首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple growth factors contribute to the differentiation of dendritic and axonal processes by a neuron. Cultured hippocampal cells elaborate dendritic and axonal processes following well-defined steps. We used this culture system to determine the specific effects of brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4) on dendritic and axonal differentiation in hippocampal pyramidal neurons. We demonstrated that each of these neurotrophins exert distinct effects on neurite outgrowth. Both BDNF and NT-3 had positive effects on the outgrowth of undifferentiated neurites, called minor neurites, and on the axonal process of hippocampal pyramidal neurons. However, the effect of NT-3 was more important than that of BDNF. On the other hand, NT-4 did not enhance axonal outgrowth but had only an effect on the outgrowth of minor neurites. Since cytoskeletal proteins play crucial roles in promoting neurite outgrowth, we examined the protein levels of some of these proteins that are associated with neurite outgrowth: beta-actin, gamma-actin, alpha-tubulin, MAP2 and tau. Surprisingly, we did not detect any change in their protein levels. Taken together, our results show that BDNF, NT-3 and NT-4 exert distinct effects on the neuritic compartments of hippocampal neurons.  相似文献   

2.
Glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) mRNA levels were studied in the course of murine herpes simplex virus encephalitis. Induction of GNDF and NT-3 (both P < 0.05) was found during acute encephalitis. Despite absence of clinical impairment, both neurotrophic factors were overexpressed 2 months (NT-3) and 6 months (GDNF) following infection (both P < 0.05). Neurotrophic factors play an important role in neuronal survival and recovery after acute injury to the central nervous system (CNS) and may represent an additional therapeutic target for treatment of viral encephalitis.  相似文献   

3.
Neurotrophins have profound effects on the development and maintenance of neurons that compose the VIIIth cranial nerve. In the auditory division of the nerve, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) have been localized to the sensory epithelium, and their respective high-affinity tyrosine kinase receptors (TrkB and TrkC) are expressed within the neuronal population. By using a culture methodology that allows evaluation of single neurons, we determined that BDNF and neurotrophin-4 (NT-4), which both bind to the TrkB high-affinity receptor, greatly enhanced neuron survival above control cultures. NT-3, which acts via the TrkC high-affinity receptor, also increased survival, but to a lesser extent. By testing a variety of neurotrophin concentrations and combinations, we observed that simultaneous activation of the TrkB and TrkC receptors synergistically promoted neuron survival compared to cultures that contained either neurotrophin alone at the same total concentration. Antibody labeling showed that the high-affinity Trk receptors were localized predominantly to the neurons and not to the surrounding satellite cells; furthermore, TrkB- and TrkC-specific antibodies each labeled 100% of the cultured neurons. These results suggest that synergistic interactions between BDNF and NT-3 may be crucial for spiral ganglion neuron survival during the final stages of development. J. Comp. Neurol. 386:529–539, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
The neurotrophins, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), neurotrophin 4/5 (NT-4/5) and nerve growth factor (NGF), were compared for their effects on the survival and differentiation of embryonic rat striatal neurons grown in low-density cultures. Treatment with BDNF for 8 days resulted in a 40% increase in overall neuronal survival, a 3- to 5-fold increase in the number of calbindin-immunoreactive neurons, and an 80% increase in GABA-positive neurons. Treatment with NT-3 or NT-4/5 produced a 2- to 3-fold increase in the number of calbindin-positive neurons and an increase in GABA-positive cell number similar to that induced by BDNF. BDNF treatment produced a striking morphological differentiation of striatal GABAergic neurons, which was characterized by a doubling of the number of neurite branch points, the total area of arborization and the perikaryal area compared to control cultures. All three of these factors increased high-affinity GABA uptake 2-fold. NGF had no effect on any of the parameters examined. Our results show that BDNF, NT-3 and NT-4/5 promote the survival and/or differentiation of calbindin-immunopositive and GABAergic striatal neurons.  相似文献   

5.
Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) have been identified as survival factors for adult axotomized rat corticospinal neurons (CSN) in vivo. Axotomy of corticospinal neurons at the level of the internal capsule induced death of 46% of the CSN within the first week after axotomy. The surviving population of CSN displayed severe atrophy with mean cross-sectional area 49% of their unlesioned contralateral counterparts 7 days after axotomy. Using in situ hybridization to assess the expression of the receptors for the family of neurotrophins, we found trkB and trkC but not trkA mRNA expression in CSN. Intraparenchymal application of BDNF or NT-3 at doses of 12 μg/day for 7 days via an osmotic minipump fully prevented the axotomy-induced death of CSN. Interestingly, no neuronal atrophy was seen after BDNF application while NT-3 had only a partial effect on the size of the axotomized CSN. Nerve growth factor did not prevent death or cell atrophy, consistent with the lack of trkA mRNA expression in these neurons. These findings show that BDNF and NT-3 are survival factors for adult rat CSN in vivo , and may contribute to the development of therapeutic strategies aiming at the prevention of CSN degeneration in human motor neuron diseases.  相似文献   

6.
During development the viability of immature neurons may depend upon retrograde, anterograde, or paracrine trophic support. Using (125)I-labeled peptides we show that there is substantial and rapid anterograde transport of brain-derived neurotrophic factor (BDNF) and, to a lesser extent, neurotrophin-4/5 (NT-4/5) to central visual target areas in the neonatal rat brain. Six hours after unilateral intraocular injection, all retinorecipient regions in the thalamus and midbrain are heavily labeled. Intraocular application of physiologically relevant doses of neurotrophin has a marked effect on cells in the developing superior colliculus (SC): 24 h postinjection of BDNF or NT-4/5, the number of pyknotic profiles in the contralateral superficial SC significantly decreases, while total cell numbers increase relative to ipsilateral SC. This increase is primarily associated with neurons. The data support the hypothesis that BDNF and NT-4/5 are anterograde survival factors for postsynaptic cells in the developing rat SC.  相似文献   

7.
The recent molecular cloning of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) has established the existence of an NGF-related family of neurotrophic factors - the neurotrophins. Purification and recombinant production of BDNF and NT-3 has allowed the initiation or extension of in vitro studies of the neuronal specificity of each of these factors. We have found that NT-3, like NGF and BDNF, promotes survival and neurite outgrowth from certain populations of sensory neurons. There appear to be both distinct and overlapping specificities of the 3 neurotrophins towards peripheral neurons - sympathetic neurons and subpopulations of neural crest and neural placode-derived sensory neurons. Using cultures of central nervous system neurons, we have recently established that BDNF: (i) promotes the survival and phenotypic differentiation of rat septal cholinergic neurons, a property consistent with the discovery of high levels of BDNF mRNA expression within the hippocampus; (ii) promotes the survival of rat nigral dopaminergic neurons and furthermore protects these neurons from two dopaminergic neurotoxins, 6-hydroxydopamine (6-OHDA) and MPTP. Thus the neurotrophic effects of these factors towards peripheral neurons and neuronal populations known to degenerate in two of the major human neurodegenerative diseases - Alzheimer's and Parkinson's disease - provokes the question of whether neurotrophic factors may have therapeutic potential in halting the progression and ameliorating the symptoms of devastating neurological disorders of the CNS or PNS, or improving regeneration of neurons of CNS or PNS after traumatic injury.  相似文献   

8.
The neurotrophic factors brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) have been shown to promote excitatory and inhibitory synapse development. However, a quantitative analysis of their influence on connectivity has proven in general difficult to achieve. In this work we use a novel experimental approach based on percolation concepts that provides a quantification of the average number of connections per neuron. In combination with electrophysiological measurements, we characterize the changes in network connectivity induced by BDNF and NT-3 in rat hippocampal cultures. We show that, on the one hand, BDNF and NT-3 accelerate the maturation of connectivity in the network by about 17 h. On the other hand, BDNF and NT-3 increase the number of excitatory input connections by a factor of about two, but without modifying the number of inhibitory input connections. This scenario of a dominant effect on the excitation is supported by the analysis of spontaneous population bursts in cultures treated with either BDNF or NT-3, which show burst amplitudes that are insensitive to the blockade of inhibition. A leaky integrate-and-fire model reproduces the experimental results well.  相似文献   

9.
Hippocampal levels of mRNA encoding nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are rapidly induced by enhanced neuronal activity following seizures and glutamate or muscarinic receptor activation. However, the levels of neurotrophin-3 (NT-3) mRNA acutely decrease after limbic seizures suggesting that a different mode of regulation may exist for these neurotrophins. Here we show that BDNF and neurotrophin-4 (NT-4), but not NT-3 itself, up-regulate NT-3 mRNA in cultured hippocampal neurons. In the rat hippocampus, the muscarinic receptor agonist, pilocarpine increased BDNF mRNA levels rapidly and those of NT-3 with a delay of several hours. Injection of BDNF into neonatal rats elevated NT-3 mRNA in the hippocampus which demonstrates that BDNF is able to enhance NT-3 expression in vivo. The regulation of NT-3 by BDNF and NT-4 enlargens the neurotrophic spectrum of these neurotrophins to include neuron populations responsive primarily to NT-3.  相似文献   

10.
In the present investigation, we studied whether neurotrophin-3 (NT-3) contributes to the rescue of axotomized Clarke's nucleus (CN) neurons in adult rats. A significant (24%) loss of CN neurons occurred at L-1 ipsilateral to T-8 hemisection by 14 days, which reached 31% at 2 months and then stabilized. Axotomized CN neurons had also atrophied by 14 days, but mean cell size did not decrease further. Animals that received gelfoam soaked in nerve growth factor, brain derived neurotrophic factor, or ciliary neurotrophic factor at the lesion site also showed a 30% neuron loss at 2 months, and a 40% reduction in average cell area. Rats receiving NT-3 showed a 15% neuron loss, which was not improved by additional neurotrophins in combination with NT-3. None of the treatments prevented neuron atrophy. Bioassay of the gelfoam showed that NT-3 bioactivity remained at 5 days after surgery but not at 14 days. Additional rats with hemisections that received NT-3 continuously via mini-pump for 2 months showed a 15% neuron loss, the same as with NT-3 given via gelfoam. These results indicate that even limited exposure of axotomized CN neurons to NT-3 produces permanent rescue of 50% of the neurons. The virtually complete rescue that we had previously observed with transplants of fetal central nervous system (CNS) tissues may, therefore, be due at least in part to NT-3, but the exogenous administration of a single neurotrophic factor or a combination of neurotrophic factors is less effective than transplants in producing long-term survival of axotomized CNS neurons. J. Comp. Neurol. 390:102–111, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
Neurotrophins, including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3), are critical for the maintenance and plasticity of central nervous system (CNS) neurons. We tested the hypothesis that cortical neurons participate in redundant autocrine/paracrine systems. Three sets of studies determined the distribution of NGF-, BDNF-, and NT-3-expressing neurons, the frequency of neurons coexpressing NGF and BDNF, and the frequency of neurons expressing a neurotrophin and its associated high-affinity receptor. The distribution of NGF-, BDNF, and NT-3-immunoreactive neurons was identical. Neurotrophin-positive cells were parceled throughout the cortex, although the labeling frequency was not the same in all layers. More than 30% of the neurons in layers II/III, V, and VI were labeled, whereas only 5-10% of the neurons in layer IV was immunopositive for a neurotrophin. Some glia were also neurotrophin positive, particularly BDNF-positive glia. About 70% of the neurons in layers II/III and V coexpressed NGF and BDNF or coexpressed NGF and NT-3. Ligand-receptor colabeling was also common among cortical neurons. For example, nearly 70% of the NGF-, BDNF-, and NT-3-positive neurons in layer V colabeled with their respective high-affinity receptors, i.e., trkA, trkB, and trkC, respectively. Thus, (a) neurons express multiple neurotrophins and (b) cortical neurons (e.g., layer V neurons) contain the components required for autocrine/paracrine and/or anterograde communication (e.g., neurons in layer II/III support layer V neurons). These systems mean that the cortex is capable of regulating itself autonomously.  相似文献   

12.
IGF-1 and BDNF promote chick bulbospinal neurite outgrowth in vitro   总被引:2,自引:0,他引:2  
Injured neurons in the CNS do not experience significant functional regeneration and so spinal cord insult often results in permanently compromised locomotor ability. The capability of a severed axon to re-grow is thought to depend on numerous factors, one of which is the decreased availability of neurotrophic factors. Application of trophic factors to axotomized neurons has been shown to enhance survival and neurite outgrowth. Although brainstem-spinal connections play a pivotal role in motor dysfunction after spinal cord injury, relatively little is known about the trophic sensitivity of these populations. This study explores the response of bulbospinal populations to various trophic factors. Several growth factors were initially examined for potential trophic effects on the projection neurons of the brainstem. Brain derived neurotrophic factor (BDNF) and insulin-like growth factor (IGF-1) significantly enhance mean process length in both the vestibulospinal neurons and spinal projection neurons from the raphe nuclei. Nerve growth factor (NGF), neurotrophin-4 (NT-4) and glial derived neurotrophic factor (GDNF) did not effect process outgrowth in vestibulospinal neurons. At the developmental stages used in this study, it was determined that receptors for BDNF and IGF-1 were present both on bulbospinal neurons and on surrounding cells with a non-neuronal morphology.  相似文献   

13.
Although developing motor neurons express low-affinity nerve growth factor (NGF) receptors, there is no known biological effect of NGF on developing or adult motor neurons. In this study, we found that, unlike NGF, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4/5 (NT-4/5) stimulated cholinergic phenotype by increasing choline acetyltransferase (CAT) activity in cultures enriched with embryonic rat motor neurons. Ciliary neurotrophic factor (CNTF) also stimulated CAT activity. The effects of BDNF and NT-4/5 on CAT activity appeared to be synergistic with that of CNTF. Cotreatment with BDNF and NT-3 resulted in an additive effect, suggesting that signal transduction was mediated through different high-affinity receptors tyrosine kinases B and C (Trk B and Trk C). However, cotreatment with BDNF and NT-4/5 did not result in an increase in CAT activity greater than that of either BDNF or NT-4/5 alone, suggesting that their effects were mediated via the same receptor Trk B. Supporting our findings that spinal cholinergic neurons are responsive to trophic actions of members of the neurotrophin family, motor neuron-enriched cultures were found to express mRNA for Trk B and Trk C, which have been identified as high-affinity receptors for BDNF and NT-4/5, and NT-3, respectively.  相似文献   

14.
NT-3 and BDNF protect CNS neurons against metabolic/excitotoxic insults   总被引:28,自引:0,他引:28  
Bin Cheng  Mark P. Mattson   《Brain research》1994,640(1-2):56-67
Neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF) were recently shown to have biological activity in central neurons. In the present study, NT-3 and BDNF attenuated glucose deprivation-induced neuronal damage dose-dependently in rat hippocampal, septal and cortical cultures. Direct measurements of intraneuronal free calcium levels ([Ca2+]i) and manipulations of calcium inlux demonstrated that NT-3 and BDNF each prevented the elevation of [Ca2+]i that mediated glucose deprivation-induced injury. Studies in cultures depleted of glia indicateda direct action of NT-3 and BDNF on neurons. Neurons pretreated with NT-3 or BDNF for 24 hr were more resistant to glutamate neurotoxicity, and showed attenuated [Ca2+]i responses to glutamate. TrkB (BDNF receptor) and trkC (NT-3 receptor) proteins were present in hippocampal, cortical and septal cultures where they were localied to neuronal cell bodies and neurites. The data demonstrate that NT-3 and BDNF can protect neurons against metabolic and excitotoxic insults, and suggest that these neurotrophins may serve [Ca2+]i-stabilizing and neuroprotective functions in the brain.  相似文献   

15.
Neurotrophins are a group of structurally related polypeptides that support the survival, differentiation, and maintenance of neuronal populations that express the appropriate high-affinity neurotrophin receptors. Two members of the neurotrophin family, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), have been shown to increase the survival of dopaminergic neurons from the ventral midbrain in vitro. Evidence suggests that ventral midbrain neurons might be able to derive support from these trophic factors in vivo through paracrine or autocrine interactions. Both BDNF and NT-3 mRNAs and their receptor mRNAs, trkB and trkC mRNAs, respectively, have been localized to the ventral mesencephalon. However, the relative expression levels of the neurotrophins and their receptor mRNAs throughout ontogeny and in adulthood have not been elucidated. In the present study, the postnatal developmental expression of BDNF, NT-3, trkB, and trkC mRNAs was analyzed via in situ hybridization to gain insight into the possible roles of these factors in vivo. We found that there was a developmental decline in the expression of BDNF and NT-3 mRNAs in the ventral mesencephalon. In contrast, no alterations in the expression of midbrain trkB or trkC mRNAs could be discerned. The present results suggest a role for BDNF and NT-3 in the earlier postnatal developmental events of responsive populations. The continued, albeit lower, expression of the neurotrophins in the ventral mesencephalon in adulthood also suggests a role for these factors in mature neuronal systems.  相似文献   

16.
Following neurogenesis, motor neurons undergo a phase of large-scale neuronal loss. During this period, the motor neurons are responsive to specific trophic factors for their survival. Several neurotrophic factors, including the neurotrophins BDNF and NT-3, have survival effects although no single factor has been shown to support the survival of all motor neurons. It is unclear whether this is due to factor deprivation during the study or whether there are distinct neuronal subpopulations dependent on different factor requirements. In this study, we have used an expression system to supply a continuous source of BDNF and/or NT-3 to the developing motor neurons in the chick. Continuous supply of BDNF resulted in the survival of 40% of the motor neurons normally lost between embryonic day 6 and embryonic day 10, whereas NT-3 supported 36% of the motor neurons normally lost. In combination, BDNF and NT-3 supported 62% of the motor neurons normally lost indicating that there is some redundancy in neurotrophin requirements. Our results show that a continuous supply of neurotrophins is more effective in promoting motor neuron survival than intermittent administration, particularly for NT-3. However, even with continuous administration of both factors in combination we are unable to support all motor neurons that would normally undergo neuronal degeneration.  相似文献   

17.
Several neurotrophic factors influence the development, maintenance and survival of dopaminergic neurons in the mammalian central nervous system (CNS), including neurotrophin-3 (NT-3), brain derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), basic fibroblast growth factor (bFGF) and glial derived neurotrophic factor (GDNF). This review focuses on the role of these neurotrophic factors in psychostimulant-induced behavioral sensitization, a form of dopamine-mediated neuronal plasticity that models aspects of paranoid schizophrenia as well as drug craving among psychostimulant addicts. Whereas NT-3, CNTF and bFGF appear to play a positive role in psychostimulant-induced behavioral sensitization, GDNF inhibits this form of behavioral plasticity. The role of BDNF in behavioral sensitization, however, remains elusive. While it has been shown that neurotrophic factors can influence the behavioral, structural and biochemical phenomena related to psychostimulant-induced neuronal plasticity, it is unclear which neurotrophic factors are important physiologically and which have purely pharmacological effects. In either case, examining the role of neurotrophic factors in behavioral sensitization may enhance our understanding of the mechanisms underlying the development of paranoid psychosis and drug craving and lead to the development of novel pharmacological treatments for these disorders.  相似文献   

18.
Many neurotrophic factors have been shown to enhance survival of embryonic motor neurons or affect their response to injury. Few studies have investigated the potential effects of neurotrophic factors on more mature motor neurons that might be relevant for neurodegenerative diseases. Using organotypic spinal cord cultures from postnatal rats, we have demonstrated that insulin-like growth factor-I (IGF-I) and glial-derived neurotrophic factor (GDNF) significantly increase choline acetyltransferase (ChAT) activity, but brain-derived neurotrophic factor (BDNF), neurotrophin-4 (NT-4/5), and neurotrophin-3 (NT-3) do not. Surprisingly, ciliary neurotrophic factor (CNTF) actually reduces ChAT activity compared to age-matched control cultures. Neurotrophic factors have also been shown to alter the sensitivity of some neurons to glutamate neurotoxicity, a postulated mechanism of injury in the neurodegenerative disease, amyotrophic lateral sclerosis (ALS). Incubation of organotypic spinal cord cultures in the presence of the glutamate transport inhibitor threo-hydroxyaspartate (THA) reproducibly causes death of motor neurons which is glutamate-mediated. In this model of motor neuron degeneration, IGF-I, GDNF, and NT-4/5 are potently neuroprotective, but BDNF, CNTF, and NT-3 are not. The organotypic glutamate toxicity model appears to be the best preclinical predictor to date of success in human clinical trials in ALS.  相似文献   

19.
Cultures of dissociated striatal neurons from fetal rats were prepared, and were grown in the presence of neurotrophin-4/5 (NT-4/5) as well as the other known neurotrophins, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3). We found that acute administration of NT-4/5 to 7-day-old cultures stimulates the hydrolysis of phosphatidylinositol, an event involved in neurotrophin signal transduction. Growth of striatal cultures in the presence of NT-4/5 resulted in increased cell survival, as indicated by elevations in cell number, protein content, and a measure of mitochondrial enzyme activity (MTT assay). NT-4/5 increased GABA uptake and staining intensity in these cultures, as indicated by GABA immunocytochemistry, indicating a trophic action on GABAergic neurons, the predominant neuron type in the striatum. To further identify responsive cell populations we analysed for calretinin, a calcium-binding protein known to colocalize with GABA in a number of neuronal cells. In cultures prepared from rats of embryonic day 15, NT-4/5 strongly increased the number of calretinin-positive cells as well as calretinin levels, as determined by Western blot analysis. When the cultures were prepared from embryonic day 18 rats, NT-4/5 very strongly increased the morphological differentiation of calretinin-positive cells, whereas the increase in cell number was less prominent. All effects produced by NT-4/5 were mimicked by BDNF with similar potency. NT-3 was less effective than NT-4/5 and BDNF, and its effects were limited to cultures prepared from embryonic day 15 rats, suggesting a role in the regulation of cell survival at early developmental stages. NGF did not affect any of the measured parameters. Our findings identify NT-4/5 as potent neurotrophic factor for striatal neurons, able to promote their survival and differentiation.  相似文献   

20.
Althoughthe neurotrophins BDNF and NT-3 have been recognized as potent survival factors for distinct neuronal populations in the peripheral nervous system, they seem to have only minor effects on the survival of CNS neurons. In the present study, we provide evidence that BDNF and NT-3 require distinct additional extracellular signals in order to effectively promote the survival of several established populations of target neurons in the CNS. In dissociated cell cultures of the embryonic rat mesencephalon, BDNF promoted dopaminergic cell survival only after a delay of several days. Even after prolonged cultivation, survival promoting effects were completely absent with NT-3. Irrespective of the cultivation time, survival promoting effects of both BDNF and NT-3 on dopaminergic neurons were induced or potentiated upon simultaneous depolarization of cultured mesencephalic cells with NMDA or upon activation of cAMP/PKA-dependent signaling pathways with dibutyryl cAMP. Dibutyryl cAMP (dbcAMP), but not NMDA, also potentiated or induced the survival promoting effects of BDNF and NT-3 on cultured cerebellar granule cells. None of these substances, either alone or in combination, affected the survival of cultured cortical neurons. However, cortical cell survival increased upon depolarization with elevated potassium; an effect known to involve the induction of an autocrine BDNF loop. In both cerebellar and mesencephalic neurons, but not in cortical neurons, dbcAMP also potentiated neurotrophin-induced c-fos response, indicating intimate cross-coupling of signaling pathways activated by these different factors. Together these findings suggest that in the CNS, neurotrophins preferentially promote the survival of functionally active neurons. Our findings further reveal that the neuronal response to neurotrophins is modulated in a brain region-specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号