suggested that T7-mediated co-delivery system of DOX and pORF-hTRAIL was a simply prepared, combined delivery platform which can significantly improve the anti-tumor effect. This co-delivery system might widen the therapeutic window and allow for the selective destruction of cancer cells.  相似文献   

20.
Jeon SY  Park JS  Yang HN  Woo DG  Park KH 《Biomaterials》2012,33(17):4413-4423
Some genes expressed in stem cells interrupt and/or enhance differentiation. Therefore, the aim of this study was to inhibit the expression of unnecessary genes and enhance the expression of specific genes involved in stem cell differentiation by using small interfering RNA (siRNA) and plasmid DNA (pDNA) incorporated into cationic polymers as co-delivery factors. To achieve co-delivery of siRNA and pDNA to human mesenchymal stem cells (hMSCs), two different genes were complexed with poly(ethyleneimine) (PEI) and then coated onto poly(lactide-co-glycolic acid) (PLGA) nanoparticles (NP). To evaluate co-delivery of siRNA and pDNA into hMSCs, cells were transfected with green fluorescence protein (GFP) pDNA (GFP pDNA) and GFP siRNA (GFP siRNA). The percentage of GFP-expressing hMSCs decreased from 25.35 to 3.7% after transfection with GFP-DNA/PLGA NP (NPs) or GFP siRNA/PLGA NPs, whereas GFP-DNA/PLGA NPs and scramble siRNA (MOCK)/PLGA NPs had no effect on GFP expression. hMSCs cotransfected with coSOX9-pDNA/NPs and Cbfa-1-siRNA/NPs were tested both in vitro and in vivo using gel retardation, dynamic light scattering (DLS), and scanning electron microscope (SEM). The expression of genes and proteins associated with chondrogenesis was evaluated by FACS, RT-PCR, real time-qPCR, Western blotting, immunohistochemistry, and immunofluorescence imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号