首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Inosine 5-monophosphate dehydrogenase II, a key enzyme in the de novo synthesis of purine nucleotides, is expressed in prostate tumors and prostate cancer cells. AVN944 is a new, specific, noncompetitive IMPDH inhibitor. In this study, we investigated the effects of IMPDH inhibitor AVN944 on LNCaP, CWR22Rv1, DU145 and PC-3 human prostate cancer cells. AVN944 inhibited proliferation of these 4 prostate cancer cell lines and was associated with cell cycle G1 arrest of LNCaP cells and S-phase block of androgen-independent CWR22Rv1, DU145 and PC-3 cells. AVN944 induced caspase-dependentand caspase-independent cell death in LNCaP, CWR22Rv1, and DU145 cells. AVN944 induced expression of p53-target proteins Bok, Bax and Noxa in androgen-responsive cell lines and suppressed expression of survivin in prostate cancer cells regardless of their androgen sensitivity. AVN944 also induced differentiation of androgen-independent prostate cancer cells as indicated by morphological changes and increased expression of genes coding for prostasomal proteins, keratins and other proteins, including tumor suppressor genes MIG-6 and NDRG1. AVN944-differentiated androgen-independent DU145 and PC-3 cells are sensitized to TRAIL-induced apoptosis as demonstrated by induction of caspases and PARP cleavage. In summary, AVN944 inhibited the growth of human prostate cancer cells by inducing cell cycle arrest, cell death as well as differentiation. AVN944 is a novel, promising therapeutic agent that might be combined with other agents for treatment of human prostate cancer.  相似文献   

5.
Constitutive activation of the JAK-STAT pathway is frequent in cancer and contributes to oncogenesis. Here, we took advantage of the Ba/F3 cell line, a murine proB cell line dependent on IL-3 for growth, to analyse mechanisms of constitutive STAT activation in vitro. Cytokine-independent and tumorigenic Ba/F3 cell lines were derived from a two-step selection process. Cells transfected with a defective IL-9 receptor acquire IL-9 responsiveness during a first step of selection, and progress after a second selection step to autonomously growing tumorigenic cells. Microarray analysis pointed to JAK1 overexpression as a key genetic event in this transformation. Overexpression of JAK1 not only increased the sensitivity to IL-9 but also allowed a second selection step toward cytokine-independent growth with constitutive STAT activation. This progression was dependent on a functional FERM and kinase JAK1 domain. Similar results were observed after JAK2, JAK3 and TYK2 overexpression. All autonomous cell lines showed an activation of STAT5, ERK1-2 and AKT but only TYK2-overexpressing cell lines showed a constitutive activation of STAT3. Thus, JAK overexpression can be considered as one of the oncogenic events leading to the constitutive activation of the JAK-STAT pathway.  相似文献   

6.
7.
8.
The synthetic retinoid N-(4-hydroxyphenyl)retinamide (4-HPR) has been shown to induce apoptosis in various types of tumors, including prostate cancer. We sought to examine the key mechanisms affecting the resistance to 4-HPR-induced apoptosis in three human prostate cancer cell lines, PC-3, DU145, and LNCaP. Concentrations of more than 40 microM 4-HPR produced apoptosis to almost the same extent in all cell lines; however, only the LNCaP line remained highly sensitive to concentrations less than 10 microM. These differing sensitivities at low concentrations correlated well with the level of constitutive activation of nuclear factor kappa B (NFkappaB) in the individual cell lines. We found that NFkappaB activation inhibited c-jun NH(2)-terminal kinase and caspase 3 activation induced by 4-HPR and that NFkappaB inhibition by the I kappa B alpha phosphorylation inhibitor compound Bay 117082 resulted in increasing sensitization of both PC-3 and DU145 lines to apoptosis induced by 4-HPR at low concentrations. Furthermore, we found that inhibition of extracellular signal-regulated kinase (ERK) enhanced the suppression of NFkappaB by 4-HPR and also resulted in sensitization to apoptosis in the DU145 cell line, in which ERK is activated constitutively. It thus appears that mitogen-activated protein kinase associated with the activity of NFkappaB plays an important role in the degree of resistance to 4-HPR-induced apoptosis in human prostate cancer cells.  相似文献   

9.
BACKGROUND: Expression of fibroblast growth factors (FGFs) is increased in a substantial fraction of human prostate cancers in vivo and in prostate cancer cell lines. Altered FGF signaling can potentially have a variety of effects, including stimulating cell proliferation and inhibiting cell death. To determine the biologic significance of altered FGF signaling in human prostate cancer, we disrupted signaling by expression of a dominant-negative (DN) FGF receptor in prostate cancer cell lines. METHODS: PC-3, LNCaP, and DU145 prostate cancer cells were stably transfected with DN FGFR constructs, and LNCaP and DU145 cells were infected with a recombinant adenovirus expressing DN FGFR-1. The effect of DN FGFR-1 expression was assessed by colony-formation assays, cell proliferation assays, flow cytometry, and cytogenetic analysis. Key regulators involved in the G(2)-to-M cell cycle transition were assessed by western blotting to examine cyclin B1 expression and by in vitro kinase assay to assess cdc2 kinase activity. RESULTS: Stable transfection of the DN FGFR-1 construct inhibited colony formation by more than 99% in all three cell lines. Infection of LNCaP and DU145 prostate cancer cells with adenovirus expressing DN FGFR-1 led to extensive cell death within 48 hours. Flow cytometry and cytogenetic analysis revealed that the DN FGFR-1 receptor led to arrest in the G(2) phase of the cell cycle before cell death. Cyclin B1 accumulated in DN FGFR-1-infected LNCaP cells, but cdc2 kinase activity was decreased. CONCLUSIONS: These findings reveal an unexpected dependence of prostate cancer cells on FGF receptor signal transduction to traverse the G(2)/M checkpoint. The mechanism for the G(2) arrest is not clear. Our results raise the possibility that FGF-signaling antagonists might enhance the cell death induced by other prostate cancer therapies.  相似文献   

10.
Qiu J  Gao Z  Shima H 《Oncology reports》2012,27(1):160-167
Histone deacetylase inhibitors (HDACis) have shown significant antiproliferative and apoptotic properties in various types of cancer cells, including prostate cancer cells, and are therefore being evaluated as a treatment modality. However, the mechanism by which sodium butyrate (SB) induces apoptosis is not completely understood. We focused on SB which exists in the intestine and is therefore expected to have less adverse effects. In this study, three prostate cancer cell lines (LNCaP, DU145 and PC-3) were treated in vitro with different concentrations of SB. Cell proliferation was studied by the XTT assay; cell cycle analysis and induction of apoptosis were studied by laser scanning cytometry. Western blot analysis was used to study p21, p27, CDK2, CDK4, CDK6, caspase-3, caspase-7, Fas, FADD, TRADD, Bcl-2 and Bax protein expression. SB inhibited cell growth and induced apoptosis in a concentration-dependent manner in human prostate cancer cells (LNCaP, DU145 and PC-3). Western blot analysis showed dose-dependent increases of p21 levels in DU145 and PC-3 cells, and dose-dependent decreases of CDK2, CDK4, CDK6 and procaspase-3 protein levels in all three prostate cancer cell lines. Bcl-xL was significantly down-regulated in DU145 cells, and Bcl-2 was significantly down-regulated in PC-3 and LNCaP cells. No significant changes were observed in procaspase-7, TRADD and Bax expression, although slight decreases in Fas and FADD expression were seen in all three prostate cancer cell lines. Analysis of cell morphology using laser scanning microscopy detected condensed and fragmented nuclei. In conclusion, SB induces G1 and G2 arrest by increasing p21 expression resulting in CDK2, CDK4 and CDK6 down-regulation. SB potently induced apoptosis, which was accompanied by DNA fragmentation, down-regulated Bcl-2 in LNCaP and PC-3 cells, Bcl-xL in DU145 cells, and down-regulated procaspase-3, but not procaspase-7, in these human prostate cancer cell lines. These results suggest that SB may serve as a new modality for the treatment of hormone refractory prostate cancer.  相似文献   

11.
This study found that the HIV-1 protease inhibitor nelfinavir (NFV) induced growth arrest and apoptosis of human prostate cancer cells (LNCaP, DU145 and PC-3 cells), as measured by MTT and terminal deoxyribonucleotide transferase-mediated dUTP nick end labeling (TUNEL) assays, respectively, on the third day of culture. In addition, NFV blocked androgen receptor (AR) signaling in association with downregulation of nuclear levels of AR in LNCaP cells as measured by reporter assay and western blot analysis. As expected, NFV downregulated the level of the AR target molecule prostate specific antigen in these cells. Moreover, NFV disrupted STAT3 signaling; protease inhibitors blocked interleukin-6-induced phosphorylation of STAT3 and inhibited STAT3 DNA binding activity in LNCaP and DU145 cells, as measured by western blot analysis and enzyme-linked immunosorbent assay (ELISA), respectively. Furthermore, NFV blocked AKT signaling in prostate cancer cells as measured by kinase assay with glycogen synthase kinase-3alpha/beta as a substrate. Importantly, NFV inhibited the proliferation of LNCaP cells presented as tumor xenografts in BALB/c nude mice without side-effects. Taken together, NFV inhibited the proliferation of prostate cancer cells in conjunction with blockade of signaling by AR, STAT3, and AKT, suggesting that this family of compounds might be useful for the treatment of individuals with prostate cancer.  相似文献   

12.
The present study was undertaken to examine the role of mitogen-activated protein kinases (MAPKs) in apoptosis induction by phenethyl isothiocyanate (PEITC), a cruciferous vegetable-derived cancer chemopreventive agent, with DU145 and LNCaP human prostate cancer cells as a model. The MAPK family of serine/threonine kinases, including extracellular signal-regulated kinase1/2 (ERK1/2), c-jun N-terminal kinase1/2/3 (JNK1/2/3), and p38 MAPK play an important role in cell proliferation and apoptosis in response to different stimuli. Exposure of DU145 and LNCaP cells to growth suppressive concentrations of PEITC resulted in activation of ERK1/2 and JNKs, but not p38 MAPK, in both cell lines. In DU145 cells, the apoptosis induction by PEITC was statistically significantly attenuated by pharmacological inhibition of JNKs with SP600125. Adenovirus-mediated overexpression of Flag-tagged JNK binding domain (JBD) of JNK-interacting protein-1 (JIP-1), an inhibitor of JNK, also inhibited PEITC-induced apoptosis in DU145 cells. On the other hand, inhibition of ERK1/2 activation with MEK1 inhibitor PD98059 failed to offer protection against PEITC-induced apoptosis in DU145 cells. In LNCaP cells, the PEITC-induced cell death was not affected by either pretreatment with PD98059 or SP600125 or overexpression of JBD of JIP-1. These results indicate that involvement of MAPKs in apoptosis induction by PEITC in human prostate cancer cells is cell line-specific.  相似文献   

13.
14.
15.
Despite the fact that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis in cancer cells, TRAIL resistance in cancer cells has challenged the use of TRAIL as a therapeutic agent. First, prostate carcinoma cell lines (DU145, LNCaP and PC3) were screened for sensitivity to adenovirus delivery of TRAIL (Ad5hTRAIL). As amplified Ikappa B kinase (IKK) activity is responsible for the constitutive nuclear factor-kappaB (NF-kappaB) activation leading to uncontrolled cell growth and metastasis, a dual vector approach using both an adenovirus vector (Ad) expressing the dominant-negative mutant of IKKbeta (AdIKKbetaKA) and Ad5hTRAIL was employed to determine if prostate cancer cells were sensitized to TRAIL in the setting of IKK inhibition. Inhibition of the NF-kappaB pathway through IKK blockade sensitized all three prostate cancer cell lines to TRAIL, regardless of NF-kappaB activation or decoy receptor gene expression. Moreover, a novel quantitative real-time RT-PCR assay and conventional flow cytometry analysis indicated that TRAIL-resistant DU145 and LNCaP cells, but not TRAIL-sensitive PC3 cells, expressed substantial amounts of TRAIL Decoy Receptor 4. In conclusion, TRAIL decoy receptor expression appeared to be the chief determinant of TRAIL resistance encountered in prostate carcinoma cell lines.  相似文献   

16.
17.
18.
Activated phosphoinositide 3-kinase (PI3K) and its downstream target Akt/PKB are important signaling molecules and key survival factors involved in the control of cell proliferation, apoptosis and oncogenesis. We investigated the role of the PI3K-Akt signaling pathway in the invasion of prostate cancer cell lines and activation of this pathway in primary human prostate tumors. Treatment of human prostate cancer cells viz. LNCaP, PC-3 and DU145 with PI3K pharmacological inhibitor, LY294002, potentially suppressed the invasive properties in each of these cell lines. Restoration of the PTEN gene to highly invasive prostate cancer PC-3 cells or expression of a dominant negative version of the PI3K target, Akt also significantly inhibited invasion and downregulated protein expression of urokinase-type plasminogen activator (uPA) and matrix metalloproteinase (MMP)-9, markers for cell invasion, indicating a central role of the PI3K-Akt pathway in this process. Immunoblot analysis of PI3K and total/activated levels of Akt showed increased protein levels of catalytic (p110alpha/beta) and regulatory (p85) subunits of PI3K and constitutive Akt activation in high-grade tumors compared to low-grade tumor and benign tissue. Immunohistochemical analyses further confirmed a progressive increase in p-Akt (p-Ser473) levels but not of total-Akt (Akt1/2) in cancer tissues compared to benign specimens. A successive increase in p-Akt expression was further noted in specimens serially obtained from individuals with time-course disease progression. Taken together, these results suggest that aberrant activation of PI3K-Akt pathway may contribute to increased cell invasiveness and facilitate prostate cancer progression.  相似文献   

19.
The receptor tyrosine kinase ErbB-2 plays an important role in the regulation of growth factor-induced signal transduction cascades in the epithelium, and ErbB-2 is frequently overexpressed in epithelial tumors. Our previous studies on clinical prostate cancer specimens indicated that ErbB-2 expression was increased in patients undergoing hormone ablation therapy. We had also shown that the critical cell cycle regulatory gene cyclin D1 and its promoter were targets of proliferative signaling in prostate cancer cell lines, and that cyclin D1 was required for ErbB-2-induced mammary tumorigenesis. In the current studies, we found that increased ErbB-2 membrane expression correlated with increased nuclear cyclin D1 staining in clinical prostate cancer specimens, and that expression of ErbB-2 was capable of inducing cell cycle progression in human prostate cancer cell lines. We further showed that ErbB-2 induced the cyclin D1 promoter in DU145 cells, and that small interfering RNA knockdown of cyclin D1 protein levels blocked a significant proportion of the heregulin-induced cell cycle progression in LNCaP cells. Probasin promoter-targeted expression of an activated ErbB-2 isoform induced cyclin D1 expression in the mouse prostate, commensurate with prostate intraepithelial neoplasia. Together, these in vitro and in vivo studies identify cyclin D1 as a critical downstream target of ErbB-2 in the prostate epithelium, both of which are possible therapeutic targets for cancer intervention. Furthermore, our novel mouse model provides a useful platform for ongoing in vivo investigations of ErbB-2 signaling in the prostate epithelium.  相似文献   

20.
The interleukin-mediated Janus kinase (JAK)/STAT pathway plays a crucial role in carcinogenesis. Recently, increased STAT3 activity was found in hepatocellular carcinoma and multiple myeloma in which there was silencing of SOCS-1 (suppressor of cytokine signalling-1) by gene promoter hypermethylation. We investigated the expression level of interleukin-6 (IL-6) and SOCS-1 in gastric cancer cell lines. Expression of SOCS-1 correlated with IL-6 level in most of the cell lines, except for AGS cells in which SOCS-1 was absent despite a high level of IL-6 production. Methylation analysis by methylation-specific polymerase chain reaction and bisulphite sequencing revealed that CpG island of SOCS-1 was densely methylated in AGS cells. Demethylation treatment by 5'aza-deoxycytidine restored SOCS-1 expression and also suppressed constitutive STAT3 phosphorylation in AGS cells. Moreover, methylation of SOCS-1 was detected in 27.5% (11 of 40) of primary gastric tumours samples, 10% (one of 10) of adjacent noncancer tissues but not in any (zero of nine) normal gastric mucosa. Methylation of SOCS-1 also correlated with the loss of mRNA expression in some primary gastric cancers. In conclusion, this is the first report to demonstrate that hypermethylation of SOCS-1 led to gene silencing in gastric cancer cell line and primary tumour samples. Downregulation of SOCS-1 cooperates with IL-6 in the activation of JAK/STAT pathway in gastric cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号