首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Control of scrapie, an ovine transmissible spongiform encephalopathy or prion disorder, has been hampered by the lack of conventional antemortem diagnostic tests. Currently, scrapie is diagnosed by postmortem examination of the brain and lymphoid tissues for PrP(Sc), the protein marker for this group of disorders. For live, asymptomatic sheep, diagnosis using tonsil or third-eyelid lymphoid tissue biopsy and PrP(Sc) assay has been described. To evaluate the feasibility and efficacy of third-eyelid testing for identification of infected flocks and individual infected sheep, 690 sheep from 22 flocks were sampled by third-eyelid lymphoid tissue biopsy and immunohistochemistry. Sheep were further evaluated for relative genetic susceptibility and potential contact exposure to scrapie. Third-eyelid testing yielded suitable samples for 80% of the sheep tested, with a mean of 18.1 lymphoid follicles (germinal centers) per histologic section. Three hundred eleven of the sheep were sampled through passive surveillance programs, in which only sheep with potential contact with an infected sheep at a lambing event were tested, regardless of their scrapie susceptibility genotype. In addition, 141 genetically susceptible sheep with no record of contact with an infected animal at a lambing event were sampled through a targeted active surveillance program. Ten PrP(Sc)-positive sheep were identified through the passive surveillance program, and an additional three PrP(Sc)-positive sheep, including two from flocks with no history of scrapie, were identified through the active surveillance program. All PrP(Sc)-positive sheep had the highly susceptible PrP genotype. Third-eyelid testing is a useful adjunct to flock monitoring programs, slaughter surveillance, and mandatory disease reporting in a comprehensive scrapie eradication and research program.  相似文献   

2.
Control of scrapie, an ovine transmissible spongiform encephalopathy or prion disorder, has been hampered by the lack of conventional antemortem diagnostic tests. Currently, scrapie is diagnosed by postmortem examination of the brain and lymphoid tissues for PrPSc, the protein marker for this group of disorders. For live, asymptomatic sheep, diagnosis using tonsil or third-eyelid lymphoid tissue biopsy and PrPSc assay has been described. To evaluate the feasibility and efficacy of third-eyelid testing for identification of infected flocks and individual infected sheep, 690 sheep from 22 flocks were sampled by third-eyelid lymphoid tissue biopsy and immunohistochemistry. Sheep were further evaluated for relative genetic susceptibility and potential contact exposure to scrapie. Third-eyelid testing yielded suitable samples for 80% of the sheep tested, with a mean of 18.1 lymphoid follicles (germinal centers) per histologic section. Three hundred eleven of the sheep were sampled through passive surveillance programs, in which only sheep with potential contact with an infected sheep at a lambing event were tested, regardless of their scrapie susceptibility genotype. In addition, 141 genetically susceptible sheep with no record of contact with an infected animal at a lambing event were sampled through a targeted active surveillance program. Ten PrPSc-positive sheep were identified through the passive surveillance program, and an additional three PrPSc-positive sheep, including two from flocks with no history of scrapie, were identified through the active surveillance program. All PrPSc-positive sheep had the highly susceptible PrP genotype. Third-eyelid testing is a useful adjunct to flock monitoring programs, slaughter surveillance, and mandatory disease reporting in a comprehensive scrapie eradication and research program.  相似文献   

3.
Scrapie diagnosis is based on the demonstration of disease-associated prion protein (PrP(Sc)) in brain or, in the live animal, in readily accessible peripheral lymphoid tissue. Lymphatic tissues present at the rectoanal line were readily obtained from sheep without the need for anaesthesia. The presence of PrP(Sc) in such tissue was investigated in sheep infected orally with scrapie-infected brain material. The methods used consisted of immunohistochemistry and histoblotting on biopsy and post-mortem material. PrP(Sc) was detected in animals with PrP genotypes associated with high susceptibility to scrapie from 10 months after infection, i.e., from about the time of appearance of early clinical signs. In the rectal mucosa, PrP(Sc) was found in lymphoid follicles and in cells scattered in the lamina propria, often near and sometimes in the crypt epithelium. By Western blotting, PrP(Sc) was detected in rectal biopsy samples of sheep with the PrP genotype VRQ/VRQ, after electrophoresis of material equivalent to 8 mg of tissue. This study indicated that rectal biopsy samples should prove useful for the diagnosis of scrapie in sheep.  相似文献   

4.
Immunochemical ("rapid") tests, which recognize a partly protease-resistant conformer of the prion protein (PrP(res)) are now widely used in Europe for the diagnosis of transmissible spongiform encephalopathies (TSEs). Some of these tests can be used to distinguish natural scrapie from experimental bovine spongiform encephalopathy (BSE) in sheep, on the basis of migration pattern differences of PrP(res) in Western immunoblots. However, PrP(res) from sheep inoculated with CH1641 scrapie gives an immunoblot profile similar to that of sheep inoculated with BSE. Therefore, field scrapie strains similar to CH1641 might be misclassified as ovine BSE in the rapid tests currently employed. This study confirmed that the Western blot similarities (size of the unglycosylated band and distinct reactivity with 6H4 and P4 antibodies) between CH1641 and BSE remained consistent regardless of the PrP genotype of the sheep, but the two infections resulted in accumulation of disease-associated PrP (PrP(d)) that could easily be distinguished by the immunohistochemical "peptide mapping" method. This method, which reveals conformational differences of PrP(d) by the use of a panel of antibodies, indicated that PrP(d) from the CH1641 isolate was truncated further upstream in the N terminus than was PrP(d) from other ovine TSEs, including experimental BSE. In addition, the immunohistochemical "PrP(d) profile method", which defines the phenotype of PrP(d) accumulation in the brain of affected sheep, showed that CH1641 infection leads to much more intra-neuronal and considerably less extracellular PrP(d) than does experimental BSE. The overall results demonstrate that a combined Western blotting and immunohistochemical approach is required to discriminate between different TSE strains in sheep.  相似文献   

5.
Concerns have been raised about the possibility that the bovine spongiform encephalopathy (BSE) agent could have been transmitted to sheep populations via contaminated feedstuffs. The objective of our study was to investigate the suitability of molecular strain typing methods as a surveillance tool for studying scrapie strain variations and for differentiating PrP(Sc) from sheep scrapie, BSE, and sheep BSE. We studied 38 Italian sheep scrapie cases from 13 outbreaks, along with a British scrapie case, an experimental ovine BSE, and 3 BSE cases, by analyzing the glycoform patterns and the apparent molecular masses of the nonglycosylated forms of semipurified, proteinase-treated PrP(Sc). Both criteria were able to clearly differentiate sheep scrapie from BSE and ovine experimental BSE. PrP(Sc) from BSE and sheep BSE showed a higher glycoform ratio and a lower molecular mass of the nonglycosylated form compared to scrapie PrP(Sc). Scrapie cases displayed homogeneous PrP(Sc) features regardless of breed, flock, and geographic origin. The glycoform patterns observed varied with the antibody used, but either a monoclonal antibody (MAb) (F99/97.6.1) or a polyclonal antibody (P7-7) was able to distinguish scrapie from BSE PrP(Sc). While more extensive surveys are needed to further corroborate these findings, our results suggest that large-scale molecular screening of sheep populations for BSE surveillance may be eventually possible.  相似文献   

6.
Sheep are susceptible experimentally to bovine spongiform encephalopathy (BSE), the clinical signs being indistinguishable from those of scrapie. Because of the possibility of natural ovine BSE infection, laboratory tests are needed to distinguish between scrapie and BSE infection. The objectives of this study were to determine whether (1) PrPSc accumulates in biopsy samples of the tonsil or third eyelid, or both, of BSE-infected sheep before the appearance of clinical disease, and (2) such samples from BSE- and scrapie-infected sheep differ in respect of PrPSc accumulations. Homozygous ARQ sheep (n = 10) were dosed orally at 4-5 months of age with a brain homogenate from BSE-infected cattle. Third eyelid and tonsillar biopsy samples were taken at < or = 6 monthly intervals post-infection and examined immunohistochemically for PrPSc. Third eyelid protuberances were difficult to identify, resulting in many unsuitable samples; however, third eyelid samples shown to contain lymphoid follicles were invariably negative for PrPSc. In contrast, tonsillar biopsy samples became positive for PrPSc from 11 to 20 months post-infection. Consistent differences in the morphology of PrPSc granules in tingible body macrophages (TBMs) between BSE- and scrapie-infected sheep were detected with anti-peptide antibodies directed towards amino acids 93-106 of the ovine prion protein: thus, PrPSc appeared as single granules in TBMs of tonsillar sections from BSE-infected sheep, whereas clusters of PrPSc granules were observed within TBMs in the tonsils of scrapie-infected sheep. In contrast, antibodies against epitopes situated N- and C-terminally from the 93-106 region of the ovine prion protein revealed no differences between BSE- and scrapie-infected sheep in terms of PrPSc granules in TBMs.  相似文献   

7.
Histoblotting and immunohistochemistry were used to detect disease-associated prion protein (PrP(Sc)) in lymphoid tissues of lambs of known PrP genotype infected with the scrapie agent by stomach tube at the age of 2 months. The ileal and jejunal Peyer's patches and retropharyngeal and distal jejunal lymph nodes were studied 1 week, 5 weeks, 5 months and 11 months after inoculation. Other lymphoid tissues examined included superficial cervical lymph node, tonsil and spleen. PrP(Sc) was not detected in any tissue of any lamb at 1 week post-inoculation. At 5 weeks, PrP(Sc) was detected in tissues of lambs of susceptible PrP genotypes (AV(136)QQ(171) and VV(136)QQ(171)), but not lambs of other PrP genotypes (AA(136)QQ(171), AA(136)QR(171) and AV(136)QR(171)). PrP(Sc) was present in the germinal centres of tonsils, distal jejunal and retropharyngeal lymph nodes, and spleen. In the nodules of ileal and jejunal Peyer's patches, only occasional solitary cells showed the presence of PrP(Sc). At 5 months post-inoculation, increased accumulations of PrP(Sc) were detected in ileal and jejunal Peyer's patches, as well as in the retropharyngeal and distal jejunal lymph nodes of a single lamb inoculated with the agent from a sheep of the same susceptible PrP genotype. Eleven months after exposure to the scrapie agent, PrP(Sc) was detected in all lymphoid tissues examined from sheep of susceptible PrP genotypes. These studies show that PrP(Sc) was detectable in lymphoid tissues 5 weeks after exposure to the scrapie agent by stomach tube in lambs as young as 3 months of age and indicate that the PrP genotype is a significant factor for the rapid uptake and spread of the agent through lymphoid tissues.  相似文献   

8.
The transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative diseases. A primary therapeutic target for TSE intervention has been a protease-resistant form of prion protein known as PrP(Sc) or PrP-res. In vitro testing of mouse scrapie-infected cell cultures has identified many PrP-res inhibitors that also have activity in vivo. Here we identify 32 new inhibitors of two strains of mouse scrapie PrP-res. Furthermore, to investigate the species-specificity of these and other PrP-res inhibitors, we have developed a high-throughput cell culture assay based on Rov9 cells chronically-infected with sheep scrapie. Of 32 inhibitors of murine PrP-res that were also tested in the Rov9 cells, only six showed inhibitory activity against sheep PrP-res. The three most potent inhibitors of both murine and ovine PrP-res formation (with 50% inhibition at < or =5 microM) were tannic acid, pentosan polysulfate and Fe(III) deuteroporphyrin 2,4-bisethyleneglycol. The latter two have anti-mouse scrapie activity in vivo. These results identify new inhibitors of murine and ovine PrP-res formation and reinforce the idea that compounds effective against PrP-res from one species or strain cannot be assumed to be active against others.  相似文献   

9.
Early and late pathogenesis of natural scrapie infection in sheep   总被引:3,自引:0,他引:3  
The pathogenesis of scrapie infection was studied in sheep carrying the PrP(VRQ)/PrP(VRQ) genotype, which is associated with a high susceptibility for natural scrapie. The sheep were killed at sequential time points during a scrapie infection covering both the early and late stages of scrapie pathogenesis. Various lymphoid and neural tissues were collected and immunohistochemically examined for the presence of the scrapie-associated prion protein PrP(Sc), a marker for scrapie infectivity The first stage of scrapie infection consisted of invasion of the palatine tonsil and Peyer's patches of the caudal jejunum and ileum, the so-called gut-associated lymphoid tissues (GALT). At the same time, PrP(Sc) was detected in the medial retropharyngeal lymph nodes draining the palatine tonsil and the mesenteric lymph nodes draining the jejunal and ileal Peyer's patches. From these initial sites of scrapie replication, the scrapie agent disseminated to other non-GALT-related lymphoid tissues. Neuroinvasion started in the enteric nervous system followed by retrograde spread of the scrapie agent via efferent parasympathetic and sympathetic nerve fibres innervating the gut, to the dorsal motor nucleus of the vagus in the medulla oblongata and the intermediolateral column of the thoracic spinal cord segments T8-T10, respectively.  相似文献   

10.
Prion diseases are characterized by a long incubation period. In scrapie, sheep may incubate and spread the infection for several years before clinical signs evolve. We have previously studied the occurrence of subclincal infection in the brain. Now, we have studied the occurrence of subclinical infection in the brain and several lymphoid tissues in two scrapie-affected Icelandic sheep flocks by immunohistochemistry for PrPSc, a molecular marker for infectivity, and correlated this with results of PrP genotyping. At culling, one flock had one confirmed scrapie case, while the other flock had two. Analysis of 106 asymptomatic sheep by immunostaining for PrPSc revealed that the incidence of subclinical infection was 58.3% in one flock and 42.5% in the other. PrPSc was only detected in lymphoid tissues. The youngest positive sheep were 4 months old. PrP genotyping showed that over 90% of the sheep were of a genotype which is moderately sensitive to infection and may delay neuroinvasion. Our results show that asymptomatic sheep may spread the infection during the long incubation period of several years, which constitutes an important obstacle in the eradication of scrapie. Our findings indicate that contamination of the environment plays an important part in sustaining the infection.  相似文献   

11.
Rectoanal mucosa-associated lymphoid tissue (RAMALT) is a part of the lymphoid system that can be sampled easily in live animals, especially ruminants. RAMALT biopsy is useful for the diagnosis of transmissible spongiform encephalopathies, including scrapie in sheep and goats and chronic wasting disease (CWD) in cervids. Diagnosis is reliant on detection of abnormal prion protein (PrP(d)), which is associated with lymphoid follicles. For enzyme linked immunosorbent assays (ELISAs) detecting PrP(d) it is necessary to ensure that lymphoid follicles are present in biopsy samples to avoid false-negative results. Monoclonal antibodies known to recognize specific immune cell subsets present in lymphoid tissues of sheep were tested for cross-reactivity with cervine RAMALT and mesenteric lymph nodes (MLNs) preserved in zinc salts fixative. The distribution of cells expressing CD3, CD4, CD79, CD21 and class II molecules of the major histocompatibility complex was determined in these tissues. Cells of each immunophenotype had similar distributions in RAMALT and MLNs and these distributions were similar to those reported previously for sheep and cattle. The identification and validation of cervine lymphoid follicle cell markers (CD79 and CD21) may allow reduction in false-negative results during diagnosis of CWD by ELISA.  相似文献   

12.
The scrapie-associated form of the prion protein (PrPSc) accumulates in the brain and lymphoid tissues of sheep with scrapie. In order to assess whether detecting PrPSc in lymphoid tissue could be used as a diagnostic test for scrapie, we studied the localization and distribution of PrPSc in various lymphoid tissues collected at necropsy from 55 sheep with clinical scrapie. Samples collected from the spleen, palatine tonsil, ileum, and five different lymph nodes were immunohistochemically stained for PrPSc. PrPSc was found to be deposited in a reticular pattern in the center of both primary and secondary lymphoid follicles. In addition, granules of PrPSc were seen in the cytoplasm in macrophages associated with the lymphoid follicles. In 54 (98%) of the 55 scrapie-affected sheep, PrPSc was detected in the spleen, retropharyngeal lymph node, mesenteric lymph node, and the palatine tonsil. However, only in the palatine tonsils was PrPSc present in a consistently high percentage of the lymphoid follicles. PrP was not detected in any of the lymphoid tissues of 12 sheep that had no neurohistopathological signs of a scrapie infection. We conclude that the tonsils are the best-suited lymphoid tissue to be biopsied for the detection of PrPSc in the diagnosis of clinical scrapie in living sheep.  相似文献   

13.
Ovine prion strains have typically been identified by their transmission properties, which include incubation time and lesion profile, in wild type mice. The existence of scrapie isolates that do not propagate in wild type mice, defined here as "poor" transmitters, are problematic for conventional prion strain typing studies as no incubation time or neuropathology can be recorded. This may arise because of the presence of an ovine prion strain within the original inoculum that does not normally cross the species barrier into wild type mice or the presence of a low dose of an infectious ovine prion strain that does. Here we have used tg59 and tg338 mouse lines, which are transgenic for ovine ARQ or VRQ PrP, respectively, to strain type "poor" transmitter ovine scrapie isolates. ARQ and VRQ homozygous "poor" transmitter scrapie isolates were successfully propagated in both ovine PrP transgenic mouse lines. We have used secondary passage incubation time, PrPSc immunohistochemistry and molecular profile, to show that different prion strains can be isolated from different "poor" transmitter samples during serial passage in ovine PrP transgenic mice. Our observations show that poor or inadequate transmissibility of some classical scrapie isolates in wild type mice is associated with unique ovine prion strains in these particular sheep scrapie samples. In addition, the analysis of the scrapie isolates used here revealed that the tg338 mouse line was more versatile and more robust at strain typing ovine prions than tg59 mice. These novel observations in ovine PrP transgenic mice highlight a new approach to ovine prion strain typing.  相似文献   

14.
Prion diseases or transmissible spongiform encephalopathies (TSEs) in small ruminants are presented in many forms: classical scrapie, Nor98/atypical scrapie, CH1641 scrapie and bovine spongiform encephalopathy (BSE). We previously described a multiplex immunofluorometric assay (mIFMA), based on a bead array flow cytometry technology, which provided, in a single assay, discrimination between BSE (in cattle and sheep) and classical scrapie (Tang et al., 2010). In this study, we extended the mlFMA to differentiate classical scrapie, atypical scrapie, BSE (experimentally infected sheep and naturally infected cattle) and CH1641 (both experimental and natural CH1641-like infections in sheep). Three capture antibodies were used, two distinct PrP N-terminus specific antibodies 12B2 and 9A2, and a PrP core specific antibody 94B4. All three antibodies were shown to bind classical scrapie PrP(res) strongly, whereas in Nor98/atypical scrapie PrP(res) only 12B2 and 9A2 binding was observed. PrP(res) binding of 12B2 was low for both BSE and CH1641, as expected. Furthermore, analysis of serially diluted samples indicated that the assay provided a similar level of sensitivity for atypical scrapie as that found using a well established commercial test. Unexpectedly, 9A2 binding to CH1641 PrP(res) was reduced by 2.1 fold both for experimental CH1641 and CH1641-like scrapie when compared with BSE, suggesting that major cleavage of the N-terminus occurs further towards the C-terminus in CH1641 than in BSE. The ratios of 12B2/94B4 and 9A2/94B4 were similar between experimental CH1641 and CH1641-like cases, although two CH1641-like subjects displayed slightly elevated ratios of both 12B2/94B4 and 9A2/94B4. To verify this finding for PrP(res), mass spectrometry based quantification was used to determine the absolute abundance of the peptides associated with all three antibody binding regions. There was a 2.2 fold reduction of peptides containing the 9A2 epitope for experimental CH1641 PrP(res) in comparison to BSE PrP(res). Observation of reduced PrP(res) may serve as a new marker for CH1641. This mIFMA may thus provide the basis for simplified TSE diagnosis with capability for simultaneous screening and differential diagnosis.  相似文献   

15.
Han CX  Liu HX  Lu YX  Song MX  Zhao DM  Zhou XM  Yang LF  Li XY 《Virus genes》2011,42(1):153-155
Susceptibility to natural scrapie in sheep is associated with polymorphisms at codons 136, 154 and 171 of the prion protein (PrP) gene. To assess the risk of scrapie in sheep raised in China, DNA from 30 sheep of two breeds was isolated, amplified and sequenced for the PrP gene. The ovine PrP gene was found to be highly homogenous. The genotype associated with high susceptibility to scrapie (VRQ) was absent, whereas that associated with the resistance (ARR) was present in 6.7% of sheep examined. ARK was also rare (6.7%). ARQ that is associated with an intermediate susceptibility was the genotype observed in the most of sheep examined (86.6%). These data suggest that Chinese sheep of Mongolian sheep breed are susceptible to scrapie.  相似文献   

16.
Two cases of unusual transmissible spongiform encephalopathy (TSE) were diagnosed on the same farm in ARQ/ARQ PrP sheep showing attributes of both bovine spongiform encephalopathy (BSE) and scrapie. These cases, UK-1 and UK-2, were investigated further by transmissions to wild-type and ovine transgenic mice. Lesion profiles (LP) on primary isolation and subpassage, incubation period (IP) of disease, PrP(Sc) immunohistochemical (IHC) deposition pattern and Western blot profiles were used to characterize the prions causing disease in these sheep. Results showed that both cases were compatible with scrapie. The presence of BSE was contraindicated by the following: LP on primary isolation in RIII and/or MR (modified RIII) mice; IP and LP after serial passage in wild-type mice; PrP(Sc) deposition pattern in wild-type mice; and IP and Western blot data in transgenic mice. Furthermore, immunohistochemistry (IHC) revealed that each case generated two distinct PrP(Sc) deposition patterns in both wild-type and transgenic mice, suggesting that two scrapie strains coexisted in the ovine hosts. Critically, these data confirmed the original differential IHC categorization that these UK-1 and UK-2 cases were not compatible with BSE.  相似文献   

17.
Follicular dendritic cells (FDCs) of the lymphoreticular system play a role in the peripheral replication of prion proteins in some transmissible spongiform encephalopathies (TSEs), including experimental murine scrapie models. Disease-specific PrP (PrPd) accumulation occurs in association with the plasmalemma and extracellular space around FDC dendrites, but no specific immunological response has yet been reported in animals affected by TSEs. In the present study, morphology (light microscopical and ultrastructural) of secondary lymphoid follicles of the spleen were examined in mice infected with the ME7 strain of scrapie and in uninfected control mice, with or without immunological stimulation with sheep red blood cells (SRBCs), at 70 days post-inoculation or at the terminal stage of disease (268 days). Scrapie infection was associated with hypertrophy of FDC dendrites, increased retention of electron-dense material at the FDC plasma membrane, and increased maturation and numbers of B lymphocytes within secondary follicles. FDC hypertrophy was particularly conspicuous in immune-stimulated ME7-infected mice. The electron-dense material was associated with PrP Napoli accumulation, as determined by immunogold labelling. We hypothesize that immune system changes are associated with increased immune complex trapping by hypertrophic FDCs expressing PrP Napoli molecules at the plasmalemma of dendrites, and that this process is exaggerated by immune system stimulation. Contrary to previous dogma, these results show that a pathological response within the immune system follows scrapie infection.  相似文献   

18.
Natural sheep scrapie is a prion disease characterized by the accumulation of PrP(Sc) in brain and lymphoid tissues. Previous studies suggested that lymph node macrophages and follicular dendritic cells (FDC) accumulate PrP(Sc). In this study, lymph nodes were analyzed for the presence of PrP(Sc) and macrophage or FDC markers using dual immunohistochemistry. A monoclonal antibody (mAb) to the C-terminus of PrP reacted with CD172a+ macrophages and CD21+ FDC processes in secondary follicles. However, a PrP N-terminus-specific mAb reacted with CD21+ FDC processes but not CD172a+ macrophages in secondary follicles. Neither the PrP N-terminus nor C-terminus-specific mAb reacted with CD172a+ macrophages in the medulla. These results indicate that lymph node follicular macrophages acquire PrP(Sc) by phagocytosis of CD21+ FDC processes. The results also suggest that follicular macrophages have proteases that process full-length PrP(Sc) to N-terminally truncated PrP(Sc).  相似文献   

19.
The scrapie-associated prion protein (PrPSc), which is closely associated with scrapie infectivity, accumulates in the brain and lymphoid tissues of sheep with natural scrapie. The most probable portal of entry of the scrapie agent in sheep is the alimentary tract; little attention, however, has been paid to the gastro-intestinal tract in scrapie research. In this study, we examined the presence and distribution of PrPSc within the gastro-intestinal tract of sheep with natural scrapie and scrapie-negative sheep. It was found that PrPSc accumulated in the enteric nervous system (ENS) of all scrapie-infected sheep but not in scrapie-negative sheep. The distribution of PrPSc within the ENS was then studied along the entire gastro-intestinal tract in seven scrapie-infected sheep carrying various PrP genotypes. In sheep with the highest genetically determined susceptibility to scrapie, PrPSc was detected in the ENS from the oesophagus to the rectum. In sheep with a lower genetic susceptibility to scrapie, PrPSc was present in the ENS of the forestomachs, small intestine and large intestine but not in the oesophagus. In a scrapie-negative sheep with a PrP genotype associated with scrapie resistance, no PrPSc was seen in the ENS at any site along the gastro-intestinal tract. The presence of PrPSc within the ENS of scrapie-infected sheep indicates a possible role of the ENS in the pathogenesis of natural scrapie as a portal of entry to the central nervous system.  相似文献   

20.
Prion diseases are closely linked to the conversion of host-encoded cellular prion protein (PrPC) into its pathological isoform (PrPSc). PrP conversion experiments in scrapie infected tissue culture cells, transgenic mice, and cell-free systems usually require unique epitopes and corresponding monoclonal antibodies (MAbs) for the immunological discrimination of exogenously introduced and endogenous PrP compounds (e.g., MAb 3F4, which is directed to an epitope on hamster and human but not on murine PrP). In the current work, we characterize a novel MAb designated L42 that reacts to PrP of a variety of species, including cattle, sheep, goat, dog, human, cat, mink, rabbit, and guinea pig, but does not bind to mouse, hamster, and rat PrP. Therefore, MAb L42 may allow future in vitro conversion and transgenic studies on PrPs of the former species. The MAb L42 epitope on PrPC includes a tyrosine residue at position 144, whereas mouse, rat, and hamster PrPs incorporate tryptophane at this site. To verify this observation, we generated PrP expression vectors coding for authentic or mutated murine PrPCs (i.e., codon 144 encoding tyrosine instead of tryptophan). After transfection into neuroblastoma cells, MAb L42 did not react with immunoblotted wild-type murine PrPC, whereas L42 epitope-tagged murine PrPC was strongly recognized. Immunoblot and fluorescence-activated cell sorting data revealed that tagged PrPC was correctly posttranslationally processed and translocated to the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号