首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Muscarinic receptor antagonists were examined in direct binding studies on guinea-pig cardiac and cortical muscarinic receptors. Pirenzepine, dicyclomine and hexahydroadiphenine were shown to be selective ligands for the putative M1-muscarinic receptor. 2. Functional affinity estimates of the muscarinic ligands studied was determined from their ability to inhibit carbachol-stimulated inositol phosphate (IP) accumulation in guinea-pig cortical slices. 3. The affinity estimates for the inhibition of muscarinic agonist-stimulated IP accumulation were better correlated with affinity estimates obtained from binding studies on the M1 than the M2 muscarinic receptor. 4. These data provide additional evidence, both from direct binding and functional studies, for the presence of M1 and M2 muscarinic receptor subtypes.  相似文献   

2.
Isolated preparations of guinea-pig ileum and atria have been used to estimate the dose-ratios produced by antagonists at muscarinic receptors. Experiments with 4-diphenyl-acetoxy-N-methylpiperidine (4DAMP) metho-salts and with its isomer, 3DAMP methiodide, indicate that these are only slightly affected by the choice of physiological salt solution, the choice of agonist and the presence or absence of hexamethonium. Methyl or chloro groups in the p-position of the two benzene rings in 4DAMP metho-salts markedly reduce affinity and selectivity. When the two benzene rings are linked together, as in the fluorene-9-carboxylic ester, the affinity for the receptors in the atria is comparable with that of 4DAMP methobromide but that for the ileum is about half, so the selectivity is reduced. When the rings are linked as in the xanthene-9-carboxylic ester, the affinity for receptors in both tissues is greater than that of 4DAMP methobromide but there is less selectivity. When two molecules of 4DAMP are linked together by a polymethylene chain of from 4 to 12 carbon atoms the effects on affinity for muscarinic receptors in the guinea-pig ileum are different from those on affinity for muscarinic receptors in guinea-pig atria. The pentamethylene compound is the most selective: compared with 4DAMP methobromide it has slightly less affinity for receptors in the ileum but much less affinity for receptors in the atria. The effects of the compounds in antagonizing the actions of carbachol on atrial rate are not markedly different from their effects in antagonizing its actions on the force of the atrial contractions.  相似文献   

3.
Receptor binding profiles of some selective muscarinic antagonists   总被引:2,自引:0,他引:2  
The binding of hexahydrosiladifenidol, procyclidine, 4-DAMP (4-diphenylacetoxy-N-methylpiperidine) and AF-DX 116 to muscarinic receptors in the heart, ileum, urinary bladder, parotid gland and cerebral cortex from guinea pig was studied in competition experiments with (-)-[3H]QNB. The affinity of AF-DX 116 was higher in the heart than in the cortex and it was extremely low in the parotid gland. The affinities of hexahydrosiladefinidol, procyclidine and 4-DAMP were higher in the cortex and parotid gland than in the heart, bladder and ileum. Hexahydrosiladifenidol and 4-DAMP recognized two classes of muscarinic binding sites in the cortex. However, in contrast to functional data, binding results showed that 4-DAMP hexahydrosiladifenidol and procyclidine did not distinguish between the sites in the smooth muscles and those in the heart. Nevertheless, the present data support the view that the putative M2-receptors are heterogeneous, since the four drugs examined were found to distinguish between the muscarinic binding sites in the parotid gland and those in smooth muscles and heart.  相似文献   

4.
A series of malonamic acid esters with suitable amino alcohols, typical of antimuscarinic compounds, was synthesized and the affinities for the three pharmacologically defined muscarinic receptor subtypes, namely M1, M2 and M3, were evaluated by radioligand displacement experiments. It was found that the esters with 3-quinuclidinol 7b, 7f-g, 8 and 9 are ligands with intermediate to high affinity for the M1 receptors, for which they show a preferential binding. Unexpectedly, the ester 7a with tropine bound with negligible affinity to all the receptors investigated. The introduction of a phenyl group on the carboxamido moiety of 7b gave compound 9, which showed an affinity for the M1 receptor comparable with that of the reference drug Pirenzepine 1.  相似文献   

5.
A series of muscarinic receptor antagonists based upon a polyamide backbone linking a trityl group and a N-alkylpiperidine, or N,N-dialkylpiperidinium group, are claimed. The linking group may be constrained by the presence of one or two, pyrrolidine, or proline rings. These compounds are potent M3antagonists with affinities in the 0.5 - 5 nM range and are highly selective relative to both M1 (100 - 1000-fold) and M2 (50 - 100-fold) receptors.  相似文献   

6.
Functional roles of muscarinic acetylcholine receptors in the regulation of mouse stomach motility were examined using mice genetically lacking muscarinic M(2) receptor and/or M(3) receptor and their corresponding wild-type (WT) mice. Single application of carbachol (1 nM-30 microM) produced concentration-dependent contraction in antral and fundus strips from muscarinic M(2) receptor knockout (M(2)R-KO) and M(3) receptor knockout (M(3)R-KO) mice but not in those from M(2) and M(3) receptors double knockout (M(2)/M(3)R-KO) mice. A comparison of the concentration-response curves with those for WT mice showed a significant decrease in the negative logarithm of EC(50) (pEC(50)) value (M(2)R-KO) or amplitude of maximum contraction (M(3)R-KO) in the muscarinic receptor-deficient mice. The tonic phase of carbachol-induced contraction was decreased in gastric strips from M(3)R-KO mice. Antagonistic affinity for 4-diphenylacetoxy-N-methyl-piperidine (4-DAMP) or 11-([2-[(diethylamino)methyl]-1-piperdinyl]acetyl)-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepine-6-one (AF-DX116) indicated that the contractile responses in M(2)R-KO and M(3)R-KO mice were mediated by muscarinic M(3) and M(2) receptors, respectively. Electrical field stimulation (EFS, 0.5-32 Hz) elicited frequency-dependent contraction in physostigmine- and N(omega)-nitro-L-arginine methylester (l-NAME)-treated fundic and antral strips from M(2)R-KO and M(3)R-KO mice, but the cholinergic contractile components decreased significantly compared with those in WT mice. In gastric strips from M(2)/M(3)R-KO mice, cholinergic contractions elicited by EFS were not observed but atropine-resistant contractions were more conspicuous than those in gastric strips from WT mice. Gastric emptying in WT mice and that in M(2)/M(3)R-KO mice were comparable, suggesting that motor function of the stomach in the KO mice did not differ from that in the WT mice. The results indicate that both muscarinic M(2) and M(3) receptors but not other subtypes mediate carbachol- or EFS-induced contraction in the mouse stomach but that the contribution of each receptor to concentration-response relationships is distinguishable. Although there was impairment of nerve-mediated cholinergic responses in the stomach of KO mice, gastric emptying in KO mice was the same as that in WT mice probably due to the compensatory enhancement of the non-cholinergic contraction pathway.  相似文献   

7.
The selectivity profiles of the muscarinic receptor antagonists dicyclomine and trihexyphenidyl have been examined in binding and functional studies and compared with those of pirenzepine and atropine. Dicyclomine, trihexyphenidyl and pirenzepine demonstrated the highest affinity for the M1 muscarinic receptor subtype as revealed in competition experiments against [3H]-pirenzepine labelling of cortical membranes. Their affinity values lay in a narrow range (3.7-14 nM) approaching that of atropine (1.6 nM). Competition experiments against [3H]-N-methylscopolamine in cardiac and glandular (salivary) membranes revealed differences between the drugs examined. Dicyclomine, trihexyphenidyl and pirenzepine displayed low affinity for the cardiac and intermediate affinity for the glandular receptors. Thus, the drugs appeared to discriminate between the M1 (cortical) and the peripheral muscarinic subtypes (cardiac and glandular). However, atropine displayed similar affinities for either subtype with IC50s varying only slightly (1.6-4.6 nM). The rank order of selectivity was: pirenzepine greater than dicyclomine greater than trihexyphenidyl greater than atropine. Mirroring the binding data, pirenzepine, dicyclomine and trihexyphenidyl showed a tenfold greater ability at inhibiting M1-receptor mediated ganglionic responses (McN A-343 pressor effect in pithed rats and nictitating membrane contraction in cats) than at inhibiting peripheral muscarinic responses in the heart and cardiovascular smooth muscle (vagal bradycardia in rats and cats and vagally-induced vasodilatation in cats). The muscarinic antagonists so far examined can be categorized into two groups. Trihexyphenidyl, dicyclomine and pirenzepine, included in one group, are characterized by a higher affinity for the neuronal (M1) muscarinic receptor, hence they antagonize functional responses mediated by the M1 subtype. Atropine, a member of the other group, shows essentially no selectivity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We have recently reported that class III antiarrhythmic drugs inhibit the muscarinic acetylcholine (ACh) receptor-operated K+ current (I K, ACh) in guinea-pig atrial cells by different molecular mechanisms. The data obtained from the patch-clamp study suggest that d,l-sotalol inhibits I K, ACh by blocking the muscarinic receptors, whereas MS-551 inhibits the K+ current by blocking the muscarinic receptors and depressing the function of the K+ channel itself and/or the guanine nucleotide-binding protein (G protein). This study was undertaken to determine whether the class III antiarrhythmic drugs d,l-sotalol and MS-551 interact with the muscarinic receptors of cardiac and peripheral tissues. Both drugs inhibited concentration dependently the specific [3H]N-methylscopolamine ([3H]-NMS) binding to membrane preparations obtained from guinea-pig atria and submandibular glands. The competition curves of these drugs for [3H]-NMS binding to glandular membranes were monophasic, suggesting competition with [3H]-NMS at a single site. Although the competition curve of d,l-sotalol for [3H]-NMS binding to atrial membranes was monophasic, that of MS-551 was biphasic and showed high- and low-affinity states of binding. d,l-Sotalol showed slightly, but significantly, higher affinity for cardiac-type muscarinic receptors (M2) than for glandular-type muscarinic receptors (M3). The inhibition constant (K i) for MS-551 in glandular membranes was also slightly greater than the high-affinity K i value for the drug in atrial membranes. In guinea-pig left atria and ilea, d,l-sotalol shifted the concentration-response curves for the negative inotropic effect and the contracting effect of carbachol in a parallel manner. The slopes of Schild plot were not significantly different from unity, suggesting competitive antagonism, and the pA2 for d,l-sotalol in left atria was slightly greater than that in ilea. MS-551 also shifted the concentration response curve for the negative inotropic effect of carbachol in atrial preparations to a greater extent than that for the contracting effect in ileal preparations, although MS-551 failed to show a pure competitive antagonism. These results suggest that both d,l-sotalol and MS-551 interact with cardiac M2 and peripheral M3 receptors, and that at high concentrations they exert anticholinergic activity in cardiac and peripheral tissues.  相似文献   

9.
Two applications claim a novel class of muscarinic M3 receptor antagonists and their use as long-acting agents for the treatment of chronic obstructive pulmonary disease. The two applications claim closely related structures with one claiming quaternary amine salts of the tertiary amines claimed in the other. The claimed compounds comprise a biarylmethylamine core with the amino group modified by acylation or sulfonation and a tertiary or quaternary amine coupled to the distal ring of the biaryl system.  相似文献   

10.
Selective ligands are needed for distinguishing the functional roles of M2 receptors in tissues containing several muscarinic receptor subtypes. Because the venom of the green mamba Dendroaspis angusticeps contains the most specific antagonists known for M1 and M4 receptors (m1-toxin and m4-toxin), it was screened for toxins that inhibit the binding of [(3)H]N-methylscopolamine ([(3)H]NMS) to cloned M2 receptors. Desalted venom had as much anti-M2 as anti-M4 activity. The most active anti-M2 toxin in the venom was isolated by gel filtration, cation-exchange chromatography, and reversed-phase HPLC, and called m2-toxin. Spectrometry yielded a mass of 7095 Da, and N-terminal sequencing of 53 amino acids showed RICHSQMSSQPPTTTFCRVNSCYRRTLRDPHDPRGT-IIVRGCGCPRMKPGTKL. This sequence is more homologous to antinicotinic than antimuscarinic toxins, but it lacks three almost invariant residues of antinicotinic toxins required for their activity. m2-Toxin fully blocked the binding of [(3)H]NMS and [(3)H]oxotremorine-M to M2 receptors with Hill coefficients near 1, and blocked 77% of the binding sites for 0.1 nM [(3)H]NMS in the rat brainstem (K(i) = 11 nM). Concentrations that fully blocked cloned M2 receptors had no effect on M4 receptors, but slightly increased [(3)H]NMS binding to M1 receptors, an allosteric effect. In accord with these results, light microscopic autoradiography of the rat brain showed that m2-toxin decreased [(3)H]NMS binding in regions rich in M2 receptors and increased binding in regions rich in M1 receptors. Thus m2-toxin is a novel M2-selective, short-chain neurotoxin that may prove useful for binding and functional studies.  相似文献   

11.
1. Although extensively investigated, the extent of differences between receptors mediating negative inotropic and chronotropic responses is still unclear. In the present study atrial and intestinal muscarinic receptors were identified by [3H]-N-methyl-scopolamine ([3H]-NMS) binding and the affinities of some presumably inotropy- or chronotropy-selective agonists and several antagonists determined. 2. All the agonists tested showed similar affinity for right and left atrial receptors. Accepting an affinity difference of 0.4 log units as experimental error, none of the agonists tested was selective for either atrium. 3. Affinity differences of the cardioselective antagonists himbacine, AF-DX 116 and methoctramine and the M1-selective antagonist dicyclomine for right and left atrial muscarinic receptors were also minimal (less than 2 fold selective). When compared to intestinal receptors, AF-DX 116 was 3 to 4 fold, methoctramine 10 to 13 fold selective and himbacine and dicyclomine non-selective. 4. These data provide evidence for differences between atrial and intestinal but not between right and left atrial muscarinic receptors.  相似文献   

12.
On the basis of the cardioselective muscarinic receptor antagonist AF-DX 116 (2), a series of 11-substituted pyridobenzodiazepinones (9-35) was prepared and screened for their binding affinity to muscarinic receptors located in cardiac (M2) and glandular (M3) tissue. The ratio of IC50 values of the test compounds in the two different tissues was taken as a measure of cardiac (M2) receptor selectivity. Qualitative structure-selectivity relationships point to the fact that it is the spatial orientation of the protonated side-chain nitrogen atom in relation to the tricycle that is the main determinant for receptor subtype recognition and hence is important for the achievement of cardiac (M2) selectivity.  相似文献   

13.
Summary The interaction of cholinergic agonists and antagonists with smooth muscle muscarinic receptors has been investigated by measurement of displacement of the muscarinic antagonist [3H]QNB (quinuclidinyl benzilate) in membranes prepared from toad stomach. The binding of [3H]QNB was saturable, reversible and of high affinity (K D = 423 pM). The muscarinic receptor subtypes present in gastric smooth muscle were classified by determining the relative affinities for the selective antagonists pirenzepine (M1), AF-DX 116 (M2) and 4-DAMP (M3). The results from these studies indicate the presence of a heterogeneous population of muscarinic receptor subtypes, with a majority (88%) exhibiting characteristics of M3 receptors and a much smaller population (12%) exhibiting characteristics of M2 receptors. The binding curve for the displacement of [3H]QNB binding by the agonist oxotremorine was complex and was consistent with presence of two affinity states: 24% of the receptors had a high affinity (K D = 4.7 nM) for oxotremorine and 76% displayed nearly a 1,000-fold lower affinity (K D = 4.4 M). When oxotremorine displacement of [3H]QNB binding was determined in the presence GTPS, high affinity binding was abolished, indicating that high affinity agonist binding may represent receptors coupled to G proteins. Moreover, pertussis toxin pretreatment of membranes also abolished high affinity agonist binding, indicating that the muscarinic receptors are coupled to pertussis toxin-sensitive G proteins. Reaction of smooth muscle membranes with pertussis toxin in the presence [32P]NAD caused the [32P]-labelling of a 40 kD protein that may represent the subunit(s) of G proteins that are known to be NAD-ribosylated by the toxin. We conclude that both M3 and M2 receptors may be coupled to G proteins in a pertussis-sensitive manner. Send offprint requests to T. W. Honeyman at the above address  相似文献   

14.
Previously, we reported on PD 102807 (41) as being the most selective synthetic M(4) muscarinic antagonist identified to date. Synthesized analogues of 41 showed no improvement in affinity and selectivity at that time. However, several newly synthesized compounds exhibit a 7-fold higher affinity at M(4) receptors and demonstrate a selectivity of at least 100-fold over all other muscarinic receptor subtypes. For example, compound 28 showed an affinity of pK(i) = 9.00 at M(4) receptors and a selectivity of M(1)/M(4) = 13 183-fold, M(2)/M(4) = 339-fold, M(3)/M(4) = 151-fold, and M(5)/M(4) = 11 220-fold. This high selectivity along with high affinity has not been reported for any synthetic muscarinic antagonist, nor for natural occurring M(4) antagonists such as the M(4) selective Eastern Green Mamba venom MT3 (M(4) pK(b) = 8.7, M(1)/M(4) = 40-fold, M(2)/M(4) > or = 500-fold, M(3)/M(4) > or = 500-fold, and M(5)/M(4) > or = 500-fold). Derivative 24, a compound with a high selectivity pattern as well, has been tested for in vivo efficacy. It was able to block the L-3,4-dihydroxyphenylalanine accumulation produced by CI-1017, an M(1)/M(4) selective muscarinic agonist, in the mesolimbic region and striatum, which suggests that 24 is capable of crossing the blood-brain barrier and confirms the pharmacokinetic data obtained on this compound. This is evidence that suggests that agonist-induced increase in catecholamine synthesis observed in these regions is mediated by M(4) receptors.  相似文献   

15.
To compare the proportions of four muscarinic receptors in different rat brain regions, we used competition curves with four selective antagonists, at 1-[N-methyl-3H]scopolamine methyl chloride [( 3H]NMS) binding equilibrium and after allowing [3H]NMS dissociation for 35 min. Himbacine and methoctramine were shown to discriminate two muscarinic receptor subtypes having a high affinity for 4-diphenylacetoxy-N-methylpiperidine methiodide and hexahydrosiladifenidol, intermediate affinity for pirenzepine, and low affinity for AF-DX 116. One M4 subtype had a high affinity for himbacine and methoctramine; it was found predominantly in homogenates from rat striatum (46% of total [3H]NMS receptors) and in lower proportion in cortex (33% of [3H]NMS receptors) and hippocampus (16% of [3H]NMS receptors). Its binding properties were identical to those of muscarinic receptors in the neuroblastoma x glioma NG 108-15 hybrid, suggesting that it was encoded by m4 mRNA. The M3 subtype (typically found in rat pancreas, a tissue expressing the m3 mRNA) had a low affinity for himbacine and methoctramine and represented about 10% of all [3H]NMS receptors in rat brain cortex, hippocampus, striatum, and cerebellum. M1 and M2 receptors were identified in rat brain by their high affinity for pirenzepine and AF-DX 116, respectively.  相似文献   

16.
In an attempt to obtain more selective antagonists acting at muscarinic M2-receptors, analogues of 4-diphenylacetoxy-N-methylpiperidine methobromide (4-DAMP methobromide) have been synthesized. These were tested, along with silabenzhexol, procyclidine, sila-procyclidine and AFDX-116, in dose-ratio experiments with guinea-pig isolated atria at 30 degrees C and ileum at 30 degrees C and 37 degrees C. The agonist was carbachol and the selectivity was assessed from the difference between log K for receptors in ileum and log K for receptors in atria. The selectivity was not related to the affinity and some weakly active compounds retained appreciable selectivity but no compound had greater selectivity than 4-DAMP methobromide or pentamethylene bis-(4-diphenylacetoxy-N-methylpiperidinium) bromide. Structure-activity relations are discussed. There seem to be steric limits to affinity but there are no obvious indications of the structural features associated with selectivity. It is suggested that more selective drugs may be obtained by introducing groups which may reduce affinity.  相似文献   

17.
The binding of selective muscarinic receptor antagonists to regions of rat brain was examined through quantitative autoradiographic techniques. 5,11-Dihydro-11-[(4-methyl-1-piperazinyl)acetyl]-6H- pyrido[2,3-b][1,4]benzodiazepin-6-one [pirenzepine (compound I)] and 11-[[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]-5,11-dihydro- 6H-pyrido[2,3-b][1,4]benzodiazepin-6-one [AF-DX 116 (compound II)] were chosen on the basis of their selectivity for M1 and M2 muscarinic receptors, respectively, and similarities in chemical structure. Pirenzepine displayed a higher potency than II for inhibition of [3H]-l-quinuclidinyl benzilate ([3H]-l-QNB) binding to rat brain sections. Scatchard analyses of binding to brain sections revealed heterogeneous binding profiles for both antagonists, suggesting the presence of multiple receptor binding sites. Quantitative autoradiographic techniques were utilized in regional analyses of antagonist binding. Pirenzepine displayed the highest affinity for hippocampal, striatal, and amygdaloid muscarinic receptors (IC50 values less than 0.4 microM), with a slightly lower affinity for cortical receptors (IC50 values between 0.4 and 0.8 microM). Pirenzepine displayed the lowest affinity for thalamic and brainstem regions with IC50 values generally greater than 1.0 microM. In contrast, II bound with higher affinity to muscarinic receptors in brainstem, cerebellar, and hypothalamic nuclei (IC50 values less than 0.5 microM) than to receptors in thalamic nuclei (IC50 values between 0.5 and 2.0 microM). Binding sites with the lowest affinity for II were found in cortical, striatal, and hippocampal regions (IC50 values greater than 2.0 microM). The binding profiles of the two selective muscarinic antagonists reveal the complexity and diversity of muscarinic receptor subtypes throughout the brain. The data provide a basis for identifying muscarinic receptor subtypes (as defined through cloning procedures) with selective ligands. Minimum-energy conformations of pirenzepine and II were calculated by using the program MacroModel (version 2.0). Pirenzepine displayed three energy minima, differing in the relative position of the piperazine ring with respect to the tricyclic system. In contrast, the (diethylamino)methyl substituent on the piperidine ring conferred a much larger set of minimum-energy conformations on II. It is suggested that the greater conformational flexibility of the side chain allows II to achieve a conformation inaccessible to pirenzepine, which allows it to bind preferentially to M2 receptors.  相似文献   

18.
Synthesis and biological activity of a novel class of quaternary ammonium salt muscarinic M3 receptor antagonists, showing high selectivity versus the M2 receptor, are described. Selected compounds exhibited potent anticholinergic properties, in isolated guinea-pig trachea, and good functional selectivity for trachea over atria. In vivo, the same compounds potently inhibited acetylcholine-induced bronchoconstriction after intratracheal administration in the guinea pig.  相似文献   

19.
20.
Experimental probing of the model of the muscarinic M2 receptor binding site proposed by Hibert et al. [Hibert, M.F., Trumpp-Kallmeyer, S., Bruinsvels, A., Hoflak, K., 1991. Three-dimensional models of neurotransmitter G-binding protein-coupled receptors. Mol. Pharmacol. 40, 8–15.] was achieved by mutating each amino-acid proposed to interact with muscarinic ligands. Pharmacological analysis of the different mutant receptors transiently expressed in human embryonic kidney (HEK/293) cells was performed with a variety of agonists and antagonists. D103A, Y403A and N404A mutations prevented binding of [3H] N-methylscopolamine and [3H] quinuclidinyl benzilate with a reduction in affinity greater than 100-fold, indicating essential contributions of these residues to the binding site for the radioligands. W400A and W155A mutations had very large effects on the binding of [3H] N-methylscopolamine (150-fold, 960-fold) but modest effects on the binding of [3H] quinuclidinyl benzilate (4-fold, 17-fold). In addition, binding of oxotremorine-M, oxotremorine, arecoline and pilocarpine to W155A resulted in a greater than 100-fold decrease in affinity. Threonine mutations (T187A and T190A) alter binding of most agonists but not of antagonists. W99 makes little contribution (<10-fold) to the binding site of the M2 receptor. D103, W155, W400, Y403 and N404 are likely to be part of the binding site for N-methylscopolamine and also to contribute to the binding site for quinuclidinyl benzilate. Some of the predicted residues do not seem to be part of the M2 receptor binding site but W155 is important for proper ligand binding on the muscarinic M2 receptor, as predicted by the proposed model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号