首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Vitamin D insufficiency is related to an increase in PTH, which might be critical for an increase in bone fragility. However, the role of endogenous PTH in vitamin D insufficiency-induced fracture risk remains unclear. The present study was performed to examine the relationships among vitamin D insufficiency, bone fragility, and PTH in 202 Japanese postmenopausal women. Serum 25-hydroxyvitamin D (25[OH]D) levels were measured. The percentages of subjects with 25(OH)D levels below 10, 15, and 20 ng/ml were 5.0, 41.0, and 80.7%, respectively. Serum 25(OH)D levels were negatively related to age and serum levels of Cr and PTH; they were positively related to bone mineral density (BMD). In multiple regression analysis, BMD was significantly related to 25(OH)D levels when adjusted for age, body mass index (BMI), and serum levels of Cr and PTH. Multiple logistic regression analysis showed that lower 25(OH)D levels were significantly related to prevalent fracture risk when adjusted for age, BMI, serum levels of Cr and PTH, as well as femoral neck BMD. The proportion of subjects with prevalent fractures was significantly higher in the group with lower PTH and lower 25(OH)D than in the group with lower PTH and higher 25(OH)D or higher PTH and higher 25(OH)D. In conclusion, vitamin D insufficiency was found to be related to prevalent fracture risk independently of PTH. Functional hypoparathyroidism, rather than functional hyperparathyroidism, might be a risk factor for bone fragility in vitamin D insufficiency.  相似文献   

2.
3.
Parathyroid hormone (PTH) may be an important determinant of cortical bone remodeling in the elderly. Vitamin D status is one of the determining factors in this relationship. The aim of this study was to quantify the relationship between serum PTH, vitamin D and bone mineral density (BMD) in elderly women in Reykjavik (64° N), where daily intake of cod liver oil is common and mean calcium intake is high. ln PTH correlated inversely with 25(OH)D (r=−0.26, p<0.01). In multivariate analysis PTH correlated inversely with whole body BMD (mostly cortical bone) (R 2= 2.2%, p = 0.04) but not with the lumbar spine BMD, reflecting more cancellous bone. No association was found between 25(OH)D levels and BMD at any site in univariate or multivariate analysis. Osteocalcin, a measure of bone turnover, was negatively associated with BMD and this association remained significant when corrected for PTH levels. In summary, in this fairly vitamin D replete population with high calcium intake, PTH was negatively associated with total body BMD. We infer that suppression of PTH may reduce cortical bone loss, but other factors are likely to contribute to age-related bone remodeling and osteoporosis. Received: 3 January 2000 / Accepted: 10 April 2000  相似文献   

4.
Introduction : The mechanism(s) by which sex steroids regulate bone turnover in humans are unclear, and recent studies have suggested that follicle‐stimulating hormone (FSH) may play an important role in regulating bone resorption. Materials and Methods : Fifty‐nine men (median age, 69 yr) underwent suppression of sex steroids using a gonadotropin‐releasing hormone (GnRH) agonist and aromatase blocker and were replaced with testosterone (T; 5 mg/d) and estradiol (E; 37.5 μg/d). After assessment of bone resorption markers (serum C‐terminal telopeptide of type I collagen [CTX] and TRACP5b), they were randomized to sex steroid deficiency (?T, ?E), E alone (?T, +E), T alone (+T, ?E), or both (+T, +E) and restudied 3 wk later. Bone marrow aspirates were obtained to isolate osteoblastic, T, and monocytic cells using magnetic‐activated cell sorting. Results : Serum CTX and TRACP5b increased significantly (by 71% and 15%, p < 0.01 and < 0.001, respectively) in the ?T, ?E group, and these increases occurred despite a 60% suppression of serum FSH levels (p < 0.001) caused by the GnRH agonist. There were significant E (but not T) effects on preventing increases in serum CTx and TRACP levels. There was a nonsignificant trend (p = 0.122) for E to suppress RANKL mRNA levels in bone marrow osteoblastic cells. Changes in mRNA levels for other cytokines (TNF‐α, interleukin (IL)‐1α, IL‐1β, IL‐1ra, IFN‐γ) in bone marrow cells were not significant. Conclusions : E has greater suppressive effects on bone resorption than T, and increased bone resorption after sex steroid deficiency can occur independently of changes in FSH secretion. E effects on bone resorption may be mediated by regulation of RANKL production by osteoblastic cells, although further studies using more highly purified cells may reduce the variability of the mRNA measurements and allow for clearer definition of the mediators of sex steroid action in vivo.  相似文献   

5.
Little is known about the effect of endogenous parathyroid hormone (PTH) on the skeleton in postmenopausal women without hyperparathyroidism. In this study, the effects of PTH on bone were investigated in iliac crest biopsies obtained from 37 healthy white postmenopausal women aged 50–73 years. The results showed that neither cancellous nor cortical bone structure changed with serum PTH levels. In cancellous bone, bone formation (wall thickness, osteoid surface, osteoblast surface, mineralizing surface, and mineral apposition rate) and turnover (bone formation rate at the surface, volume levels, and activation frequency) variables increased with increasing serum PTH levels (all p < 0.05) in univariate analysis. Multiple linear regressions, adjusted for serum 25-OHD, calcium, alkaline phosphatase, age, and BMI, showed that serum PTH level was independently associated with wall thickness, osteoid surface, osteoblast surface, mineralizing surface, and bone formation rate (all p < 0.05). In cortical bone, no histomorphometric variable was correlated with PTH levels. On the endosteal surface, some of the bone formation (osteoid surface, osteoblast surface, mineralizing surface) and turnover (bone formation rate at the bone surface levels and activation frequency) variables were positively correlated with PTH levels (all p < 0.05). None of these variables could be independently predicted by PTH status. We conclude that in healthy postmenopausal women endogenous PTH has a positive effect on bone formation on the cancellous surface. The effects of PTH on the endosteal surface are probably confounded by other factors.  相似文献   

6.
Osteoporosis in men is a significant health problem, and factors associated with bone mass are being investigated. Although osteoporosis is a typical feature of hypogonadism, the influence of testosterone levels and other hormonal factors on bone mass of eugonadal males is unknown. Our aim was to identify several anthropometric and hormonal predictors that could be responsible for the variability in bone mineral density (BMD) in healthy men. One hundred elderly men (age 68 ± 7 years) were investigated in this cross-sectional study. BMD was measured by dual-energy X-ray absorptiometry (DXA) at the lumbar spine and femoral sites (femoral neck, Ward’s triangle, trochanter, intertrochanter and total femur). Anthropometric measures were obtained including: weight, height, body mass index (BMI), waist–hip ratio and testicular volume. Hormonal data measures were total, free and bioavailable testosterone, dihidrotestosterone, estradiol, sex hormone binding globulin (SHBG), insulin-like growth factor I (IGF-I), intact parathyroid hormone (iPTH) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). One subject was excluded because primary hypogonadism was found. SHBG levels were increased in 53.5% of men, and 8% showed a mild increase in iPTH levels. Twenty-eight subjects had densitometric criteria of osteoporosis (T-score ≤−2.5). All BMD sites were positively correlated with body weight (r= 0.29–0.48, p<0.001) and BMI (r= 0.24–0.47, p<0.001). A negative correlation between SHBG levels and intertrochanter (IT) and total femur (TL) BMD was found (r=−0.24 and r=−0.22, p<0.05). After adjusting for age and BMI, SHBG and IGF-I levels were negatively correlated (r=−0.33, p<0.001). In multiple linear regression analysis independent predictors of bone mass were body weight, SHBG and iPTH levels. The best predictive model accounted for 24–40% of the observed variability of BMD. However, most of the BMD variability was explained by body weight. In conclusion, in our study body weight, SHBG and iPTH levels were predictors of BMD in healthy elderly men. Received: 9 June 2000 / Accepted: 27 September 2000  相似文献   

7.
Vitamin D is suggested to have a role in the coupling of bone resorption and formation. Compared with women, men are believed to have more stable bone remodeling, and thus, are considered less susceptible to the seasonal variation of calcitropic hormones. We examined whether seasonal variation exists in calcitropic hormones, bone remodeling markers, and BMD in healthy men. Furthermore, we determined which vitamin D intake is required to prevent this variation. Subjects (N = 48) were healthy white men 21–49 yr of age from the Helsinki area with a mean habitual dietary intake of vitamin D of 6.6 ± 5.1 (SD) μg/d. This was a 6‐mo double‐blinded vitamin D intervention study, in which subjects were allocated to three groups of 20 μg (800 IU), 10 μg (400 IU), or placebo. Fasting blood samplings were collected six times for analyses of serum (S‐)25(OH)D, iPTH, bone‐specific alkaline phosphatase (BALP), and TRACP. Radial volumetric BMD (vBMD) was measured at the beginning and end of the study with pQCT. Wintertime variation was noted in S‐25(OH)D, S‐PTH, and S‐TRACP (p < 0.001, p = 0.012, and p < 0.05, respectively) but not in S‐BALP or vBMD in the placebo group. Supplementation inhibited the winter elevation of PTH (p = 0.035), decreased the S‐BALP concentration (p < 0.05), but benefited cortical BMD (p = 0.09) only slightly. Healthy men are exposed to wintertime decrease in vitamin D status that impacts PTH concentration. Vitamin D supplementation improved vitamin D status and inhibited the winter elevation of PTH and also decreased BALP concentration. The ratio of TRACP to BALP shows the coupling of bone remodeling in a robust way. A stable ratio was observed among those retaining a stable PTH throughout the study. A daily intake of vitamin D in the range of 17.5–20 μg (700–800 IU) seems to be required to prevent winter seasonal increases in PTH and maintain stable bone turnover in young, healthy white men.  相似文献   

8.
Poor vitamin D status is common in the elderly and is associated with bone loss and fractures. The aim was to assess worldwide vitamin D status in postmenopausal women with osteoporosis according to latitude and economic status, in relation to parathyroid function, bone turnover markers, and BMD. The study was performed in 7441 postmenopausal women from 29 countries participating in a clinical trial on bazedoxifene (selective estrogen receptor modulator), with BMD T‐score at the femoral neck or lumbar spine ≤ ?2.5 or one to five mild or moderate vertebral fractures. Serum 25(OH)D, PTH, alkaline phosphatase (ALP), bone turnover markers osteocalcin (OC) and C‐terminal cross‐linked telopeptides of type I collagen (CTX), and BMD of the lumbar spine, total hip, femoral neck, and trochanter were measured. The mean serum 25(OH)D level was 61.2 ± 22.4 nM. The prevalence of 25(OH)D <25, 25–50, 50–75, and >75 nM was 5.9%, 29.4%, 43.5%, and 21.2%, respectively, in winter and 3.0%, 22.2%, 47.2%, and 27.5% in summer. Worldwide, a negative correlation between 25(OH)D and latitude was observed. With increasing 25(OH)D categories of <25, 25–50, 50–75, and >75 nM, mean PTH, OC, and CTX were decreasing (p < 0.001), whereas BMD of all sites was increasing (p < 0.001). A threshold in the positive relationship between 25(OH)D and different BMD parameters was visible at a 25(OH)D level of 50 nM. Our study showed a high prevalence of low 25(OH)D in postmenopausal women with osteoporosis worldwide. Along with latitude, affluence seems to be an important factor for serum 25(OH)D level, especially in Europe, where it is strongly correlated with latitude.  相似文献   

9.
Better assessment of the association between cardiovascular disease and osteoporosis in older men may help identify shared etiologies for bone and heart health in this population. We assessed the association of BMD and bone turnover markers (BTMs) with risk of cardiovascular events (myocardial infarction or stroke) in 744 men ≥50 yr of age. During the 7.5‐yr prospective follow‐up, 43 strokes and 40 myocardial infarctions occurred in 79 men. After adjustment for confounders (age, weight, height, smoking, education, physical activity, self‐reported history of diabetes, hypertension, and prevalent ischemic heart disease), men in the lowest quartile of BMD at the spine, whole body, and forearm had a 2‐fold increased risk of cardiovascular events. Men in the highest quartile of bone resorption markers (deoxypyridinoline [DPD], C‐telopeptide of type I collagen) had a 2‐fold increased risk of cardiovascular events (e.g., multivariable‐adjusted hazard ratio [including additional adjustment for BMD] was 2.11 [95% CI: 1.26–3.56], for the highest quartile of free DPD relative to the lowest three quartiles). The results were similar for men without prevalent ischemic heart disease and for myocardial infarction and stroke analyzed separately. Our data suggest that men with low BMD or high bone resorption may be at increased risk of myocardial infarction and stroke in addition to fracture. Thus, men with osteoporosis may benefit from screening for cardiovascular disease. Further study to elucidate the biological mechanism shared by bone and vascular disease may help efforts to identify men at risk or develop treatment.  相似文献   

10.

Background

Metabolic consequences resulting from loss of renal mass in living kidney donors remain uncertain. There is recent focus on the changes in the active form of vitamin D because it is an agent for cancer regulation. The objective of the study was to measure serum concentrations of 1,25-dihydroxycholecalciferol, parathyroid hormone and insulin-like growth factor-1 (IGF-1) in living donors after kidney donation.

Patients and Methods

Forty living kidney donors reported for follow-up visits. Their mean age was 46.14 years. They were women in 52.5% of cases. The mean observation period was 65.6 months. Serum 1,25(OH)2D3 and IGF-1 concentrations were measured by radioimmunoassay after extraction. Serum intact parathyroid hormone (PTH) was quantified using an enhanced chemiluminescence immunoassay system.

Results

1,25-dihydroxycholecalciferol deficiency in 57.5% patients after nephrectomy was the most important change we noted. No correlation was observed between 1,25(OH)2D3 and PTH. A decreased serum IGF-1 concentration was observed in 17.5% of donors. However, decreases in both serum IGF-1 and 1,25(OH)2D3 concentrations were observed in 12.5% of donors.

Conclusion

Prospective studies may be essential to determine metabolic changes after nephrectomy among living kidney donors.  相似文献   

11.
Background: Biliopancreatic diversion (BPD) is associated with a 70% excess weight loss (EWL) at 10 years, but there are concerns regarding long-term nutritional sequelae. Metabolic bone disease has been documented following Roux-en-Y gastric bypass. Methods: Patients who underwent a BPD from 1998 to 2001 were studied. A questionnaire was designed to review BPD patients and collect information on weight loss, frequency of gastrointestinal disturbances and compliance with multivitamin recommendations. The review included a blood test for vitamin D, parathyroid hormone (PTH), alkaline phosphatase (ALP) and calcium. Results: Of the 82 patients who underwent BPD during this period, the median %EWL at 36 months was 73.0%. 75.6% suffered diarrhea. At median follow-up of 32 months (18-50), 25.9% of patients were hypocalcemic, 50% had low vitamin D, 23.8% had elevated ALP, and 63.1% had elevated PTH, despite 82.9% taking multivitamins. Conclusion: BPD results in significant weight loss. However, 1 in 4 patients are hypocalcemic, and 1 in 2 have a low vitamin D, despite multivitamin supplementation. BPD patients require routine calcium and vitamin D supplementation for life. Long-term sequelae from these abnormal serum levels are not known.  相似文献   

12.
Lactose malabsorption (LM; adult-type hypolactasia), an autosomal recessive condition, results from the down-regulation of the activity of lactase enzyme in the intestinal wall. In previous studies the effect of LM on bone mass, bone turnover rate, development of osteoporosis and osteoporotic fractures has remained controversial. We have recently identified a single nucleotide polymorphism (SNP), a C to T change residing 13910 base pairs upstream of the lactase (LCT) gene at chromosome 2q21-22, which shows complete association with lactase persistence, with the C/C–13910 genotype defining LM and the genotypes C/T–13910 and T/T–13910 lactase persistence. The present study was undertaken to examine the relationship of the C/T–13910 polymorphism to peak bone mass, bone turnover rate, and stress fractures among young Finnish men. The study population comprised 234 young men, aged 18.3 to 20.6 years, 184 men were recruits of the Finnish Army, and 50 were men of similar age who had postponed their military service for reasons not related to health. Bone mineral content (BMC), density (BMD), and scan area were measured in the lumbar spine and upper femur by dual-energy X-ray absorptiometry (DXA). Blood was sampled for genotyping of the C/T–13910 polymorphism and determination of serum 25-hydroxyvitamin D (25OHD), intact parathyroid hormone (iPTH), type I procollagen aminoterminal propeptide (PINP), and tartrate-resistant acid phosphatase 5b (TRACP5b). Second-void urine samples were collected for the determination of type I collagen aminoterminal telopeptide (NTX). The prevalence of the C/C–13910-genotype of these young adults did not differ significantly from the corresponding population prevalence of C/C–13910 (17.1% vs 18.1%) among Finnish blood donors. Fifteen recruits of the army experienced a stress fracture; 3 of them (20%) had the C/C–13910-genotype. Calcium intake was similar for the three genotypes as were the unadjusted BMCs, scan areas, and BMDs at different measurement sites. The adjustments for age, height, weight, smoking, alcohol consumption, and physical exercise in the multiple regression analysis did not reveal any significant relationships between the lactase genotypes and BMDs at lumbar (P = 0.16), femoral neck (P = 0.99) or total hip (P = 0.96) sites. Serum 25OHD, iPTH, and bone marker levels were similar for the C/C–13910 C/T–13910 and T/T–13910 genotypes. In summary, in young Finnish men, molecularly defined lactose malabsorption does not alter bone turnover rate and impair the acquisition of peak bone mass. Moreover, the C/C–13910 genotype does not seem to be a risk factor for stress fractures in army recruits.N. Enattah and V.-V. Välimäki equally contributed to the study.  相似文献   

13.
Bone mineral density (BMD), the major determinant of fracture risk, is under strong genetic control. Although polymorphisms of the vitamin D receptor (VDR) gene have been suggested to account for some of the genetic variation in bone mass, the influence of VDR genotypes on osteoporosis remains controversial. Previous published studies have focused mainly on women, but the pattern of response in men has not been determined. Using the BsmI restriction enzyme, we studied the influence of the different VDR genotypes on bone mass, bone loss and the prevalence of vertebral fractures in a population-based sample of both sexes (n = 326). BMD was measured at the lumbar spine and femoral neck, with a 4-year interval, using dual-energy X-ray absorptiometry. Vertebral fractures were assessed by two lateral radiographs at the beginning and end of the study. The prevalence of the three possible VDR genotypes was similar to those in other Caucasian populations and no differences were found between men and women. Women with the favorable bb genotype showed significantly higher BMD values at the lumbar spine and femoral neck, and a positive rate of BMD change at the femoral neck compared with women with the BB and Bb genotypes. Moreover, women with the bb genotype showed a trend toward a lower prevalence and incidence of vertebral fractures (p= 0.07). We have not found any differences between VDR genotypes in men. In conclusion, VDR gene polymorphisms are related to bone mass and bone loss in women; also a trend in the prevalence of vertebral fractures was observed in postmenopausal women but not in men. Received: 8 June 1998 / Accepted: 7 December 1998  相似文献   

14.
Although osteoporosis in men has been recently recognized as a public health problem, the mechanisms leading to bone loss are still poorly understood. Longitudinal studies of bone mineral density suggest an acceleration of bone loss after 70 years of age. Histomorphometric data concerning age-related changes of bone turnover in men are limited, including few men over 70 years and have been restricted to the trabecular envelope of bone biopsies. Most measurements of biochemical markers of bone turnover have been performed in small cohorts of limited age range, and results obtained in large cohorts are scanty. Levels of markers of bone formation and of bone resorption are very high in men aged 20-30 years which corresponds to the late phase of formation of peak bone mass, and then declines, reaching their lowest levels between 50 and 60 years. Data on bone turnover markers in elderly men are discordant. Concentrations of bone formation markers remain stable, decrease slightly, or even increase marginally. Markers of bone resorption increase in some studies, mainly after 70 years of age, in line with acceleration of bone loss in this age range. This discordance between studies can result from different reasons. The increase of bone turnover may be limited to a subgroup of elderly men. In addition, urinary levels of bone resorption markers depend on the rate of bone turnover, on pre-renal and renal catabolism of peptides released from bone matrix, on glomerular filtration rate, as well as unit of expression of their results (per 24 hours per urinary creatinine mass, per glomerular filtrate volume). In elderly men, biochemical bone markers are negatively correlated with bone mineral density. Longitudinal studies are not yet available on the relationship among bone turnover markers, rate of bone loss, and fracture. In conclusion, in elderly men, age-related bone loss seems to result from increased bone resorption which is not matched by increased bone formation. Thus, antiresorptive therapy may be of interest in the prevention and treatment of osteoporosis in men. Further studies are necessary to determine if bone resorption markers predict the risk of fragility fractures in elderly men.  相似文献   

15.
Calcium and vitamin D supplementation has been shown to reduce secondary hyperparathyroidism and play a role in the management of senile osteoporosis. In order to define the optimal regimen of calcium and vitamin D supplementation to produce the maximal inhibition of parathyroid hormone secretion, we have compared the administration of a similar amount of Ca and vitamin D, either as a single morning dose or split in two doses, taken 6 hours apart. Twelve healthy volunteers were assigned to three investigational procedures, at weekly intervals. After a blank control procedure, when they were not exposed to any drug intake, they received two calcium-vitamin D supplement regimens including either two doses of Orocal D3 (500 mg Ca and 400 IU vitamin D) 6 hours apart or one water-soluble effervescent powder pack of Cacit D3 in a single morning dose (1000 mg Ca and 880 IU vitamin D). During the three procedures (control and the two calcium-vitamin D supplementations), venous blood was drawn every 60 minutes for up to 9 hours, for serum Ca and serum PTH measurements. The order of administration of the two Ca and vitamin D supplementation sequences was allocated by randomization. No significant changes in serum Ca were observed during the study. During the 6 hours following Ca and vitamin D supplementation, a statistically significant decrease in serum PTH was observed with both regimens, compared with baseline and with the control procedure. Over this period of time, no differences were observed between the two treatment regimens. However, between the sixth and the ninth hour, serum PTH levels were still significantly decreased compared with baseline with split dose Orocal D3 administration, while they returned to baseline value with the Cacit D3 preparation. During this period, the percentage decrease in serum PTH compared with baseline was significantly more pronounced with Orocal D3 than with Cacit D3 (P = 0.0021). We therefore conclude that the administration of two doses of 500 mg of calcium and 400 IU of vitamin D3 6 hours apart provides a more prolonged decrease in serum PTH levels than the administration of the same total amount of Ca and vitamin D as a single morning dose in young healthy volunteers. This might have implications in terms of protection of the skeleton against secondary hyperparathyroidism and increased bone resorption and turnover in elderly subjects.  相似文献   

16.
Osteoporosis is characterized by the occurrence of a host of fractures. According to densitometric values, an operational definition for osteoporosis corresponds to a loss of 25% to 30% (−2.5 T-scores) compared with the mean values of bone mineral density of young premenopausal women. For years, research tried to develop drugs to improve the bone mineral density. According to the compounds, antiresorptive agents are able to decrease the fracture rate by about 30% to 70%, and to increase the bone mineral density. However, the agents increasing the most bone mineral density are not necessarily those that influence the most fracture rates. It has been known for years that parathyroid hormone (PTH) administered cyclically is able to increase bone mineral density. Two analogues of PTH have been developed: PTH (1-34) and PTH (1-84). Both of them are able to increase bone mineral density and reduce the rate of vertebral fracture but not of the hip, nor of nonvertebral fractures, the latter at least for PTH (1-84). Their exact place in the armamentarium of therapy of osteoporosis and their best time of administration are not yet definitely settled. New modes of administration (transdermal, intranasal, oral) will probably become available soon. With all the drugs available today and those still in development, it can be hoped that osteoporosis will become a disease of the past.  相似文献   

17.
We used data from the Osteoporotic Fractures in Men (MrOS) study to test the hypothesis that men with higher levels of bone turnover would have accelerated bone loss and an elevated risk of fracture. MrOS enrolled 5995 subjects >65 yr; hip BMD was measured at baseline and after a mean follow‐up of 4.6 yr. Nonspine fractures were documented during a mean follow‐up of 5.0 yr. Using fasting serum collected at baseline and stored at ?190°C, bone turnover measurements (type I collagen N‐propeptide [PINP]; β C‐terminal cross‐linked telopeptide of type I collagen [βCTX]; and TRACP5b) were obtained on 384 men with nonspine fracture (including 72 hip fractures) and 947 men selected at random. Among randomly selected men, total hip bone loss was 0.5%/yr among those in the highest quartile of PINP (>44.3 ng/ml) and 0.3%/yr among those in the lower three quartiles (p = 0.01). Fracture risk was elevated among men in the highest quartile of PINP (hip fracture relative hazard = 2.13; 95% CI: 1.23, 3.68; nonspine relative hazard = 1.57, 95% CI: 1.21, 2.05) or βCTX (hip fracture relative hazard = 1.76, 95 CI: 1.04, 2.98; nonspine relative hazard = 1.29, 95% CI: 0.99, 1.69) but not TRACP5b. Further adjustment for baseline hip BMD eliminated all associations between bone turnover and fracture. We conclude that higher levels of bone turnover are associated with greater hip bone loss in older men, but increased turnover is not independently associated with the risk of hip or nonspine fracture.  相似文献   

18.
Bone mineral density (BMD) is widely used in postmenopausal women to identify who should be given therapy for prevention and treatment of osteoporosis and to monitor the efficacy of treatment. There is still uncertainty about how to interpret BMD in men, and few prospective studies exist on the relationship between BMD and fracture risk. Men should be considered for measurement of BMD if they have suffered low trauma fractures, have prevalent vertebral deformities, have radiographic osteopenia, are over age 75, or have conditions that increase their risk for bone loss, such as hypogonadism, glucocorticoid use, or generally poor health. There is insufficient information to recommend a more widespread BMD screening. The World Health Organization has developed criteria for interpreting BMD which are widely used. Patients with BMD at least 2.5 SD below the young adult mean (T-score < -2.5) have osteoporosis, and those with BMD between 1 and -2.5 SD below the young adult mean (-2.5 < T-score < -1.0) have osteopenia. However, the BMD criteria that should be used to identify men in need of therapeutic intervention are still debated. Using male-specific hip BMD cutoffs, approximately 3-6% of U.S. men 50 years and older were estimated to have osteoporosis and 28-47% to have osteopenia. The corresponding figures in women were 13-18% with osteoporosis and 37-50% with osteopenia. Greater accumulation of skeletal mass during growth, slower rate of bone loss, and shorter life expectancy in men contribute to the lower prevalence of osteoporosis relative to women.  相似文献   

19.
Studies suggest that optimal vitamin D status is required for the maximal effect of antiresorptive agents. We investigated the relationship between vitamin D status, serum parathyroid hormone (PTH) concentrations, and change in bone mineral density (BMD) following iv zoledronate and denosumab. We carried out a retrospective analysis of 111 patients, mean age 70 (SD 13) years, 89 women and 22 men, prescribed zoledronate and 43 postmenopausal women treated with denosumab for osteoporosis. We measured BMD at the lumbar spine (LS) and total hip (TH), serum 25 (OH) vitamin D, PTH, and bone turnover markers (plasma CTX, P1NP) at 1 year. In patients on zoledronate, BMD increased at the LS and TH (mean LS change [SEM] = 2.6 % [0.5 %], mean TH change = 1.05 % [0.5 %], p < 0.05). A significant increase in BMD was seen at the LS only in the denosumab group (p = 0.001). Significant decreases in CTX and P1NP were observed at 12 months in both treatment groups. At baseline and at 12 months, 34 % and 23 % of the patients on zoledronate had a serum vitamin D of <50 nmol/L, respectively. The mean PTH concentration in patients with 25 (OH) vitamin D <50 nmol/L was 44 ng/L (SEM 16.6). Patients with PTH concentration <44 ng/L had significantly higher increases in TH BMD compared to those with PTH >44 ng/L (zoledronate 1.9 [0.83] vs. ?0.43 [0.81], p = 0.04; denosumab 4.1 [0.054] vs. ?1.7 [0.04], p = 0.004). Optimal vitamin D status and PTH concentrations improve the skeletal response to zoledronate and denosumab.  相似文献   

20.
Changes in Bone Mass and Bone Turnover Following Ankle Fracture   总被引:6,自引:0,他引:6  
Bone loss and increased bone turnover are recognized local changes after a fracture, but the exact patterns of these changes after different fractures are unclear. We aimed to investigate the changes in bone density and biochemical markers following ankle fracture. Fourteen subjects (7 postmenopausal women and 7 men, mean age 63 years) were recruited following fracture of the distal tibia and fibula. Bone mineral density (BMD) of the ankle and proximal femur were measured by dual-energy X-ray absorptiometry (DXA) and quantitative ultrasound (QUS) of the calcaneus at 0, 6, 12, 26 and 52 weeks after fracture. Serum and urine samples were collected at 0, 3 and 7 days and at 2, 4, 6, 12, 26 and 52 weeks after fracture to measure markers of bone turnover. For bone formation we measured: bone alkaline phosphatase (iBAP), osteocalcin (Oc), procollagen type I N-terminal propeptide (PINP); and for bone resorption: tartrate-resistant acid phosphatase (TRAcP), deoxypyridinoline (iFDpd), N-telopeptides of type I collagen (NTx). We used the nonfractured limb to calculate values for baseline BMD and QUS. There was a significant decrease in BMD at the ultradistal ankle (p<0.001), the trochanteric region of the hip (p<0.01) and QUS of the heel after ankle fracture. This bone loss was maximal for ultradistal ankle BMD by 6 weeks at 13% (p<0.001) and for the trochanter by 26 weeks at 3% (p<0.01). The ankle BMD returned to baseline at 52 weeks but the trochanter BMD did not. Velocity of sound (VOS) decreased at 6 weeks by 2% (p<0.01) and broadband ultrasound attenuation (BUA) by 15% (p<0.01). VOS recovered completely by 52 weeks, but BUA did not return to baseline. Bone formation markers increased significantly between 1 and 4 weeks by 11–78% (p<0.01), and iBAP returned to baseline at 52 weeks but PINP and Oc remained elevated. Bone resorption markers did not increase and NTx was decreased at 52 weeks. We conclude that BMD decreased distal and immediately proximal to the fracture line when measured with DXA and QUS. Ankle BMD and heel VOS recovered at 52 weeks (trochanteric BMD and heel BUA did not) and the bone turnover markers returned toward baseline. Received: 27 January 1999 / Accepted: 19 April 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号