首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rice stripe virus (RSV) is a single-stranded (ss) RNA virus belonging to the genus Tenuivirus. RSV is present in many East Asian countries and causes severe diseases in rice fields, especially in China. In this study, we analyzed six proteins encoded by the virus for their abilities to suppress RNA silencing in plant using a green fluorescent protein (GFP)-based transient expression assay. Our results indicate that NS3 encoded by RSV RNA3, but not other five RSV encoded proteins, can strongly suppress local GFP silencing in agroinfiltrated Nicotiana benthamiana leaves. NS3 can reverse the GFP silencing, it can also prevent long distance spread of silencing signals which have been reported to be necessary for inducing systemic silencing in host plants. The NS3 protein can significantly reduce the levels of small interfering RNAs (siRNAs) in silencing cells, and was found to bind 21-nucleotide ss-siRNA, siRNA duplex and long ssRNA but not long double-stranded (ds)-RNA. Both N and C terminal of the NS3 protein are critical for silencing suppression, and mutation of the putative nuclear localization signal decreases its local silencing suppression efficiency and blocks its systemic silencing suppression. The NS3-GFP fusion protein and NS3 were shown to accumulate predominantly in nuclei of onion, tobacco and rice cells through transient expression assay or immunocytochemistry and electron microscopy. In addition, transgenic rice and tobacco plants expressing the NS3 did not show any apparent alteration in plant growth and morphology, although NS3 was proven to be a pathogenicity determinant in the PVX heterogenous system. Taken together, our results demonstrate that RSV NS3 is a suppressor of RNA silencing in planta, possibly through sequestering siRNA molecules generated in cells that are undergoing gene silencing.  相似文献   

2.
Interferon (IFN) action survival curves for an avian influenza virus (AIV) in chicken or quail cells showed that 40-60% of the virions in a stock of virus were highly sensitive to the inhibitory effects of chicken IFN-alpha (ChIFN-alpha), whereas the rest were up to 100 times less sensitive. This greater resistance to IFN was transient, that is, was not a stable characteristic, in that virus stocks grown from plaques that formed in the presence of 50-800 U/ml IFN gave rise to virus populations that contained both sensitive and resistant virions. If AIV was serially passaged several times in the presence of IFN, the proportion of transiently IFN-resistant virus was greater. We propose a model to account for this transient resistance of AIV to IFN action based on the reported inactivation of the dsRNA-dependent protein kinase (PKR) and its activator dsRNA by the NS1 protein of influenza virus and also on the increase in the survival of AIV in IFN-treated cells exposed to 2-aminopurine, a known inhibitor of PKR. We suggest that IFN-resistant AIV is generated from a random packaging event that results in virions that contain two or more copies of RNA segment 8, the gene segment that encodes the NS1 protein of AIV, and that these virions will produce correspondingly elevated levels of NS1. The experimental data fit well to theoretical curves based on this model and constructed from the fraction of virus in the population expected by chance to contain one, two, or three copies of the NS gene when packaging an average of 12 influenza gene segments that include the 8 segments essential for infectivity.  相似文献   

3.
4.
目的 研究高致病性禽流感(HPAI)H5N1病毒NS1蛋白对干扰素诱导蛋白10(IP-10)的影响.方法 分别将禽流感病毒A/Anhui/1/2005(H5N1)的NS1基因、插入80-84位缺失氨基酸的NS1突变基因及流感病毒A/Puerto Rico/8/1934(H1N1)的NS1基因克隆至真核表达载体pEGFP-N1,转染人支气管上皮细胞BEAS-2B,流式细胞仪检测转染细胞内IP-10的表达情况.结果 与pEGFP-N1对照组相比,三种NS1蛋白均能下调BEAS-2B细胞IP-10的表达(P<0.01),但三者之间下调程度差异无统计学意义(P>0.01).结论 A/Anhui/1/2005(H5N1)禽流感病毒单一NS1蛋白能够抑制BEAS-2B细胞IP-10表达,但这并不能完全阐明其与病毒致病性之间的关系.  相似文献   

5.
Viruses express proteins with silencing suppression activity to counteract the RNA silencing-mediated defense response of the host. In the family Closteroviridae, examples of multiple-component RNA silencing suppression systems have been reported. To ascertain if this is a general strategy in this group of viruses, we have explored the bipartite genome of Tomato chlorosis virus (ToCV, genus Crinivirus). We have identified the RNA1-encoded p22 protein as an effective silencing suppressor by using a Agrobacterium co-infiltration assay. p22 suppressed local RNA silencing induced either by sense RNA or dsRNA very efficiently, but did not interfere with short or long-distance systemic spread of silencing. We have also demonstrated by using the heterologous vector PVX the silencing suppression activity of the RNA-2 encoded coat protein (CP) and minor coat protein (CPm). In this study, we demonstrate an even greater complexity of silencing suppressor activity for a plant virus, and for the first time we show the presence of RNA silencing suppressor genes encoded by both genomic RNA molecules of a bipartite genome in the complex family Closteroviridae.  相似文献   

6.
As for other bipartite criniviruses (genus Crinivirus, family Closteroviridae), the genome of Tomato chlorosis virus encodes an RNA silencing suppressor, the protein p22, in the 3′-proximal region of RNA1. This protein has been reported as having one of the longest lasting local suppressor activities when transiently expressed in Nicotiana benthamiana. Here, we examined the genetic diversity of the p22 gene in ToCV isolates from tomato and sweet pepper. The p22 gene sequences clearly grouped into two separated clades. However, functional analysis of both types of p22 proteins indicated no evident differences in suppressor activity. Our findings provide experimental evidence that the presence of a “strong” silencing suppressor is a conserved feature of ToCV isolates.  相似文献   

7.
The complete sequence of a novel mycovirus infecting Ustilaginoidea virens, the causal agent of false smut of rice, is reported here and designated as Ustilaginoidea virens unassigned RNA virus HNND-1 (UvURV-HNND-1). This virus has an undivided dsRNA genome of 2903 nt in length and contains two non-overlapping open reading frames (ORF1 and 2), with the small ORF1 encoding a protein of unknown function that showed sequence similarity to the comparable protein in virus Alternaria longipes dsRNA virus 1(AlRV1) and a larger ORF2 encoded the protein showing identities to the RNA-dependent RNA polymerases of AlRV1 and some other unassigned dsRNA viruses. Phylogenetic analysis showed that UvURV-HNND-1 is more closely related to unclassified viruses such as AlRV1 and distinct from distantly related members of the family Partitiviridae. Here, we propose in accordance with previous reports that UvURV-HNND-1 might belong to a new mycovirus genus together with AlRV1 and other similar viruses.  相似文献   

8.
9.
Yuan W  Aramini JM  Montelione GT  Krug RM 《Virology》2002,304(2):291-301
The N-terminal domains of the NS1 protein of influenza B virus (NS1B protein) and the NS1 protein of influenza A virus (NS1A protein) share one function: binding double-stranded RNA (dsRNA). Here we show that the N-terminal domain of the NS1B protein possesses an additional function that is not shared by its NS1A counterpart: binding the ubiquitin-like ISG15 protein that is induced by influenza B virus infection. Homology modeling predicts that the dimeric six-helical N-terminal domain of the NS1B protein differs from its NS1A protein counterpart in containing large loops between helices 1 and 2 (loops 1 and 1') and between helices 2 and 3 (loops 2 and 2'). Mutagenesis establishes that residues located in loop 1/1' together with residues located in polypeptide segment 94-103 form the ISG15 protein-binding site of NS1B protein. Loop 1/1' is not required for dsRNA binding, which instead requires arginine residues R50, R53, R50', and R53' located in antiparallel helices 1 and 1'. Further, we demonstrate that the binding sites for RNA and protein are independent of each other. In particular, ISG15 and dsRNA can bind simultaneously; the binding of the ISG15 protein does not have a detectable effect on the binding of dsRNA, and vice versa.  相似文献   

10.
目的 弄清A鹅广东296(H5N1)毒株RNA7和8核苷酸全序列及它们与AHK15697(H5N1)毒株RNA7和8之间的内在关系,并为今后流感病毒M和NS基因研究打下基础。方法 病毒粒RNA经逆转录合成cDNA,经聚合酶链反应(PCR)扩增,产物纯化,采用双脱氧链末端终止法进行核苷酸序列测定。结果 A鹅广东296(H5N1)毒株RNA7长度为1027个核苷酸,编码M1(含252个氨基酸)和M2(含97个氨基酸)的蛋白。其RNA8长度为890个核苷酸,编码NS1(含230个氨基酸)和NS2(含121个氨基酸)非结构蛋白。其M1,M2,NS1和NS2蛋白分子上氨基酸序列与AHK15697(H5N1)毒株间同源性分别为976%,928%,657%和769%。结论 A鹅广东296(H5N1)毒株RNA7和8长度分别为1027和890个核苷酸,此两节段RNA均属禽类毒株。AHK15697(H5N1)毒株的RNA7和8不是来自A鹅广东296(H5N1)毒株。  相似文献   

11.
12.
目的 弄清A/鹅/广东/2/96(H5N1)毒株RNA7和8核苷酸全序列及它们与A/HK/156/97(H5N1)毒株RNA7和8之间的内胡关系,并为今后流感病毒M和NS基因研究打下基础。方法 病毒粒RNA经逆转录合成cDNA,经聚合酶链反应(PCR)扩增,产物纯化,采用双脱氧链末端终止法进行核苷酸序列测定。  相似文献   

13.
Qu B  Li X  Gao W  Sun W  Jin Y  Cardona CJ  Xing Z 《Virus research》2012,163(1):151-159
Avian influenza viruses (AIV) replicate efficiently in guts of birds, and virus shedding is critical to viral transmission among birds and from birds to other species. In this study, we showed that an H9N2 viral strain, isolated from a human patient, caused typical influenza-like signs and illness including loss of body weight in Balb/c mice, and that viral RNA could be detected in intestinal tissues. We demonstrated that human intestinal epithelial cell line HT-29 was susceptible to the virus, and the infected cells went apoptotic at the early stage post infection. Compared to a pandemic (H1N1) 2009 influenza isolate, we found that the human H9N2 virus induced more severe apoptotic and stronger innate immune responses. Both extrinsic and intrinsic apoptotic pathways were activated in human intestinal epithelial cells, and the levels of FasL and TNF-α were induced up to hundreds-fold in response to the H9N2 infection. Interestingly, Bcl-2 family member Bid was cleaved during the course of infection, and the truncated Bid (tBid) appeared to play a role in the initiation of the intrinsic apoptosis with increased release of cytochrome c in cytosol. As for pro-inflammatory responses in H9N2-infected intestinal epithelial cells, RANTES and IP10 were induced significantly and may have played a major role in intestinal pathogenicity. Moreover, TLR-8, MyD88, and MDA-5 were all up-regulated in the infection, critical in the induction of IFN-β and host innate immunity against the H9N2 virus. Our findings have demonstrated a unique pattern of host responses in human gut in response to H9N2 subtype influenza viruses, which will broaden our understanding of the pathogenesis of AIV infection in both humans and animals.  相似文献   

14.
In Vietnam, the two main viruses that cause disease in rice are the Rice grassy stunt virus (RGSV) and the Rice ragged stunt virus (RRSV). Outbreaks of these two viruses have dramatically decreased rice production in Vietnam. Because natural resistance genes are unknown, an RNAi strategy may be an alternative method to develop resistance to RGSV and RRSV. However, this strategy will be efficient only if putative silencing suppressors encoded by the two viruses are neutralized. To identify these suppressors, we used the classical green fluorescent protein (GFP) agroinfiltration method in Nicotiana benthamiana. Then, we investigated the effects of viral candidate proteins on GFP expression and GFP siRNA accumulation and their interference with the short- or long-range signal of silencing. RGSV genes s2gp1, s5gp2, and s6gp1 and RRSV genes s5gp1, s6gp1, s9gp1, and s10gp1 were selected for viral silencing suppressor investigation according to their small molecular weight, the presence of cysteines, or the presence of a GW motif in related protein products. We confirmed that protein p6 of RRSV displays mild silencing suppressor activity and affects long-range silencing by delaying the systemic silencing signal. In addition, we identified two new silencing suppressors that displayed mild activity: p2 of RGSV and p9 of RRSV.  相似文献   

15.
The main aims of the present study were to characterize NS1 protein from H9N2 avian influenza viruses (AIVs) isolated in Israel and to investigate the possibility to use NS1-based indirect ELISA. To achieve these purposes, the non-structural gene (NS1) of 79 AIVs of the H9N2 subtype isolated in Israel in 2000–2009 was sequenced and genetically analyzed. The phylogenetic analysis demonstrated that four distinct introductions of H9N2 occurred in Israel during this period. Analysis of the inferred amino acid sequences of the NS1 proteins showed high, about 10%, differences between viruses of the 3rd and 4th introductions. Antibodies against NS1 protein in immune sera were tested by means of indirect ELISA using recombinant NS1 as antigen. Immune sera were obtained from experimentally H9N2-infected chicken after infection on 4, 7, 10, 14, and 21 days. All sera from chickens experimentally infected with 3rd- or 4th-introduction AIV contained anti-NS1 antibodies that were detected by enzyme-linked immunosorbent assay (NS1-ELISA) even though the recombinant NS1 used as antigen for NS1-ELISA differed significantly in its amino acid sequences from the NS1 protein of AIV that caused infection in experimental birds. These findings indicate that the sites of the NS1 protein by which viruses belonging to 3rd and 4th introduction are out of antigenic epitope positions were responsible for the results of NS1-based iELISA.  相似文献   

16.
流感病毒A/广州/333/99(H9N2)毒株基因组特性的研究   总被引:23,自引:3,他引:23  
目的 了解一株再次从流感患儿中分离出禽H9N2流感毒株的基因组特性,并弄清它的来源。方法 病毒在鸡胚中传代,从收获的尿囊液中提取RNA,通过逆转录合成cDNA,cDNA用PCR扩增。PCR产物用纯化试剂盒纯化,接着做核苷酸序列测定,然后用Meg Align(Version 1.03)和Editseg(Version 3.69)软件进行基因进化树分析。结果 A/广州/333/99(H9N2)毒株的基因组属于禽流感病毒,但它明显不同于A/Duck/Hong Kong/Y439/97毒株。同时不含有任何人流感病毒基因节段,其基因组中有4个基因节段(分别编码HA、NA、NP和NS蛋白)来自G9毒株基因系,而其余4个基因节段(分别编码PB2、PB1、PA和M蛋白)来自G1毒株基因系。结论 A/广州/333/99(H9N2)病毒是G9和G1毒株通过基因重配而来的重配株,它最大可能性直接来自禽。进一步证实了禽H9N2毒株能感染人,同时首次证实了H9N2不同基因系毒株间,在自然界中也能发生基因重配。  相似文献   

17.
18.
An isolate of the entomopathogenic fungus Beauveria bassiana was found to contain five double-stranded (ds) RNA elements ranging from 1.5 to more than 3 kbp. The complete sequence of the largest dsRNA element is described here. Analysis of the RdRp nucleotide sequence reveals its similarity to unclassified dsRNA elements, such as Alternaria longipes dsRNA virus 1, and its distant relationship to the RNA-dependent RNA polymerases of members of the family Partitiviridae.  相似文献   

19.
Despite the apparent lack of a feline influenza virus lineage, cats are susceptible to infection by influenza A viruses. Here, we characterized in vitro A/feline/Guangdong/1/2015, an H5N6 avian influenza virus recently isolated from cats. A/feline/Guangdong/1/2015 replicated to high titers and caused CPE in feline kidney cells. We determined that infection with A/feline/Guangdong/1/2015 did not activate the IFN-β promoter, but inhibited it by blocking the activation of NF-κB and IRF3. We also determined that the viral NS1 protein mediated the block, and that the dsRNA binding domain of NS1 was essential to perform this function. In contrast to treatment after infection, cells pretreated with IFN-β suppressed viral replication. Our findings provide an example of an H5N6 influenza virus suppressing IFN production, which might be associated with interspecies transmission of avian influenza viruses to cats.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号