首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
5-HT2A receptors have been implicated in the pathophysiology of mood disorders and in the therapeutic effect of the so-called atypical antipsychotics. Recently, a new radioiodinated ligand with high affinity and selectivity for serotonin 5-HT2A receptors, 123iodinated 4-amino-N-1-[3-(4-fluorophenoxy)propyl]-4-methyl-4-piperidinyl] 5-iodo-2-methoxybenzamide (123I-5-I-R91150), has been developed and has been shown to be suitable for single-photon emission tomography (SPET) imaging. In this study the influence of age and gender on the ligand binding was investigated in normal volunteers. One hundred and fifty MBq of 123I-5-I-R91150 was administered to 26 normal volunteers (13 females and 13 males) with an age range of 23–60 years. SPET imaging was performed with a triple-headed gamma camera. For semi-quantitative analysis, ratios of ligand binding in different regions of interest to the binding in the cerebellum were calculated. Mean ratios of 1.7 were obtained. No gender difference was demonstrated. 5-HT2A binding was shown to decline with age. Over an age range of 40 years a reduction in ligand binding of 42%±7% was found. These results are in agreement with in vitro and positron emission tomography findings of a decline in 5-HT2A receptor binding with age. The findings confirm the suitability of 123I-5-I-R91150 for SPET imaging of 5-HT2A receptors, and highlight the necessity for age-matched controls in clinical studies. Received 21 March and in revised form 18 August 1998  相似文献   

2.
There is increasing interest in mapping receptors in vivo by using functional imaging modalities such as single photon emission tomography (SPET) and positron emission tomography (PET). Since SPET is a more accessible functional imaging modality than PET and, overall, it is more economical, radioligands suitable for this technique are in greater demand. Recently, 123I-5-I-R91150, a radioligand with high selectivity and affinity for 5-HT(2A) receptors in the brain, was introduced for SPET. This study reports on the whole-body distribution and brain uptake of the selective 123I-5-I-R91150 ligand in four normal dogs. The frontal to cerebellar ratio of uptake in time was determined in three dogs. Time-activity curve of venous blood was determined in one dog. Maximal global brain uptake was found at 10-60 min post-injection. Higher brain uptake was noted in the frontal cortical areas compared to the cerebellum. The frontal-cerebellar ratio reached the highest values at 90-180 min. Reversibility and pharmacological selectivity of ligand binding was demonstrated through displacement and blocking studies with the 5-HT(2A) receptor antagonist ketanserin. This study demonstrates that the specific 5-HT(2A) iodinated ligand can be used for imaging and semi-quantification of the 5-HT(2A) receptors in the canine brain in vivo by using SPET.  相似文献   

3.
Studies of serotonin metabolites in body fluids in attempted suicide patients and of post-mortem brain tissue of suicide victims have demonstrated the involvement of the serotonergic neurotransmission system in the pathogenesis of suicidal behaviour. Recently developed neuroimaging techniques offer the unique possibility of investigating in vivo the functional characteristics of this system. In this study the 5-HT2a receptor population of patients who had recently attempted suicide was studied by means of the highly specific radio-iodinated 5-HT2a receptor antagonist 4-amino-N-[1-[3-(4-fluorophenoxy)propyl]-4-methyl-4-piperidinyl]-5-iodo-2-methoxybenzamide or 123I-5-I-R91150. Nine patients who had recently (1-7 days) attempted suicide and 12 age-matched healthy controls received an intravenous injection of 185 MBq 123I-5-I-R91150 and were scanned with high-resolution brain single-photon emission tomography (SPET). Stereotactic realigned images were analysed semi-quantitatively using predefined volumes of interest. Serotonin binding capacity was expressed as the ratio of specific to non-specific activity. The cerebellum was used as a measure of non-specific activity. An age-dependent 5-HT2a binding index was found, in agreement with previous literature. Deliberate self-harm patients had a significantly reduced mean frontal binding index after correction for age (P=0.002) when compared with controls. The reduction was more pronounced among deliberate self-injury patients (DSI) (P<0.001) than among deliberate self-poisoning patients (DSP). Frontal binding index was significantly lower in DSI patients than in DSP suicide attempters (P<0.001). It is concluded that brain SPET of the 5-HT2a serotonin receptor system in attempted suicide patients who are free of drugs influencing the serotonergic system shows in vivo evidence of a decreased frontal binding index of the 5-HT2a receptor, indicating a decrease in the number and/or in the binding affinity of 5-HT2a receptors.  相似文献   

4.
Single-photon emission tomography (SPET) and positron emission tomography (PET), when coupled to suitable radioligands, are uniquely powerful for investigating the status of neurotransmitter receptors in vivo. The serotonin subtype-4 (5-HT4) receptor has discrete and very similar distributions in rodent and primate brain. This receptor population may play a role in normal cognition and memory and is perhaps perturbed in some neuropsychiatric disorders. SB 207710 [(1-butyl-4-piperidinylmethyl)-8-amino-7-iodo-1,4-benzodioxan-5-carboxylate] is a selective high-affinity antagonist at 5-HT4 receptors. We explored radioiodinated SB 207710 as a possible radioligand for imaging 5-HT4 receptors in vivo. Rats were injected intravenously with iodine-125 labelled SB 207710, euthanised at known times and dissected to establish radioactivity content in brain tissues. Radioactivity entered brain but cleared rapidly and to a high extent from blood and plasma. Between 45 and 75 min after injection, the ratios of radioactivity concentration in each of 12 selected brain tissues to that in receptor-poor cerebellum correlated with previous measures of 5-HT4 receptor density distribution in vitro. The highest ratio was about 3.4 in striatum. SB 207710 was labelled with iodine-123 by an iododestannylation procedure. A cynomolgus monkey was injected intravenously with [123I]SB 207710 and examined by SPET. Maximal whole brain uptake of radioactivity was 2.3% of the injected dose at 18 min after radioligand injection. Brain images acquired between 9 and 90 min showed high radioactivity uptake in 5-HT4 receptor-rich regions, such as striatum, and low uptake in receptor-poor cerebellum. At 169 min the ratio of radioactivity concentration in striatum to that in cerebellum was 4.0. In a second SPET experiment, the cynomolgus monkey was pretreated with a selective 5-HT4 receptor antagonist, SB 204070, at 20 min before [123I]SB 207710 injection. Radioactivity in all brain regions was reduced almost to the level in cerebellum by 176 min after radioligand injection. These findings show that [123I]SB 207710 is an effective radioligand for imaging brain 5-HT4 receptors in vivo.For preliminary accounts of this work, see Pike VW et al., J Nucl Med 1998; 39 (Suppl):185; Eur J Nucl Med 1999; 26:991.  相似文献   

5.
Purpose Involvement of the serotonergic system in impulsive aggression has been demonstrated in both human and animal studies. The purpose of the present study was to investigate the effect of citalopram hydrobromide (a selective serotonin re-uptake inhibitor) on the 5-HT2A receptor and brain perfusion in impulsive–aggressive dogs by means of single-photon emission computed tomography.Methods The binding index of the radioligand 123I-5-I-R91150 was measured before and after treatment with citalopram hydrobromide in nine impulsive–aggressive dogs. Regional perfusion was measured with 99mTc-ethyl cysteinate dimer (ECD). Behaviour was assessed before treatment and again after 6 weeks of treatment.Results A correlation was found between decreased binding and behavioural improvement in eight out of nine dogs. The 5-HT2A receptor binding index was significantly reduced after citalopram hydrobromide treatment in all cortical regions but not in the subcortical area. None of the dogs displayed alterations in perfusion on the post-treatment scans.Conclusion This study supports previous findings regarding the involvement of the serotonergic system in impulsive aggression in dogs in general. More specifically, the effect of treatment on the 5-HT2A receptor binding index could be demonstrated and the decreased binding index correlated with behavioural improvement.  相似文献   

6.
Studies of serotonin metabolites in body fluids in attempted suicide patients and of post-mortem brain tissue of suicide victims have demonstrated the involvement of the serotonergic neurotransmission system in the pathogenesis of suicidal behaviour. Recently developed neuroimaging techniques offer the unique possibility of investigating in vivo the functional characteristics of this system. In this study the 5-HT2a receptor population of patients who had recently attempted suicide was studied by means of the highly specific radio-iodinated 5-HT2a receptor antagonist 4-amino-N-[1-[3-(4-fluorophenoxy) propyl]-4-methyl-4-piperidinyl]-5-iodo-2-methoxybenzamide or 123I-5-I-R91150. Nine patients who had recently (1-7 days) attempted suicide and 12 age-matched healthy controls received an intravenous injection of 185 MBq 123I-5-I-R91150 and were scanned with high-resolution brain single-photon emission tomography (SPET). Stereotactic realigned images were analysed semi-quantitatively using predefined volumes of interest. Serotonin binding capacity was expressed as the ratio of specific to non-specific activity. The cerebellum was used as a measure of non-specific activity. An age-dependent 5-HT2a binding index was found, in agreement with previous literature. Deliberate self-harm patients had a significantly reduced mean frontal binding index after correction for age (P=0.002) when compared with controls. The reduction was more pronounced among deliberate self-injury patients (DSI) (P<0.001) than among deliberate self-poisoning patients (DSP). Frontal binding index was significantly lower in DSI patients than in DSP suicide attempters (P<0.001). It is concluded that brain SPET of the 5-HT2a serotonin receptor system in attempted suicide patients who are free of drugs influencing the serotonergic system shows in vivo evidence of a decreased frontal binding index of the 5-HT2a receptor, indicating a decrease in the number and/or in the binding affinity of 5-HT2a receptors.  相似文献   

7.
Introduction[123I]-(4-fluorophenyl)[1-(3-iodophenethyl)piperidin-4-yl]methanone ([123I]-3-I-CO) is a potential single photon emission computed tomography tracer with high affinity for the serotonin 5-HT2A receptor (Ki=0.51 nM) and good selectivity over other receptor (sub)types. To determine the potential of the radioligand as a 5-HT2A tracer, regional brain biodistribution and displacement studies will be performed. The influence of P-glycoprotein blocking on the brain uptake of the radioligand will also be investigated.MethodsA regional brain biodistribution study and a displacement study with ketanserin were performed with [123I]-3-I-CO. Also, the influence of cyclosporin A (50 mg/kg) on the brain distribution of the radioligand was investigated. For the displacement study, ketanserin (1 mg/kg) was administered 30 min after injection of [123I]-3-I-CO.ResultsThe initial brain uptake of [123I]-3-I-CO was quite high, but a rapid wash-out of radioactivity was observed. Cortex-to-cerebellum binding index ratios were low (1.1 – 1.7), indicating considerable aspecific binding and a low specific ‘signal’ of the radioligand. Tracer uptake was reduced to the levels in cerebellum (a 60% reduction) after ketanserin displacement. Administration of cyclosporin A resulted in a doubling of the brain radioactivity concentration.ConclusionsAlthough [123I]-3-I-CO showed adequate brain uptake and could be displaced by ketanserin, high aspecific binding to brain tissue was responsible for very low cortex-to-cerebellum binding index ratios, possibly limiting the potential of the radioligand as a serotonin 5-HT2A receptor tracer. We also demonstrated that [123I]-3-I-CO is probably a weak substrate for the P-glycoprotein efflux transporter.  相似文献   

8.
Purpose  Pretreatment with cyclosporine, a P-glycoprotein (P-gp) modulator increases brain uptake of 4-(2'-methoxyphenyl)-1-[2'-(N-2"-pyridinyl)-p-[18F]fluorobenzamido]ethylpiperazine ([18F]MPPF) for binding to hydroxytryptamine1A (5-HT1A) receptors. Those increases were quantified in rat brain with in vivo microPET and ex vivo tissue studies. Materials and methods  Each Sprague–Dawley rat (n = 4) received a baseline [18F]MPPF microPET scan followed by second scan 2–3 weeks later that included cyclosporine pretreatment (50 mg/kg, i.p.). Maximum a posteriori reconstructed images and volumetric ROIs were used to generate dynamic radioactivity concentration measurements for hippocampus, striatum, and cerebellum, with simplified reference tissue method (SRTM) analysis. Western blots were used to semiquantify P-gp regional distribution in brain. Results  MicroPET studies showed that hippocampus uptake of [18F]MPPF was increased after cyclosporine; ex vivo studies showed similar increases in hippocampus and frontal cortex at 30 min, and for heart and kidney at 2.5 and 5 min, without concomitant increases in [18F]MPPF plasma concentration. P-gp content in cerebellum was twofold higher than in hippocampus or frontal cortex. Conclusions  These studies confirm and extend prior ex vivo results (J. Passchier, et al., Eur J Pharmacol, 2000) that showed [18F]MPPF as a substrate for P-gp. Our microPET results showed that P-gp modulation of [18F]MPPF binding to 5-HT1A receptors can be imaged in rat hippocampus. The heterogeneous brain distribution of P-gp appeared to invalidate the use of cerebellum as a nonspecific reference region for SRTM modeling. Regional quantitation of P-gp may be necessary for accurate PET assessment of 5-HT1A receptor density when based on tracer uptake sensitive to P-gp modulation.  相似文献   

9.
 [carbonyl-11C]Desmethyl-WAY-100635 (DWAY) is possibly a low-level metabolite appearing in plasma after intravenous administration of [carbonyl-11C]WAY-100635 to human subjects for positron emission tomographic (PET) imaging of brain 5-HT1A receptors. In this study we set out to assess the ability of DWAY to enter brain in vivo and to elucidate its possible interaction with 5-HT1A receptors. Desmethyl-WAY-100635 was labelled efficiently with carbon-11 (t 1/2 = 20.4 min) in high specific radioactivity by reaction of its descyclohexanecarbonyl analogue with [carbonyl-11C]cyclohexanecarbonyl chloride. The product was separated in high radiochemical purity by high-performance liquid chromatography (HPLC) and formulated for intravenous injection. Rats were injected intravenously with DWAY, sacrificed at known times and dissected to establish radioactivity content in brain tissues. At 60 min after injection, the ratios of radioactivity concentration in each brain region to that in cerebellum correlated with previous in vitro and in vivo measures of 5-HT1A receptor density. The highest ratio was about 22 in hippocampus. Radioactivity cleared rapidly from plasma; HPLC analysis revealed that DWAY represented 55% of the radioactivity in plasma at 5 min and 33% at 30 min. Only polar radioactive metabolites were detected. Subsequently, a cynomolgus monkey was injected intravenously with DWAY and examined by PET. Maximal whole brain uptake of radioactivity was 5.7% of the administered dose at 5 min after injection. The image acquired between 9 and 90 min showed high radioactivity uptake in brain regions rich in 5-HT1A receptors (e.g. frontal cortex and neocortex), moderate uptake in raphe nuclei and low uptake in cerebellum. A transient equilibrium was achieved in cortical regions at about 60 min, when the ratio of radioactivity concentration in frontal cortex to that in cerebellum reached 6. The corresponding ratio for raphe nuclei was about 3. Radioactive metabolites appeared rapidly in plasma, but these were all more polar than DWAY, which represented 52% of the radioactivity in plasma at 4 min and 20% at 55 min. In a second PET experiment, in which a cynomolgus monkey was pretreated with the selective 5-HT1A receptor antagonist, WAY-100635, at 25 min before DWAY injection, radioactivity in all brain regions was reduced to that in cerebellum. Autoradiography of post mortem human brain cryosections after incubation with DWAY successfully delineated 5-HT1A receptor distribution. Receptor-specific binding was eliminated in the presence of the selective 5-HT1A receptor agonist, 8-OH-DPAT [(±)-8-hydroxy-2-dipropylaminotetralin]. These findings show that: (a) intravenously administered DWAY is well able to penetrate brain in rat and monkey, (b) DWAY is a highly effective radioligand for brain 5-HT1A receptors in rat and monkey in vivo and for human brain in vitro, and (c) the metabolism and kinetics of DWAY appear favourable to successful biomathematical modelling of acquired PET data. Thus, DWAY warrants further evaluation as a radioligand for PET studies of 5-HT1A receptors in human brain. Received 1 October and in revised form 12 December 1997  相似文献   

10.
Indirect estimations of brain neurotransmitters in patients with anorexia nervosa (AN) and low weight have demonstrated a reduction in brain serotonin (5-HT) turnover in general and led to hypotheses about dysfunction in the 5-HT(2a) receptor system. It was our aim to investigate the central 5-HT(2a) receptor binding index using SPECT brain imaging. METHODS: The 5-HT(2a) receptors of low-weight patients with AN were studied by means of the highly specific radioiodinated 5-HT(2a) receptor antagonist 4-amino-N-[1-[3-(4-fluorophenoxy)propyl]-4-methyl-4-piperidinyl]-5-iodo-2-methoxybenzamide or (123)I-5-I-R91150. Fifteen patients with clinical diagnoses of AN and 11 age-matched healthy volunteers received intravenous injections of 185 MBq (123)I-5-I-R91150 and were scanned with high-resolution brain SPECT. RESULTS: Compared with healthy volunteers, patients with AN had a significantly reduced 5-HT(2a) binding index in the left frontal cortex, the left and right parietal cortex, and the left and right occipital cortex. A significant left-right asymmetry was noted in the frontal cortex (left < right). CONCLUSION: These results are in accordance with diminished metabolic and perfusion of frontal and parietal cortices reported in recent neuroimaging studies and imply localized disturbed serotonergic function. The data are discussed in the light of possible confounding factors related to the low-weight AN status. A regional cortical reduction in 5-HT(2a) binding index is not likely to be caused by a general reduction in serotonergic function due to the possible confounding factors. Suggestions for further research are given.  相似文献   

11.
The purpose of this research is to find optimal acquisition time point of [18F]FCWAY PET for the assessment of serotonin 1A receptor (5-HT1A) density. To achieve this goal, we examined the specific-to-nonspecific ratios in various brain regions. The cerebellum has very few 5-HT1A receptors in the brain, so we set this region as the reference tissue. As a result, specific-to-nonspecific binding ratios in the frontal, temporal cortex and the hippocampus were steadily increased at 90 min after injection and remained stable at 120 min. In addition, the binding ratio of the late time was significantly higher than that of the previous time points. From these results, we recommend that 90 min p.i. is a better single time point for the analysis rather than previous time points for assessing [18F]FCWAY binding to 5-HT1A receptors.  相似文献   

12.
A receptor mapping technique using iodine-123 iomazenil and single-photon emission tomography (SPET) was employed to examine benzodiazepine receptor binding in a patient with Angelman syndrome (AS). AS is characterized by developmental delay, seizures, inappropriate laughter and ataxic movement. In this entity there is a cytogenic deletion of the proximal long arm of chromosome 15g11–q13, where the gene encoding the GABAA receptor3 subunit (GABRB3) is located. Since the benzodiazepine receptor is constructed as a receptor-ionophore complex that contains the GABAA receptor, it is a suitable marker for GABA-ergic synapsis. To determine whether benzodiazepine receptor density, which indirectly indicates changes in GABAA receptor density, is altered in the brain in patients with AS, we investigated a 27-year-old woman with AS using123I-iomazenil and SPET. Receptor density was quantitatively assessed by measuring the binding potential using a simplified method. Regional cerebral blood flow was also measured withN-isopropyl-p-[123I]iodoamphetamine. We demonstrated that benzodiazepine receptor density is severely decreased in the cerebellum, and mildly decreased in the frontal and temporal cortices and basal ganglia, a result which is considered to indicate decreased GABAA receptor density in these regions. Although the deletion of GABRB3 was not observed in the present study, we indirectly demonstrated the disturbance of inhibitory neurotransmission mediated by the GABAA receptor in the investigated patient.123I-iomazenil with SPET was useful to map benzodiazepine receptors, which indicate GABAA receptor distribution and their density.  相似文献   

13.
IntroductionThe 5-HT2A receptor is one of the most interesting targets within the serotonergic system because it is involved in a number of important physiological processes and diseases.Methods[18F]MH.MZ, a 5-HT2A antagonistic receptor ligand, is labeled by 18F-fluoroalkylation of the corresponding desmethyl analogue MDL 105725 with 2-[18F]fluoroethyltosylate ([18F]FETos). In vitro binding experiments were performed to test selectivity toward a broad spectrum of neuroreceptors by radioligand binding assays. Moreover, first micro-positron emission tomography (μPET) experiments, ex vivo organ biodistribution, blood cell and protein binding and brain metabolism studies of [18F]MH.MZ were carried out in rats.Results[18F]MH.MZ showed a Ki of 3 nM toward the 5-HT2A receptor and no appreciable affinity for a variety of receptors and transporters. Ex vivo biodistribution as well as μPET showed highest brain uptake at ~5 min p.i. and steady state after ~30 min p.i. While [18F]MH.MZ undergoes extensive first-pass metabolism which significantly reduces its bioavailability, it is insignificantly metabolized within the brain. The binding potential in the rat frontal cortex is 1.45, whereas the cortex to cerebellum ratio was determined to be 2.7 after ~30 min.ConclusionResults from μPET measurements of [18F]MH.MZ are in no way inferior to data known for [11C]MDL 100907 at least in rats. [18F]MH.MZ appears to be a highly potent and selective serotonergic PET ligand in small animals.  相似文献   

14.

Purpose

Positron emission tomography (PET) imaging of serotonin 2A (5-HT2A) receptors with agonist tracers holds promise for the selective labelling of 5-HT2A receptors in their high-affinity state. We have previously validated [11C]Cimbi-5 and found that it is a 5-HT2A receptor agonist PET tracer. In an attempt to further optimize the target-to-background binding ratio, we modified the chemical structure of the phenethylamine backbone and carbon-11 labelling site of [11C]Cimbi-5 in different ways. Here, we present the in vivo validation of nine novel 5-HT2A receptor agonist PET tracers in the pig brain.

Methods

Each radiotracer was injected intravenously into anaesthetized Danish Landrace pigs, and the pigs were subsequently scanned for 90?min in a high-resolution research tomography scanner. To evaluate 5-HT2A receptor binding, cortical nondisplaceable binding potentials (BPND) were calculated using the simplified reference tissue model with the cerebellum as a reference region.

Results

After intravenous injection, all compounds entered the brain and distributed preferentially into the cortical areas, in accordance with the known 5-HT2A receptor distribution. The largest target-to-background binding ratio was found for [11C]Cimbi-36 which also had a high brain uptake compared to its analogues. The cortical binding of [11C]Cimbi-36 was decreased by pretreatment with ketanserin, supporting 5-HT2A receptor selectivity in vivo. [11C]Cimbi-82 and [11C]Cimbi-21 showed lower cortical BPND, while [11C]Cimbi-27, [11C]Cimbi-29, [11C]Cimbi-31 and [11C]Cimbi-88 gave rise to cortical BPND similar to that of [11C]Cimbi-5.

Conclusion

[11C]Cimbi-36 is currently the most promising candidate for investigation of 5-HT2A receptor agonist binding in the living human brain with PET.  相似文献   

15.
A series of 99mTcO[SN(R)S][S] complexes carrying the 1-(2-methoxyphenyl)piperazine moiety on the tridentate ligand [SN(R)S] was synthesized. For structural characterization and for in vitro binding assays the analogous oxorhenium complexes were prepared. As demonstrated by appropriate competition binding tests in rat hippocampal preparations, all oxorhenium analogues showed affinity for the 5-HT1A receptor binding sites with IC50 values at the nanomolar range (IC50= 5.8–103 nM). All 99mTcO[SN(R)S]/[S] complexes showed significant brain uptake in rats at 2 min p.i. (0.24–1.31% ID). However, a clear correlation between distribution of radioactivity in the brain and distribution of 5-HT1A receptors could not be established.  相似文献   

16.
Purpose Serotonin1A (5-HT1A) receptors exist in high- and low-affinity states, and agonist ligands bind preferentially to the high-affinity state of the receptor and provide a measure of functional 5-HT1A receptors. Although the antagonist tracers are established PET ligands in clinical studies, a successful 5-HT1A receptor agonist radiotracer in living brain has not been reported. [11C]MPT, our first-generation agonist radiotracer, shows in vivo specificity in baboons; however, its utility is limited owing to slow washout and immeasurable plasma free fraction. Hence we performed structure-activity relationship studies of MPT to optimize a radiotracer that will permit valid quantification of 5-HT1A receptor binding. We now report the synthesis and evaluation of [11C]MMP as an agonist PET tracer for 5-HT1A receptors in baboons. Methods In vitro binding assays were performed in bovine hippocampal membranes and membranes of CHO cells expressing 5-HT1A receptors. [11C] labeling of MMP was performed by reacting desmethyl-MMP with [11C]CH3OTf. In vivo studies were performed in baboons, and blocking studies were conducted by pretreatment with 5-HT1A receptor ligands WAY-100635 and (±)-8-OH-DPAT. Results MMP is a selective 5-HT1A receptor agonist (K i 0.15 nM). Radiosynthesis of [11C]MMP was achieved in 30 ± 5% (n = 15) yield at EOS with a specific activity of 2,600 ± 500 Ci/mmol (n = 12). PET studies in baboons demonstrated specific binding of [11C]MMP to 5-HT1A receptor-enriched brain regions, as confirmed by blockade with WAY-100635 and (±)-8-OH-DPAT. Conclusion We identified [11C]MMP as an optimal agonist PET tracer that shows quantifiable, specific binding in vivo to 5-HT1A receptors in baboons.  相似文献   

17.
In psychiatric disorders, 5-HT2A receptors play an important role. In order to study these receptors in vivo by positron emission tomography (PET), there is an increasing interest for subtype selective and high affinity radioligands. Up to now, no optimal radiotracer is available. Thus, 1-(2,4-difluorophenethyl)-4-(4-fluorophenylsulfonyl)piperidine (9), possessing high affinity and sufficient subtype selectivity for 5-HT2A receptors, and 1-(2,4-difluorophenethyl)-4-(4-fluorophenylsulfinyl)piperidine (15) have been 18F-labelled by a nucleophilic one-step reaction. Both radiotracers could be prepared and isolated within 45 min, [18F]9 in a radiochemical yield (RCY) of 34.5±8% and [18F]15 of 9.5±2.5%. The Ki values of 9 and 15 at 5-HT2A receptors towards [3H]ketanserin were determined to be 1.9±0.6 and 198±8 nM, respectively. Autoradiography with [18F]9 and [18F]15 on rat brain sections showed a very high nonspecific binding of >80% for [18F]9 and 30% to 40% nonspecific binding for [18F]15; however, it is still too high in order to compensate for its lower affinity. Even though the affinity of 9 is more promising compared with 15, the high nonspecific binding of both radiofluorinated tracers in rat brain does not recommend those as an in vivo PET imaging agent for serotonin 5-HT2A receptors in humans.  相似文献   

18.
Z-(R)-1-Azabicyclo[2.2.2]oct-3-yl (R)-α-hydroxy-α-(1-iodo-1-propen-3-yl)-α-phenylacetate (Z-IQNP) has high affinity to the M1 and M2 muscarinic acetylcholine receptor (mAChR) subtypes according to previous in vitro and in vivo studies in rats. In the present study iodine-123 labelled Z-IQNP was prepared for in vivo single-photon emission tomography (SPET) studies in cynomolgus monkeys. SPET studies with Z-[123I]IQNP demonstrated high accumulation in monkey brain (>5% of injected dose at 70 min p.i.) and marked accumulation in brain regions such as the thalamus, the neocortex, the striatum and the cerebellum. Pretreatment with the non-selective mAChR antagonist scopolamine (0.2 mg/kg) inhibited Z-[123I]IQNP binding in all these regions. The percentage of unchanged Z-[123I]IQNP measured in plasma was less than 10% at 10 min after injection, which may be due to rapid hydrolysis, as has been demonstrated previously with the E-isomer of IQNP. Z-[123I]IQNP showed higher uptake in M2-rich regions, compared with previously obtained results with E-[123I]IQNP. In conclusion, the radioactivity distribution from Z-[123I]IQNP in monkey brain indicates that Z-[123I]IQNP binds to the M1- and M2-rich areas and provides a high signal for specific binding, and is thus a potential ligand for mAChR imaging with SPET. Received 18 February and in revised form 15 July 1999  相似文献   

19.
As part of the radioiodinated 4-amino-N-1-[3-(4-fluorophenoxy)propyl]-4-methyl-4-piperidinyl]5-iodo-2-methoxybenzamide ((123)I-R91150) characterization study, ketanserin challenges were performed on healthy volunteers with the aim of assessing the specificity of (123)I-R91150 binding to subtype 2A of the 5-hydroxytryptamine receptor (5-HT(2A)), the sensitivity of (123)I-R91150 SPECT in measuring ligand displacement, the relationship between ketanserin plasma concentrations and (123)I-R91150 displacement, and the suitability of the cerebellum as a reference region for quantification. METHODS: Dynamic SPECT was performed on 6 healthy men (mean age +/- SD, 21 +/- 0.89 y) from the time of (123)I-R91150 injection until 470 min afterward. Ketanserin was administered intravenously at 210 min after injection at 3 doses: 0.1 mg/kg (n = 2), 0.05 mg/kg (n = 2), and 0.015 mg/kg (n = 2). Blood samples for measurement of ketanserin plasma concentrations were drawn. MRI was performed on all subjects and coregistered to the SPECT data for region-of-interest drawing on cortical regions and cerebellum. The simplified reference tissue model (SRTM) was considered the gold standard for quantification, and results were compared with those obtained with the tissue ratio method (TR). The percentage (123)I-R91150 displacement was calculated with both methods as the percentage difference between baseline and postketanserin scans. RESULTS: Depending on the cerebral regions with the maximum ketanserin dose studied, SRTM and TR mean displacements were 57.1%-95.4% and 71.9%-101.2%, respectively, for the 0.1 mg/kg dose; 51.7%-91.4% and 56.7%-102.8%, respectively, for the 0.05 mg/kg dose; and 7.7%-54.5% and 13.8%-47.0%, respectively, for the lowest dose, 0.015 mg/kg. A good correlation was found between the 2 methods. No ketanserin-induced displacement was observed in the cerebellum time-activity curves, supporting the use of the cerebellum as a reference region. The relationship between displacement and ketanserin plasma concentration fit with a rectangular hyperbola, with a 5.6 ng/mL concentration associated with 50% of the maximum displacement (EC(50)). EC(50) values calculated using occupancies derived both with SRTM and with TR were in good agreement. CONCLUSION: (123)I-R91150 SPECT is sensitive enough to measure ketanserin dose-dependent displacement in cerebral regions rich in 5-HT(2A) receptors. These results support the selectivity of (123)I-R91150 for 5-HT(2A) receptors and its use as a SPECT ligand for measurements of drug-induced 5-HT(2A) receptor occupancy in humans.  相似文献   

20.
Iodine-123 labelled epidepride is a novel radiopharmaceutical for the study of cerebral dopamine D2 receptors using single-photon emission tomography (SPET). A lipophilic labelled metabolite of [123I]epidepride which may enter the brain and hamper the quantitation of receptors has been observed in human plasma. In the present study, gradient high-performance liquid chromatography (HPLC) was used to investigate the plasma concentration of the lipophilic labelled metabolite and its correlation to SPET imaging of striatal dopamine D2 receptors. A linear regression fit showed a negative correlation between the amount of the lipophilic labelled metabolite and the striatum to cerebellum ratio (n=16, R=–0.58, P<0.02), suggesting that plasma metabolite analysis is essential when imaging dopamine D2 receptors with SPET using [123I]epidepride. Received 6 September and in revised form 21 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号