首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The effect of dipyridamole (DYP) on postischemic myocardial function and metabolism was studied using the isolated rabbit heart model. Twenty-one isolated rabbit heart preparations were divided into two groups: KH (control N = 10) were reperfused after 24 min normothermic hyperkalemic arrest with modified Krebs-Henseleit buffer (KH) while DYP (N = 11) were reperfused with KH and 5 X 10(-6) M DYP. Hearts were analyzed for myocardial function (DP, developed pressure, +dp/dt, -dp/dt) and metabolic function (ATP, CrP, ADP, AMP, purines, and lactate levels). Data analysis revealed significant reperfusion depression in DYP myocardial function compared with KH (P less than 0.05): DP (42 +/- 6 vs 89 +/- 7 mm Hg), +dp/dt (390 +/- 21.6 vs 1227 +/- 48.4), and -dp/dt (280 +/- 20.1 vs 677 +/- 19.8). Comparison of DYP to KH metabolic parameters was also significantly different (P less than 0.05): ATP (5.8 +/- 0.7 vs 9.5 +/- 1.4), ADP (2.1 +/- 0.2 vs 3.2 +/- 0.6), CrP (9.6 +/- 0.3 vs 17.2 +/- 1.3). Tissue purines (adenosine and inosine) were significantly elevated (P less than 0.01) in the DYP group, while coronary sinus purines and lactate loss were similar. Thus, the data suggest that DYP, present during postischemic reperfusion, depresses myocardial function by inhibiting adenosine phosphorylation, thereby decreasing the generation of high-energy phosphates without increased substrate loss or ischemia.  相似文献   

2.
T L Demmy  J A Magovern  R L Kao  G J Magovern 《The Annals of thoracic surgery》1991,52(5):1044-50; discussion 1050-1
Recovery of energy metabolism and contractility in stunned myocardium requires several days, even when mechanical circulatory support is employed. This double-blind study was undertaken to determine if myocardial recovery could be accelerated by intracoronary infusion of adenosine during reperfusion. Ten mongrel dogs were subjected to 45 minutes of global normothermic ischemia while on biventricular support with centrifugal pumps. During initial reperfusion, 20 minutes later, and at hourly intervals for 4 hours, dogs received 100 mL/min of unaltered blood or blood enriched with adenosine (0.2 mmol/L) into the coronary arteries for 5 minutes. Circulatory support was discontinued after 4 hours or sooner if the first time derivative of left ventricular pressure exceeded 2,000 mm Hg/s. Animals that received adenosine were weaned sooner (72 +/- 27 versus 216 +/- 54 minutes) and had higher systolic pressure (110 +/- 21 versus 57 +/- 36 mm Hg), lower left ventricular end-diastolic pressure (23.8 +/- 4.8 versus 34.0 +/- 7.2 mm Hg), and higher first time derivative of left ventricular pressure (3,407 +/- 812 versus 1,510 +/- 1376 mm Hg/s) than controls at the completion of the experiment (p less than 0.05). Final myocardium adenosine triphosphate levels were higher in the adenosine group (20.0 +/- 3.6 versus 14.2 +/- 4.0 mumol/g protein; p less than 0.05). Determination of infusion and coronary sinus blood concentrations demonstrated a 90% uptake of adenosine. All adenosine animals survived, but 2 of 5 control animals died within 1 hour of weaning. Reperfusion with adenosine-enriched blood accelerated recovery of ischemic myocardium and should be considered for patients requiring mechanical circulatory support after a heart operation.  相似文献   

3.
Hypothermia combined with pharmacologic cardioplegia protects the globally ischemic adult heart, but this benefit may not extend to children, resulting in poor postischemic recovery of function and increased mortality. The relative susceptibilities to ischemia modified by hypothermia alone and by hypothermia plus cardioplegia were assessed in isolated perfused neonatal (3- to 4-day-old) rabbit and pig hearts. Hearts were perfused aerobically with Krebs buffer solution in the working mode for 30 minutes and aortic flow was recorded. This was followed by 3 minutes of hypothermic (14 degrees C) coronary perfusion with either Krebs or St. Thomas' Hospital cardioplegic solution No. 2 followed by hypothermic (14 degrees C) global ischemia (rabbits 2, 4, and 6 hours; pigs 2 and 4 hours). Hearts were reperfused for 15 minutes in the Langendorff mode and 30 minutes in the working mode, and recovery of postischemic aortic flow was measured. Hypothermia alone provided excellent protection of the ischemic neonatal rabbit heart, with recovery of aortic flow after 2 and 4 hours of ischemia at 91% +/- 4% and 87% +/- 5% (mean +/- standard deviation) of its preischemic value. Recovery after 6 hours of ischemia was depressed to 58% +/- 9% of its preischemic value. Ischemic neonatal pig hearts protected with hypothermia alone recovered 94% +/- 3% of preischemic aortic flow after 2 hours; none was able to generate flow after 4 hours. St. Thomas' Hospital solution No. 2 decreased postischemic aortic flow after 4 hours of ischemia in rabbit hearts from 87% +/- 5% to 70% +/- 7% (p less than 0.05, hypothermia alone versus hypothermia plus cardioplegia) but improved postischemic recovery of aortic flow in pig hearts after 4 hours of ischemia from 0 to 73% +/- 13% (p less than 0.0001, hypothermia alone versus hypothermia plus cardioplegia). This effect was dose related in both species. We conclude that the neonatal pig heart is more susceptible to ischemia modified by hypothermia alone than the neonatal rabbit and that St. Thomas' Hospital solution No. 2 improves postischemic recovery of function in the neonatal pig but decreases it in the neonatal rabbit. This species-dependent protection of the neonatal heart may be related to differences in the extent of myocardial maturity at the time of study.  相似文献   

4.
Previous studies have shown the capacity of low-pressure (LP) reperfusion to protect the ischemic heart. The present study sought to determine the optimal time for the application of LP reperfusion. Isolated rat hearts (n = 30) were exposed to 40 minutes of global warm ischemia followed by 70 minutes of reperfusion. Reperfusion was performed under LP (LP = 70 cm H(2)O) for 0 (control group), 5 (group LP-5), 10 (group LP-10), 30 (group LP-30), or 60 (group LP-60) minutes. Following the LP period the hearts were reperfused with normal pressure (100 cm H(2)O) until the end of reperfusion. Cardiac function was assessed during reperfusion using the Langendorff model. Myocardial necrosis was assessed by measuring LDH leakage in the coronary effluents. Functional recovery was reduced among the control and LP-5 groups with rate-pressure products (RPP) averaging 3788 +/- 499 and 5333 +/- 892 mm Hg/min, respectively. RPP was significantly improved in other groups with RPP averaging 7363 +/- 1159, 7441 +/- 863, and 7269 +/- 692 mm Hg/min in LP-10, LP-30, and LP-60 (P < .01). Similarly, necrosis measured by LDH leakage was significantly reduced in LP-10, LP-30, and LP-60 hearts (P < .01). This study demonstrated that LP reperfusion improves postischemic contractile dysfunction and attenuates necrosis when applied for at least 10 minutes.  相似文献   

5.
Experiments were designed to determine whether endothelial cell injury contributes to increased coronary vascular tone after global cardiac ischemia and reperfusion. Canine hearts were exposed to global ischemia for 45 minutes and were reperfused for 60 minutes. Rings (5 to 6 mm long) of the left anterior descending coronary artery from reperfused hearts and from normal (control) hearts were suspended for isometric force measurement in organ chambers containing physiologic salt solution (37 degrees C, and 95% oxygen and 5% carbon dioxide). After contraction with prostaglandin F2 alpha, reperfused coronary arteries had significant impairment of endothelium-dependent relaxations to aggregating platelets (52% +/- 12% relaxation versus 102% +/- 11% for control segments; p less than 0.05). Reperfused arterial rings also exhibited impaired endothelium-dependent relaxations to the receptor-dependent agonist acetylcholine and the platelet-derived compounds adenosine diphosphate and serotonin. Importantly, endothelium-dependent relaxations to the non-receptor-dependent agonist A23187 were normal after ischemia and reperfusion. Quiescent (noncontracted) reperfused arterial rings lost the ability to counteract the constrictive effect of aggregating platelets on the coronary vascular smooth muscle (24% +/- 7% contraction versus 5% +/- 2% relaxation for control segments; p less than 0.05). Endothelium-independent contractions to potassium chloride and prostaglandin F2 alpha were similar in reperfused and normal arteries. Also, endothelium-independent relaxations to nitric oxide and isoproterenol were comparable in reperfused arteries and normal vessels. Thus global cardiac ischemia and reperfusion impair the normal endothelium-dependent relaxations to aggregating platelets and other receptor-dependent vasoactive drugs. This impairment of platelet-mediated coronary vasodilation may explain increased coronary vascular tone after cardiopulmonary bypass and could be an important pathophysiologic mechanism of postoperative coronary vasospasm.  相似文献   

6.
Hypothermia combined with pharmacologic cardioplegia protects the globally ischemic adult heart, but this benefit may not extend to children; poor postischemic recovery of function and increased mortality may result when this method of myocardial protection is used in children. The relative susceptibilities to ischemia-induced injury modified by hypothermia alone and by hypothermia plus cardioplegia were assessed in isolated perfused immature (7- to 10-day-old) and mature (6- to 24-month-old) rabbit hearts. Hearts were perfused aerobically with Krebs-Henseleit buffer in the working mode for 30 minutes, and aortic flow was recorded. This was followed by 3 minutes of hypothermic (14 degrees C) coronary perfusion with either Krebs or St. Thomas' Hospital cardioplegic solution No. 2, followed by hypothermic (14 degrees C) global ischemia (mature hearts 2 and 4 hours; immature hearts 2, 4, and 6 hours). Hearts were reperfused for 15 minutes in the Langendorff mode and 30 minutes in the working mode, and recovery of postischemic function was measured. Hypothermia alone provided excellent protection of the ischemic immature rabbit heart, with recovery of aortic flow after 2 and 4 hours of ischemia at 97% +/- 3% and 93% +/- 4% (mean +/- standard deviation) of the preischemic value. Mature hearts protected with hypothermia alone recovered only minimally, with 22% +/- 16% recovery of preischemic aortic flow after 2 hours; none were able to generate flow at 4 hours. St. Thomas' Hospital solution No. 2 improved postischemic recovery of aortic flow after 2 hours of ischemia in mature hearts from 22% +/- 16% to 65% +/- 6% (p less than 0.05), but actually decreased postischemic aortic flow in immature hearts from 97% +/- 3% to 86% +/- 10% (p less than 0.05). To investigate any dose-dependency of this effect, we subjected hearts from both age groups to reperfusion with either Krebs solution or St. Thomas' Hospital solution No. 2 for 3 minutes every 30 minutes throughout a 2-hour period of ischemia. Reexposure to Krebs solution during ischemia did not affect postischemic function in either age group. Reexposure of immature hearts to St. Thomas' Hospital solution No. 2 caused a decremental loss of postischemic function in contrast to incremental protection with multidose cardioplegia in the mature heart. We conclude that immature rabbit hearts are significantly more tolerant of ischemic injury than mature rabbit hearts and that, unexpectedly, St. Thomas' Hospital solution No. 2 damages immature rabbit hearts.  相似文献   

7.
The effect of the calcium and oxygen contents of a hyperkalemic glucose-containing cardioplegic solution on myocardial preservation was examined in the isolated working rat heart. The cardioplegic solution was delivered at 4 degrees C every 15 minutes during 2 hours of arrest, maintaining a myocardial temperature of 8 degrees +/- 2 degrees C. Hearts were reperfused in the Langendorff mode for 15 minutes and then resumed the working mode for a further 30 minutes. Groups of hearts were given the oxygenated cardioplegic solution containing an ionized calcium concentration of 0, 0.25, 0.75, or 1.25 mmol/L or the same solution nitrogenated to reduce the oxygen content and containing 0 or 0.75 mmol ionized calcium per liter. The myocardial adenosine triphosphate concentrations at the end of arrest in these six groups of hearts were 15.6 +/- 1.2, 9.5 +/- 0.5, 8.2 +/- 1.1, 4.9 +/- 1.8, 10.1 +/- 2.0, and 1.6 +/- 0.4 nmol/mg dry weight, respectively. At 5 minutes of working reperfusion, the percentages of prearrest aortic flow were 80 +/- 2, 62 +/- 4, 33 +/- 6, 37 +/- 5, 48 +/- 7 and 46 +/- 8, respectively. The differences among the groups in adenosine triphosphate concentrations and in functional recovery diminished during reperfusion. In hearts given the hypoxic calcium-containing solution, there was a marked increase in coronary vascular resistance during the administration of successive doses of cardioplegic solution, which was rapidly reversible upon reperfusion. These data indicate that hearts given the acalcemic oxygenated solution had better adenosine triphosphate preservation during arrest and better functional recovery than hearts in any other group. Addition of calcium to the oxygenated cardioplegic solution decreased adenosine triphosphate preservation and functional recovery. Oxygenation of the acalcemic solution increased adenosine triphosphate preservation and functional recovery. The lowest adenosine triphosphate levels at end arrest were observed in hearts given the hypoxic calcium-containing solution. In the setting of hypothermia and multidose administration, the addition of calcium to a cardioplegic solution resulted in increased energy depletion during arrest and depressed recovery.  相似文献   

8.
Potassium (34 mEq/L) cardioplegia was induced with cold blood (CBK) in three groups of six dogs undergoing 60 minutes of myocardial ischemia at a systemic temperature of 27 degrees +/- 2 degrees and a myocardial temperature of 7 degrees +/- 2 degrees C (crushed ice). Group 1 (CBK) animals were reperfused initially with 400 ml cold blood over 8 to 10 minutes at increasing pressures of up to 75 mm Hg. Group II (CBK-K) dogs were reperfused in the same manner as Group I with the addition of potassium chloride, 30 mEq/L. In Group III (CBKG-KG) glutathione, 30 mg/100 ml, was added to both the pre- and postischemic perfusions with CBK. After 30 minutes of reperfusion control studies were repeated. Heart rate, peak systolic pressure, rate of rise of left ventricular pressure, maximum velocity of contractile element, pressure-volume curves, coronary flow distribution, muscle stiffness, and heart water were not significantly different from control values. Total coronary flow and myocardial uptake of oxygen, lactate, and pyruvate did not serve to separate the three groups; the same was true for right ventricular creatine phosphate, adenosine triphosphate, and adenosine diphosphate during ischemia and recovery. Ultrastructural myofibrillar lesions were noted in all groups. thus, postischemic cardioplegia and use of a physiological reducing agent do not enhance CBK cardioplegia with topical and systemic hypothermia.  相似文献   

9.
The effect of reperfusion coronary vasodilatation on postischemic myocardial mechanical function has been investigated in the isolated working rat heart. After a working period to assess control function, all the hearts were subjected to a single infusion (10 ml) of St. Thomas' Hospital cardioplegic solution No. 1 at 4 degrees C and were kept immersed in the same solution for 4 hours at 4 degrees C. Then hearts (six in each group) were initially reperfused at 37 degrees C for 10 minutes, either with ordinary reperfusate (Krebs-Henseleit bicarbonate buffer) or with reperfusate containing additional coronary dilator. After this period, all hearts were subjected to a further 5 minutes of ordinary reperfusate before being put back into the working mode to assess functional recovery. Mean reperfusion coronary flows and the steady coronary flow measured after 10 minutes of reperfusion in ml/min +/- SEM were--Krebs (control): 17.4 +/- 0.39 and 13.4 +/- 0.40; adenosine (3.75 mumol/L): 19.9 +/- 0.6 and 16.7 +/- 0.8; papaverine (0.05 mmol/L): 21.8 +/- 2.3 and 17.3 +/- 1.8; dipyridamole (2 mmol/L): 20.7 +/- 1.7 and 17.9 +/- 1.0; nitroglycerin (15 mg/L): 20.5 +/- 0.45 and 19.9 +/- 1.4; diltiazem (0.05 mmol/L): 19.6 +/- 2.98 and 17.7 +/- 1.8; calcitonin gene-related peptide (0.03 mmol/L): 20.8 +/- 0.69 and 18.0 +/- 1.3; 5-hydroxytryptamine (0.01 mmol/L): 19.2 +/- 0.53 and 16.9 +/- 0.80. Mean postischemic recovery of cardiac output, peak aortic pressure, and differentiation of pressure were expressed as percent of preischemic control +/- SEM were--Krebs: 54.1 +/- 2.8, 69.1 +/- 2.8, and 53.9 +/- 3.0; adenosine: 78.0 +/- 5.6, 89.5 +/- 2.9, and 69.1 +/- 1.9; papaverine: 81.8 +/- 3.9, 91.8 +/- 3.1, and 71.0 +/- 4.1; dipyrdamole: 67.3 +/- 3.3, 84.3 +/- 2.3, and 75.0 +/- 2.7; nitroglycerin: 83.1 +/- 4.8, 79.7 +/- 2.7, and 69.0 +/- 0.5; diltiazem: 76.5 +/- 3.7, 85.9 +/- 2.9, and 73.3 +/- 1.7; calcitonin gene-related peptide: 79.5 +/- 3.6, 90.0 +/- 4.9, and 75.4 +/- 3.9; 5-hydroxytryptamine: 71.6 +/- 3.2, 85.5 +/- 3.5, and 67.9 +/- 4.8. There was a positive correlation between mean reperfusion coronary flow, steady coronary flow, and postischemic recovery of cardiac output, peak aortic pressure, and differentiation of pressure. Mean reperfusion coronary flow, steady coronary flow, and postischemic recovery of cardiac output, peak aortic pressure, and differentiation of pressure were significantly greater in groups reperfused with vasodilators (p < 0.05) compared with control values.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
BACKGROUND: Prolonged ischemia and inadequate myocardial preservation remain significant perioperative risk factors in cardiac transplantation. Long-term preservation techniques that have been effective in small rodent hearts have not been as effective in larger animal models or in clinical studies. We developed a cardioplegia solution formulated to promote high-energy phosphate production from glycolysis and determined its efficacy in a blood perfused canine heart model subjected to 24 hours of ischemia. METHODS: Hearts harvested from adult dogs (n = 6 per group) were flushed with a histidine-buffered cardioplegia solution containing glucose or University of Wisconsin solution. The hearts were maintained at 4 degrees C for 24 hours then reperfused with autologous blood. After reperfusion, left ventricular pressures were measured with an intracavitary balloon at varying balloon volumes and compared with control nonischemic hearts. Predicted stroke volume and ejection fraction were calculated at an end-systolic pressure of 70 mm Hg and end-diastolic pressure of 15 mm Hg. RESULTS: Developed pressure was better preserved in the hearts that received histidine-buffered solution (93+/-9 versus 38+/-7 mm Hg, p<0.05), along with a higher end-diastolic volume at 15 mm Hg (31+/-3 versus 22+/-2 mL histidine-buffered versus University of Wisconsin solutions, respectively, p<0.05). Stroke volume and ejection fraction were also higher in the histidine group (17+/-2.5 versus 2.3+/-1.2 mL and 50%+/-3.5% versus 9% +/-4.5%, respectively) in the presence of dobutamine. CONCLUSIONS: The highly buffered glycolysis-promoting cardioplegia solution provided effective preservation of the blood perfused canine heart with superior recovery of pump performance after 24 hours of hypothermic ischemia compared with University of Wisconsin solution in this model.  相似文献   

11.
BACKGROUND: We hypothesized that the use of aprotinin would ameliorate the reperfusion injury observed after lung transplantation because of a reduction in the inflammatory response. METHODS: We used an isolated, whole blood-perfused, ventilated rabbit lung model to study the effects of aprotinin during reperfusion. The control animals (group A, n = 8) underwent lung harvest after pulmonary arterial prostaglandin E1 injection and Euro-Collins preservation flush before saline storage for 18 hours at 4 degrees C. The experimental groups received either a low dose (3,000 KIU/mL; group B, n = 8) or a high dose (10,000 KIU/mL; group C, n = 8) of aprotinin added to the pulmonary flush before storage. Each lung was reperfused at 37 degrees C at a rate of 60 mL/min. RESULTS: The arterial partial pressure of oxygen values of group B (low-dose aprotinin) were significantly higher than those of group A (control) after 10 minutes of reperfusion (69.19 +/- 5.69 mm Hg versus 264.30 +/- 48.59 mm Hg, respectively, p = 0.001). Similar results were recorded at 20 and at 30 minutes of reperfusion. Similarly, after 10 minutes of reperfusion, the differences between groups A and C were 69.19 +/- 5.69 mm Hg versus 235.91 +/- 28.63 mm Hg, respectively (p = 0.001). CONCLUSIONS: The addition of aprotinin to the Euro-Collins pulmonary flush significantly improves arterial oxygenation in the early reperfusion period. The enhanced oxygenation suggests that aprotinin may offer protection against early reperfusion injury.  相似文献   

12.
BACKGROUND: Myocardial content of the 70-kd heat shock protein has been found to correlate with improved cardiac recovery after ischemia, but the mechanisms and conditions that regulate its level, particularly under clinical conditions, are unclear. The aim of this study was to assess the effect of hypothermic cardioplegic arrest and reperfusion on the expression of 70-kd heat shock protein in a protocol mimicking conditions of preservation for cardiac transplantation. METHODS: Heat-shocked and control hearts were subjected to 4 hours of cardioplegic arrest and global ischemia at 4 degrees C and then to 20 minutes of reperfusion. Hearts were freeze clamped at different time points-after 15 minutes of Langendorff perfusion, at the end of ischemia, and after 20 minutes of reperfusion, and analyzed for heat shock protein 70 content by Western blotting. Another set of hearts was subjected to 10 minutes of normothermic ischemia and 20 minutes of reperfusion followed by freeze clamping and analysis of heat shock protein 70 content as in cardioplegic arrest protocol. Cardiac function was measured by means of a left ventricular balloon at the end of reperfusion. RESULTS: Preischemic concentration of 70-kd heat shock protein was increased in heat-shocked hearts compared with control hearts. The content of 70-kd heat shock protein in heat-shocked hearts was further increased from 5.0 +/- 2.4 ng/microg at the end of ischemia to 11.0 +/- 4.9 ng/microg (n = 8, mean +/- SD; P <.05) at 20 minutes of reperfusion after cold cardioplegic arrest. No further rise in 70-kd heat shock protein of the heat-shocked hearts was observed after normothermic ischemia. Maximal developed pressure was 120.8 +/- 13.4 mm Hg in control hearts compared with 164.7 +/- 22.5 mm Hg in heat-shocked hearts (n = 5, mean +/- SD; P =.037) after cardioplegic arrest. By contrast, after normothermic ischemia, maximum developed pressure was 111.2 +/- 10.9 mm Hg in control hearts compared with 139.2 +/- 11.0 mm Hg in heat-shocked hearts (n = 4, mean +/- SD; P =.031). CONCLUSION: Hypothermic cardioplegic arrest but not short normothermic ischemia triggered a further increase in the level of 70-kd heat shock protein in heat-shocked rat hearts, which may enhance endogenous cardiac protection.  相似文献   

13.
This study tests the hypothesis that reperfusion injury is the principal cause of limb loss after acute arterial occlusion and that this injury is avoidable. Of 61 isolated hindlimbs amputated at the level of the hip joint, 17 were controls (group I), 5 were perfused without ischemia to establish the validity of the model (group II), and 15 underwent 4 hours of ischemia at room temperature without reperfusion (group III). Acute embolectomy was simulated in 24 limbs after 4 hours of ischemia; 12 were reperfused with standard Krebs-Henseleit solution at 100 mm Hg (group IV), and 12 were reperfused under controlled conditions (i.e., 37 degrees C, 50 mm Hg) with substrate-enriched modified reperfusate (group V). Leg volume, water content, contractile function, and high-energy phosphate content were assessed and data were expressed as mean +/- SD. Four hours of ischemia caused a profound fall in adenosine triphosphate content (4.0 vs 26.0 mmol/L/gm of protein, p less than or equal to 0.001). Uncontrolled reperfusion resulted in severe reperfusion injury; massive edema developed (83% vs 75%, p less than or equal to 0.01), leg volume increased markedly (21.5% above control, p less than or equal to 0.001), and no contractile function followed electrical stimulation. In contrast, controlled reperfusion resulted in normal water content (76.9% vs 75.0%, NS) and minimal change of leg volume (5.5% +/- 5% of control, NS), replenished adenosine triphosphate completely (24.2 vs 26.4 mmol/L/gm of protein, NS), and restored immediate contractile function in all limbs (24.3% +/- 14% of control). This study shows that 4 hours of room-temperature ischemia (18 degrees C) does not produce irreversible damage of the rat hindlimb because the reperfusion injury that follows uncontrolled reperfusion can be avoided. Immediate recovery of contractile function can be restored if the conditions of reperfusion are controlled by gentle reperfusion pressure (50 mm Hg) at 37 degrees C and if a modified substrate-enriched, hyperosmotic, alkalotic, low-Ca++ reperfusate is administered.  相似文献   

14.
Prolonged normothermic ischemia in the canine model is generally fatal with standard resuscitative techniques. To determine whether such myocardial injury is recoverable with biventricular support, we subjected 10 dogs to 45 minutes of ischemia at 37 degrees C. After ischemia, the animals were supported for 24 hours with biventricular assist with the centrifugal pump. During early reperfusion, none of the hearts could sustain a stable rhythm or blood pressure. Myocardial adenosine triphosphate concentration, expressed as micromoles per gram of heart protein, was dramatically reduced from a control of 31.5 +/- 2.4 to 14.6 +/- 2.9 (p less than 0.01 versus control), a 54% reduction. Ultrastructural analysis did not reveal the explosive cell swelling of irreversible cell injury. After 12 hours of biventricular assist, developed pressure partially recovered to 60.0 +/- 10 mm Hg (p less than 0.01 versus control) and maximal positive dP/dt measured 2,649 +/- 412 mm Hg/sec (p less than 0.01 versus control). Adenosine triphosphate concentration increased to 25.2 +/- 5.5 (p less than 0.01 versus control). Electron microscopic examination showed less chromatin clumping, no further mitochondrial distortion, and more abundant glycogen. After 24 hours of biventricular assist, cardiac output in the seven dogs successfully weaned from biventricular assist measured 3.6 +/- 0.6 L/min, developed pressure recovered to 76.3 +/- 8.9 mm Hg, and its first derivative recovered to 4,282 +/- 585 mm Hg/sec (all measurements not significant compared with control). Examination by an electron microscope revealed no severe mitochondrial injury.  相似文献   

15.
We used the isolated perfused working rat heart to investigate the effects of transient hypocalcemic reperfusion after cardioplegic arrest with the St. Thomas' Hospital cardioplegic solution and 25 minutes of global normothermic (37 degrees C) ischemia. Hearts were reperfused (Langendorff mode) transiently (20 minutes) with solutions containing various concentrations of calcium; this was followed by 30 minutes of reperfusion with standard (1.4 mmol/L, the physiologic concentration) calcium buffer (10 minutes in the Langendorff mode and 20 minutes in the working mode). Recovery of cardiac output in control hearts (calcium concentration 1.4 mmol/L throughout) was 51.7% +/- 4.6%; in hearts transiently reperfused with hypocalcemic buffer (0.25, 0.5, 0.75, or 1.0 mmol/L) the recoveries of cardiac output were 49.3% +/- 6.4%, 52.2% +/- 7.2%, 58.7% +/- 3.2%, and 47.2 +/- 4.7%, respectively (all not significant), whereas recovery was only 14.7% +/- 2.8% (p less than 0.05) in hearts transiently reperfused with calcium 0.1 mmol/L. Creatine kinase leakage was significantly (p less than 0.05) greater in the group reperfused with calcium 0.1 mmol/L, but it did not vary significantly between the other groups. Tissue high-energy phosphate content was similar and in the normal range in all groups except for the group reperfused with calcium 0.1 mmol/L. In further experiments, the duration of hypocalcemic (0.5 mmol/L) reperfusion was varied (0, 5, 10, 15, 20, or 30 minutes). No significant differences in recovery of cardiac output were observed (58.2% +/- 5.0%, 52.3% +/- 5.7%, 52.0% +/- 8.2%, 61.2% +/- 5.0%, 62.2% +/- 4.3%, and 66.2% +/- 3.2%, respectively). In additional studies, the standard calcium concentration (1.4 mmol/L) used before and after ischemia was replaced by hypercalcemic solution (2.5 mmol/L). Despite this, transient (10 minutes) hypocalcemic (0.5 mmol/L) reperfusion did not improve recovery. Finally, studies were undertaken with a longer duration of ischemia (40 minutes), and although recovery of cardiac output in the hypocalcemic group (0.5 mmol/L for 10 minutes) tended to be higher than in the control group (29.7% +/- 4.8% versus 18.5% +/- 4.9%, respectively), statistical significance was not achieved. We conclude that in these studies transient hypocalcemic reperfusion did not afford any additional protection over and above that afforded by cardioplegia alone.  相似文献   

16.
Open-chest sheep underwent 90 minutes' occlusion of the diagonal branch of the left anterior descending coronary artery, followed by vented cardiopulmonary bypass. After 30 minutes of cardioplegic arrest, simulating distal anastomoses, the occlusion on the coronary artery branch was released. Controlled reperfusion (40 to 50 mm Hg, 135 to 150 ml/min) for the first 20 minutes was delivered at the aortic root with either unmodified whole blood (control, n = 7) or blood passed through leukocyte filters (filters, n = 7). Serial measurements were made during 3 additional hours reperfusion off cardiopulmonary bypass. During ischemia, the major determinants of infarct size, which include area at risk, collateral myocardial blood flow, and rate-pressure product were not significantly different between groups. Overall, during reperfusion, mean left ventricular stroke work index in the filter group was greater than in the control group (28.7 +/- 5.8 versus 12.6 +/- 6.4 x 10(3) erg/gm, p less than 0.05), as was mean rate of rise of left ventricular pressure (1900 +/- 260 versus 1348 +/- 279 mm Hg/sec, p less than 0.05). Myocardial blood flow to the area at risk at 3 1/2 hours of reperfusion in the filter group was also significantly better than in the control group (0.57 +/- 0.15 versus 0.27 +/- 0.05 ml/min/gm, p less than 0.05), as was necrotic area as a percentage of area at risk (40% +/- 6% versus 70% +/- 5%, p less than 0.05). These results demonstrate amelioration of myocardial stunning and the no-reflow phenomenon, as well as decreased infarct size. We conclude that controlled reperfusion with leukocyte-depleted blood is superior to whole-blood reperfusion for the surgical treatment of acute regional ischemia.  相似文献   

17.
The purpose of this study was to (1) relate myocardial high-energy phosphate stores to functional recovery after ischemia and reperfusion, (2) assess the bioenergetics and functional influence of clinically relevant myocardial hypothermia, and (3) examine tissue pH as an independent indicator of postischemic recovery of function. Rabbit hearts were perfused via a modified Langendorff technique, monitored for developed pressure (DP) and left ventricular end-diastolic pressure (LVEDP) via an isovolumic left ventricular balloon catheter, and placed in a Brucker NMR magnet (4.7 tesla) to measure phosphocreatine (PCr), adenosine triphosphate (ATP), and pH. Hearts underwent 1 hour of global ischemia at 7 degrees, 17 degrees, 27 degrees and 37 degrees C initiated by one dose of K+ cardioplegia followed by 30 minutes of reperfusion. After reperfusion, DP (expressed as a percentage of preischemic control) and LVEDP (mm Hg) in 7 degrees and 17 degrees C hearts were no different (96 + 5% vs 97 +/- 3%; 5 +/- 2 mm Hg vs 6 +/- 2 mm Hg; p = NS), but were better (p less than 0.01) than 27 degree hearts (72 +/- 6%, 17 +/- 6 mm Hg) and 37 degree hearts (31 +/- 7%, 60 +/- 6 mm Hg). PCr was severely depleted in all groups. ATP was 90 +/- 7% and 87 +/- 5% of preischemic control in the 7 degree and 17 degree hearts, which was significantly better than the 68 +/- 3% and 21 +/- 3% in the 27 degree and 37 degree groups (p less than 0.01). The pH at end ischemia was 6.83, 6.89, 6.54, and 5.86 for the 7 degree, 17 degree, 27 degree, and 37 degree hearts, respectively (7 degrees vs 27 degrees or 37 degrees, p less than 0.01; 17 degrees vs 27 degrees or 37 degrees, p less than 0.01). Linear regression of DP on end-ischemic ATP (EIATP) and end-ischemic pH revealed: DP = 0.96 (EIATP) + 20 (r = 0.92) and DP = 60 (pH) -317 (r = 0.86). We conclude that (1) end-ischemic ATP predicts recovery of ventricular function, and, furthermore, there appears a threshold ATP concentration (80% of control) below which full recovery of function will not occur; (2) end-ischemic pH predicts recovery of ventricular function; (3) 7 degrees C hypothermic ischemia does not cause a clinically significant cold injury; and (4) in a single-dose crystalloid cardioplegia model, end-ischemic pH is linearly related to recovery of function (r = 0.86).  相似文献   

18.
The possibility of differences between crystalloid-perfused and blood-perfused hearts in their vulnerability to ischemia and responsiveness to protective interventions has been investigated in isolated rabbit hearts perfused with bicarbonate buffer or arterial blood. In preliminary studies with 165 minutes of aerobic perfusion at constant perfusion pressure (55 +/- 3 mm Hg), the stability of left ventricular developed pressure was significantly better in blood-perfused hearts. In subsequent studies, hearts were subjected to 20 minutes of aerobic perfusion (coronary flow, 2.0 +/- 0.3 ml/min/gm wet weight in blood-perfused hearts versus 11.3 +/- 3.0 ml/min/gm wet weight in crystalloid-perfused hearts; left ventricular developed pressure, 90 +/- 4 and 91 +/- 2 mm Hg, respectively) followed by 30, 45, 60, 75, 90, or 105 minutes of normothermic global ischemia and 40 minutes of reperfusion (n = 4 per group). In the buffer-perfused groups the postischemic recoveries of left ventricular developed pressure were 74% +/- 6%, 45% +/- 7%, 39% +/- 6% 32%, +/- 5%, 27% +/- 4%, and 12% +/- 3% of preischemic control, respectively. In blood-perfused groups they were consistently greater (91% +/- 3%, 55% +/- 5%, 46% +/- 5%, 45% +/- 1%, 33% +/- 2%, and 19% +/- 3%, respectively). In further studies, hearts (n = 5 per group) were perfused with buffer (groups 1 and 2) or blood (groups 3 and 4), and each was subjected to 60 minutes of normothermic global ischemia, with (groups 2 and 4) or without (groups 1 and 3) a 3-minute preischemic infusion of St. Thomas' Hospital cardioplegic solution. After 60 minutes of reperfusion, the postischemic recoveries of left ventricular developed pressure in groups 1, 2, 3, and 4 were 32% +/- 3%, 44% +/- 4%, 43% +/- 7%, and 72% +/- 6%, respectively, with coronary flow recovering to 64% +/- 7%, 82% +/- 4%, 82% +/- 4%, and 110% +/- 5%, respectively. Left ventricular end-diastolic pressures were 20 +/- 5, 24 +/- 7, 15 +/- 4, and 4 +/- 3 mm Hg, and tissue water contents were 4.76 +/- 0.11, 4.87 +/- 0.55, 3.93 +/- 0.05, and 3.68 +/- 0.02 ml/gm dry weight, respectively. In conclusion, compared with crystalloid perfusion, the blood-perfused rabbit heart has a greater resistance to ischemia, a superior response to cardioplegic protection, and a lower tissue water content.  相似文献   

19.
This study tests the hypothesis that aspartate enrichment of glutamate-blood cardioplegia improves metabolic and functional recovery after ischemic and reperfusion damage. Ischemic and reperfusion damage were produced in 15 dogs by 45 minutes of aortic clamping at 37 degrees C and 5 minutes of blood reperfusion, before 2 more hours of aortic clamping (simulated operation). Six received multidose blood cardioplegia at 4 degrees C. In nine others, the cardioplegic solution was infused at 37 degrees C for the first 5 minutes, followed by multidose infusions at 4 degrees C. Four received 26 mmol glutamate-enriched cardioplegic solution. In five, the glutamate (13 mmol) cardioplegic solution was enriched with aspartate (13 mmol). Oxygen uptake and ventricular function (stroke work index, left atrial pressure) were measured. These data suggest aspartate enrichment produced the highest oxygen uptake (32 +/- 4 versus 17 +/- 2 ml/100 gm for glutamate and 7 +/- 1 ml/100 gm for 4 degrees C blood cardioplegia). Complete functional recovery occurred in aspartate/glutamate-treated hearts (stroke work index 90% +/- 4%, left atrial pressure 12 +/- 2 mm Hg), whereas recovery was incomplete with both glutamate alone (stroke work index 66% +/- 14%, left atrial pressure 20 +/- 3 mm Hg) and 4 degrees C blood cardioplegia at low cardiac outputs. Eight of 10 hearts not receiving aspartate failed at high cardiac outputs. Aspartate enrichment of glutamate-blood cardioplegia improves recovery after severe ischemic/reperfusion damage by improving oxidative metabolism during cardioplegic infusion and during postischemic work.  相似文献   

20.
We have investigated the reported ability of aspartate to enhance greatly the cardioprotective properties of the St. Thomas' Hospital cardioplegic solution after prolonged hypothermic storage. Rat hearts (n = 8 per group) were excised and subjected to immediate arrest with St. Thomas' Hospital cardioplegic solution (2 minutes at 4 degrees C) with or without addition of monosodium aspartate (20 mmol/L). The hearts were then immersed in the same solution for 8 hours (4 degrees C) before heterotopic transplantation into the abdomen of homozygous rats and reperfusion in vivo for 24 hours. The hearts were then excised and perfused in the Langendorff mode (20 minutes). Addition of aspartate to St. Thomas' Hospital cardioplegic solution gave a small but significant improvement in left ventricular developed pressure, which recovered to 82 +/- 3 mm Hg compared with 70 +/- 2 mm Hg in control hearts (p less than 0.05). However, coronary flow and high-energy phosphate content were similar in both groups. In subsequent experiments hearts (n = 8 per group) were excised, arrested (2 minutes at 4 degrees C) with St. Thomas' Hospital cardioplegic solution containing a 0, 5, 10, 20, 30, 40, or 50 mmol/L concentration of aspartate, stored for 8 hours at 4 degrees C, and then reperfused for 35 minutes. A bell-shaped dose-response curve was obtained, with maximum recovery in the 20 mmol/L aspartate group (cardiac output, 48 +/- 5 ml/min versus 32 +/- 5 ml/min in the aspartate-free control group; p less than 0.05). However, additional experiments showed that a comparable improvement could be achieved simply by increasing the sodium concentration of St. Thomas' Hospital cardioplegic solution by 20 mmol/L. Similarly, if sodium aspartate (20 mmol/L) was added and the sodium content of the St. Thomas' Hospital cardioplegic solution reduced by 20 mmol/L, no significant protection was observed when recovery was compared with that of unmodified St. Thomas' Hospital cardioplegic solution alone. In still further studies, hearts (n = 8 per group) were perfused in the working mode at either high (greater than 80 ml/min) or low (less than 50 ml/min) left atrial filling rates. Under these conditions, if functional recovery was expressed as a percentage of preischemic function, artifactually high recoveries could be obtained in the low-filling-rate group. In conclusion, assessment of the protective properties of organic additives to cardioplegic solutions requires careful consideration of (1) the consequences of coincident changes in ionic composition and (2) the characteristics of the model used for assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号