首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We compared the impact of 2-dimensional (2D) and fully 3-dimensional (3D) acquisition modes on the performance of human observers in detecting and localizing tumors in whole-body (18)F-FDG images. METHODS: We selected protocols based on noise equivalent count (NEC) rates derived from a series of 2D and fully 3D whole-body patient and phantom acquisitions on a dual-mode PET scanner. The fully 3D peak NEC value for a standard 70-kg patient was achieved for an injected dose of approximately 444 MBq (12 mCi) assuming a 90-min delay before acquisition, whereas the 2D peak value was never reached. The protocols were therefore set to those corresponding to a 444-MBq injected dose in fully 3D and 2D and a 740-MBq (20 mCi) injected dose in 2D that was considered as the maximum allowable dose. We used a non-Monte Carlo simulator to generate multiple realizations of whole-body PET data based on the geometry of the mathematic cardiac torso phantom (MCAT) with accurate noise properties. Two-dimensional and fully 3D acquisition times were set to 5 min per bed position. Spherical 1-cm-diameter lesions (targets) with random locations and contrasts were distributed in different organs. The simulated 2D datasets were reconstructed using attenuation-weighted ordered-subsets expectation maximization ((AW)OSEM) and the fully 3D datasets were reconstructed with FORE+(AW)OSEM (FORE = Fourier rebinning). Five human observers located and ranked the targets using a volumetric display of the whole-body PET data to replicate the clinical practice. An alternate free-response operating characteristic (AFROC) analysis of the human observer reports was performed for each protocol and each organ separately. RESULTS: The 2D protocol corresponding to 740-MBq injected dose allowed the overall best detection performance. It was followed by the fully 3D acquisition at the peak fully 3D NEC rate from a 444-MBq injected dose. A 2D acquisition corresponding to a 444-MBq injected dose was ranked last. Differences in detection performance were organ specific. CONCLUSION: This study showed that, for this patient size and scanner type, the fully 3D acquisition mode allowed better or equivalent detection performance than the 2D mode for an injected dose corresponding to the peak fully 3D NEC rate. The 2D acquisition protocol combined with a higher injected dose resulted in the highest detectabilities.  相似文献   

2.
Purpose: Evaluation of 3D clinical whole-body FDG PET imaging using recent improvements in data correction and reconstruction methods.Methods: Phantom studies following the NEMA NU 2-2000 draft were performed to evaluate count loss and accuracy of attenuation and scatter correction algorithms. Phantom results were used to estimate 3D vs. 2D efficiency. For patient studies, an established 2D imaging protocol (9 min emission, 3 min transmission acquisition per bed position, commencing 60 min after injection of 15 mCi FDG) was used. This was followed by a 3D acquisition of the same duration, commencing approximately 110 min later, so that 3D acquisition was performed with approximately 50% lower patient activity than 2D. Images were compared in terms of anatomic structural definition and visible artifacts.The count loss study showed that in a dose range of 10-15 mCi, 3D produced an approximately two-fold increase in effective NEC compared to 2D. The phantom imaging study showed slightly improved target to background ratios for both hot and the cold "lesions" when using 3D imaging. In 5 patients studied so far, comparison of 2D and 3D studies demonstrated no systematic differences in image quality between the two methods.Conclusion: 3D whole-body imaging with improved image reconstruction may permit a two-fold reduction in emission acquisition time or injected dose, without decrease in image quality compared to standard 2D imaging techniques.  相似文献   

3.
Radiation dosimetry of thyroid cancer therapy with 131I can be performed by coadministration of 124I followed by longitudinal PET scans over several days. The photons emitted by 131I may affect PET image quality. The aim of this study was to assess the influence of large amounts of 131I on PET image quality and accuracy with various acquisition settings. METHODS: Noise equivalent count (NEC) rates of 124I only were measured with a standard clinical PET scanner. Apart from the standard 350- to 650-keV energy window, 425- to 650-keV and 460- to 562-keV windows were used and data were acquired both with (2-dimensional) and without (3-dimensional [3D]) septa. A phantom containing 6 hot spheres, filled with a combination of 131I and 124I and with a sphere-to-background ratio of 18:1, was scanned repeatedly with energy window settings as indicated and emission and transmission scan durations of 7 and 3 min, respectively. NEC rates were calculated and compared with those measured with the phantom filled with only 124I. Sphere-to-background ratios in the reconstructed images were determined. One patient with known metastatic thyroid cancer was scanned using energy window settings and scan times as indicated 3 and 6 d after administration of 5.5 GBq of 131I and 75 MBq of 124I. RESULTS: The highest 124I-only NEC rates were obtained using a 425- to 650-keV energy window in 3D mode. In the presence of (131)I, the settings giving the highest NEC rate and contrast were 425-650 keV and 460-562 keV in 3D mode, with the clinical scans giving the highest quality images with the same settings. CONCLUSION: Acquisition in 3D mode with a 425- to 650-keV or 460- to 562-keV window leads to the highest image quality and contrast when imaging 124I in the presence of large amounts of 131I using a standard clinical PET scanner.  相似文献   

4.
With the advantages of the increased sensitivity of fully 3-dimensional (3D) PET for whole-body imaging come the challenges of more complicated quantitative corrections and, in particular, an increase in the number of random coincidences. The most common method of correcting for random coincidences is the real-time subtraction of a delayed coincidence channel, which does not add bias but increases noise. An alternative approach is the postacquisition subtraction of a low-noise random coincidence estimate, which can be obtained either from a smoothed delayed coincidence sinogram or from a calibration scan or directly estimated. Each method makes different trade-offs between noise amplification, bias, and data-processing requirements. These trade-offs are dependent on activity injected, the local imaging environment (e.g., near the bladder), and the reconstruction algorithm. METHODS: Using fully 3D whole-body simulations and phantom studies, we investigate how the gains in noise equivalent count (NEC) rates from using a noiseless random coincidence estimation method are translated to improvements in image signal-to-noise ratio (SNR). The image SNR, however, depends on the image reconstruction method and the local imaging environment. RESULTS: We show that for fully 3D whole-body imaging using a particular set of scanners and clinical protocols, a low-noise estimate of random coincidences improves sinogram and image SNRs by approximately 15% compared with online subtraction of delayed coincidences. CONCLUSION: A 15% improvement in image SNR arises from a 32% increase in the NEC rate. Thus, scan duration can be reduced by 25% while still maintaining a constant total acquired NEC.  相似文献   

5.
Comparison of 2-dimensional and 3-dimensional cardiac 82Rb PET studies.   总被引:2,自引:0,他引:2  
Most new PET scanners have the capability to collect data in 3-dimensional (3D) (septa removed) mode. This allows many more detected events at the cost of increased random events and scatter. In the case of 82Rb imaging, the injected dose might have to be limited to avoid saturating the scanner. We present a comparison of 2-dimensional (2D) and 3D data collection for 82Rb cardiac studies using the ECAT EXACT scanner. METHODS: Resting 82Rb cardiac studies were collected in 2D and 3D modes for 33 consecutive patients. Four experienced physicians rated the images to determine if the different acquisition methods would lead to different patient care. A separate quantitative analysis was performed on data from multiple scans of a thoracic phantom filled to simulate cardiac and background radioactivity corresponding to 82Rb injections between 37 and 1740 MBQ: RESULTS: The 2D and 3D studies were significantly different, with the image quality being poorer in the 3D studies. The scanner collected data at near its maximal counting rate for either 1480-MBq 2D or 37-MBq 3D acquisitions. Because the data collection was counting rate limited in either mode, and there are more random and scatter events in 3D mode, the 2D acquisitions resulted in more detected true events and a better signal-to-noise ratio. CONCLUSION: Cardiac 82Rb studies should be performed in 2D mode when using the ECAT EXACT scanner.  相似文献   

6.
OBJECTIVE: The noise equivalent count (NEC) is a useful, widely accepted method of evaluating image quality in positron emission tomography (PET) from the standpoint of effective count statistics. However, NEC cannot be used when different types of PET scanners are compared owing to the differences in slice thickness and field of view. Moreover, NEC should be treated differently depending on whether the 2D or 3D mode is used for a given PET scanner. A new parameter "Specific NEC," which is NEC per line of response (LOR) was devised to compare image quality between different PET scanners and acquisition modes. METHODS: Two PET scanners were employed, the CTI-Siemens ECAT EXACT HR(+) and ECAT EXACT 47. Images of a cylindrical (68)Ge phantom were scanned in 2D and 3D modes using various acquisition times ranging from 15 secx20 frames to 120 secx20 frames in order to examine the effect of count statistics on the quality of image reconstruction. The data were reconstructed using a ramp filter with a cutoff frequency of 0.5 cycles/pixel, corrected for dead time, random, attenuation, and scatter. The quality of the reconstructed images was evaluated with the coefficient of variation (COV; SD/average for the pixels within a 16 cm region of interest). Specific NEC was defined as NEC divided by the number of LOR for the entire scanner at detector level. RESULTS: COV showed a linear relationship with Specific NEC in double logarithmic plot within a given experiment. When the Specific NEC was used, all 2D and 3D mode showed the same relationship. The slight difference between the two scanners was attributed to the difference in slice thickness. CONCLUSION: Image quality was dependent on effective count statistics per number of LOR. Our method was considered effective for evaluating image quality in both 2D and 3D modes.  相似文献   

7.
Imaging characteristics of a 3-dimensional GSO whole-body PET camera.   总被引:4,自引:0,他引:4  
A whole-body 3-dimensional PET scanner using gadolinium oxyorthosilicate (GSO) crystals has been designed to achieve high sensitivity and reduced patient scanning time. This scanner has a diameter of 82.0 cm and an axial field of view of 18 cm without interplane septa. The detector comprises of 4 x 6 x 20 mm(3) GSO crystals coupled via an optically continuous light guide to an array of 420 photomultiplier tubes (39-mm diameter) in a hexagonal arrangement. The patient port diameter is 56 cm, and 2.86-cm (1.125 in.) thick lead shielding is used to fill in the region up to the detector ring. METHODS: Performance measurements on the scanner were made using the National Electrical Manufactures Association (NEMA) NU 2-2001 procedures. Additional counting rate measurements with a large phantom were performed to evaluate imaging characteristics for heavier patients. The image-quality torso phantom with hot or cold spheres was also measured as a function of counting rate to evaluate different techniques for randoms and scatter subtraction as well as to determine an optimum imaging time. RESULTS: The transverse and axial resolutions near the center are 5.5 and 5.6 mm, respectively. The absolute sensitivity of this scanner measured with a 70-cm-long line source is 4.36 cps/kBq, whereas the scatter fraction is 40% with a 20 x 70 cm line source cylinder. For the same cylinder, the peak noise equivalent count (NEC) rate of 30 kcps at an activity concentration of 9.25 kBq/mL (0.25 micro Ci/mL) leads to a 7% increase in the peak NEC value. A significant reduction in the peak NEC is observed with a larger 35 x 70 cm line source cylinder. Image-quality measurements show that the small 10-mm sphere in the NEMA NU 2-2001 image-quality phantom is clearly visible in a scan time of 3 min, and there is no noticeable degradation in image contrast at high activity levels. CONCLUSION: This whole-body scanner represents a new generation of 3D, high-sensitivity, and high-performance PET cameras capable of producing high-quality images in <30 min for a full patient scan. The use of a pixelated GSO Anger-logic detector leads to a high-sensitivity scanner design with good counting rate capability due to the reduced light spread in the detector and fast decay time of GSO. The light collection over the detector is fairly uniform, leading to a good energy resolution and, thus, reduced scatter in the collected data due to a tight energy gate.  相似文献   

8.
Results from a new PET/CT scanner using lutetium-yttrium oxyorthosilicate (LYSO) crystals for the PET component are presented. This scanner, which operates in a fully 3-dimensional mode, has a diameter of 90 cm and an axial field of view of 18 cm. It uses 4 x 4 x 22 mm(3) LYSO crystals arranged in a pixelated Anger-logic detector design. This scanner was designed to perform as a high-performance conventional PET scanner as well as provide good timing resolution to operate as a time-of-flight (TOF) PET scanner. METHODS: Performance measurements on the scanner were made using the National Electrical Manufacturers Association (NEMA) NU2-2001 procedures to benchmark its conventional imaging capabilities. The scatter fraction and noise equivalent count (NEC) measurements with the NEMA cylinder (20-cm diameter) were repeated for 2 larger cylinders (27-cm and 35-cm diameter), which better represent average and heavy patients. New measurements were designed to characterize its intrinsic timing resolution capability, which defines its TOF performance. Additional measurements to study the impact of pulse pileup at high counting rates on timing, as well as energy and spatial, resolution were also performed. Finally, to characterize the effect of TOF reconstruction on lesion contrast and noise, the standard NEMA/International Electrotechnical Commission torso phantom as well as a large 35-cm-diameter phantom with both hot and cold spheres were imaged for varying scan times. RESULTS: The transverse and axial resolution near the center is 4.8 mm. The absolute sensitivity of this scanner measured with a 70-cm-long line source is 6.6 cps/kBq, whereas scatter fraction is 27% measured with a 70-cm-long line source in a 20-cm-diameter cylinder. For the same line source cylinder, the peak NEC rate is measured to be 125 kcps at an activity concentration of 17.4 kBq/mL (0.47 microCi/mL). The 2 larger cylinders showed a decrease in the peak NEC due to increased attenuation, scatter, and random coincidences, and the peak occurs at lower activity concentrations. The system coincidence timing resolution was measured to be 585 ps. The timing resolution changes as a function of the singles rate due to pulse pileup and could impact TOF image reconstruction. Image-quality measurements with the torso phantom show that very high quality images can be obtained with short scan times (1-2 min per bed position). However, the benefit of TOF is more apparent with the large 35-cm-diameter phantom, where small spheres are detectable only with TOF information for short scan times. CONCLUSION: The Gemini TF whole-body scanner represents the first commercially available fully 3-dimensional PET scanner that achieves TOF capability as well as conventional imaging capabilities. The timing resolution is also stable over a long duration, indicating the practicality of this device. Excellent image quality is achieved for whole-body studies in 10-30 min, depending on patient size. The most significant improvement with TOF is seen for the heaviest patients.  相似文献   

9.
The aim of this work was to develop a rigorous evaluation methodology to assess performance of different acquisition and processing methods for variable patient sizes in the context of lesion detection in whole-body (18)F-FDG PET. METHODS: Fifty-nine bed positions were acquired in 32 patients in 2-dimensional (2D) and 3-dimensional (3D) modes 1-4 h after (18)F-FDG injection (740 MBq) using a BGO PET scanner. Three spheres (1.0-, 1.3-, and 1.6-cm diameter) containing (68)Ge were also imaged separately in air, at locations corresponding to possible lesion sites in 2D and 3D (590 targets per condition). Each bed position was acquired for 7 min in 2D and 6 min in 3D and corrected for randoms using delayed window randoms subtraction (DWS) or randoms variance reduction (RVR). Sphere sinograms were attenuated using the 2D or 3D attenuation map derived from the transmission scan of the patient, after scaling 2D and 3D sinograms with identical factors to ensure marginal detectability. Resulting 2D sinograms were reconstructed with filtered backprojection (FBP) and ordered-subsets expectation maximization (OSEM) without any scatter or attenuation correction (FBP-NATS and OSEM-NATS) or corrected for scatter and attenuation and reconstructed using FBP (FBP-ATT) or attenuation-weighted OSEM (AWOSEM). 3D sinograms were processed identically after Fourier rebinning. Next, reconstructed volumes were compared on the basis of performance of a 3-channel Hotelling observer (CHO-SNR [SNR is signal-to-noise ratio]) in detecting the presence of a sphere of unknown size on an anatomic background while modeling observer noise. The noise equivalent count (NEC) rate was computed in 2D and 3D for 3 different phantoms sizes (40, 60, and 95 kg) and compared with lesion detection SNR. RESULTS: 3D imaging yielded better lesion detectability than 2D (P < 0.025, 2-tailed paired t test) in patients of normal size (body mass index [BMI] < or = 31). However, 2D imaging yielded better lesion detectability than 3D in large patients (BMI > 31), as 3D performance deteriorated in large patients (P < 0.05). 2D and 3D yielded similar results for different lesion sizes. CHO-SNR were 40% greater for AWOSEM, FBP-ATT, and FBPNAT than for OSEM (P < 0.05), and AWOSEM yielded significantly better lesion detectability than did FBP. In all patients, RVR yielded a systematic improvement in CHO-SNR over DWS in both 2D and 3D. radicalNEC was characterized by a behavior similar to that of SNR(CHO) for the 3 different phantom sizes considered in this study.  相似文献   

10.
The conventional protocol for whole-body positron emission tomography (PET) with fluorine-18 fluorodeoxyglucose (FDG) requires a total acquisition time of 40-60 min, which is inconvenient for many oncological patients owing to fatigue and discomfort. This study examined the feasibility of a short protocol for whole-body PET. A phantom containing six "hot" spheres of gradually increasing diameter (10-38 mm) was imaged using a dedicated PET scanner for 20, 40, 60, 80, 120 and 600 s at various count rates. Thirty-four patients with various neoplasms underwent whole-body emission scans for 1 min per bed position 1 h after intravenous injection of 370 MBq of FDG (short protocol). A standard simultaneous transmission-emission acquisition for 10 min per bed position was performed thereafter. The images were reconstructed using an iterative algorithm. At a count rate of 40 kcps, which is close to the average count rate obtained in a whole-body FDG PET study, the 60-s image visualised five spheres, of which the smallest was 13 mm in size. Despite the better image quality, lesion detection was not improved in images acquired for more than 60 s (80-600 s). Only three of the six spheres could be detected in images acquired for less than 60 s. In the patient study, the standard protocol visualised 120 tumour lesions, of which 93 (78%) could be detected using the short protocol. Among the non-visualised lesions, 22 (82%) were Б.5 cm in size and 17 (63%) were lymph nodes. It is concluded that the proposed short protocol for whole-body FDG PET has a reasonably high detection rate and may be suitable for patients who are unable to undergo scanning for a prolonged period. It may also be useful as a pre-scan guide before a standard whole-body acquisition.  相似文献   

11.
Purpose Three-dimensional positron emission tomography (3D PET) results in higher system sensitivity, with an associated increase in the detection of scatter and random coincidences. The objective of this work was to compare, from a clinical perspective, 3D and two-dimensional (2D) acquisitions in terms of whole-body (WB) PET image quality with a dedicated BGO PET system.Methods 2D and 3D WB emission acquisitions were carried out in 70 patients. Variable acquisition parameters in terms of time of emission acquisition per axial field of view (aFOV) and slice overlap between sequential aFOVs were used during the 3D acquisitions. 3D and 2D images were reconstructed using FORE+WLS and OSEM respectively. Scatter correction was performed by convolution subtraction and a model-based scatter correction in 2D and 3D respectively. All WB images were attenuation corrected using segmented transmission scans. Images were blindly assessed by three observers for the presence of artefacts, confidence in lesion detection and overall image quality using a scoring system.Results Statistically significant differences between 2D and 3D image quality were only obtained for 3D emission acquisitions of 3 min. No statistically significant differences were observed for image artefacts or lesion detectability scores. Image quality correlated significantly with patient weight for both modes of operation. Finally, no differences were seen in image artefact scores for the different axial slice overlaps considered, suggesting the use of five slice overlaps in 3D WB acquisitions.Conclusion 3D WB imaging using a dedicated BGO-based PET scanner offers similar image quality to that obtained in 2D considering similar overall times of acquisitions.  相似文献   

12.
This synopsis outlines the Japanese guideline Version 1.0 for the data acquisition protocol of oncology FDG-PET/CT scans that was created by a joint task force of the Japanese Society of Nuclear Medicine Technology (JSNMT) and the Japanese Council of PET Imaging, and published in Kakuigaku-Gijutsu 29(2):195–235, 2009, in Japanese. The guideline aims at standardizing the PET image quality among facilities and different PET/CT scanner models by determining and/or evaluating the data acquisition condition in experiments using an IEC body phantom, as well as by proposing the criteria for human image quality evaluation using patient noise equivalent count (NEC), NEC density, and liver signal-to-noise ratio.  相似文献   

13.
This study evaluated the use of gated versus nongated PET acquisitions for absolute quantification of radioisotope concentration (RC) in a respiratory motion-simulated moving phantom filled with radioactive spheres and background for both 2-dimensional (2D) and 3-dimensional (3D) acquisitions. METHODS: An image-quality phantom with all 6 spheres filled with the same (18)F RC (range, 19-62 kBq/mL) was scanned with PET/CT at rest and in motion with and without gating. The background was filled with (18)F solution to yield sphere-to-background ratios of approximately 5, 10, 15, and 20 to 1. Both 2D and 3D acquisitions were used for all combinations. Respiratory motion was simulated by using a motor-driven plastic platform to move the phantom periodically with a displacement of 2 cm and a cycle time of 5.8 s. For gated acquisitions, the phantom was tracked using a real-time position management system. Images were reconstructed, and regions of interest with the same sizes as the actual spheres were manually placed on axial slices to determine maximum and mean pixel RC. A threshold method (70% and 94% for 2D and 3D modes) was also used to determine a mean voxel RC. All values were compared with the expected RC; percentage differences were calculated for each sphere. To reduce partial-volume effects, only data for the 4 largest spheres were analyzed. RESULTS: The mean pixel method was the only method with linear responses for all 3 scan types, enabling direct comparisons. The ranges of RC percentage differences were underestimated for all scan types (using the mean pixel method). The overall mean percentage differences were 37, 49, and 41 in 2D mode and 40, 51, and 41 in 3D mode for static, nongated, and gated acquisitions, respectively. Gated acquisitions improved quantification (by reducing underestimation) over nongated acquisitions by 8% and 10% for 2D and 3D modes. CONCLUSION: In the presence of motion, the use of gated PET acquisitions appears to improve quantification accuracy over nongated acquisitions, almost restoring the results to those observed when the phantom is static.  相似文献   

14.
A whole-body PET scanner, without interplane septa, has been designed to achieve high performance in clinical applications. The C-PET scanner, an advancement of the PENN PET scanners, is unique in the use of 6 curved NaI(Tl) detectors (2.54 cm thick). The scanner has a ring diameter of 90 cm, a patient port diameter of 56 cm, and an axial field of view of 25.6 cm. A (137)Cs point source is used for transmission scans. METHODS: Following the protocols of the International Electrotechnical Commission ([IEC] 61675-1) and the National Electrical Manufacturers Association ([NEMA] NU-2-1994 and an updated version, NU2-2001), point and line sources, as well as uniform cylinders, were used to determine the performance characteristics of the C-PET scanner. An image-quality phantom and patient data were used to evaluate image quality under clinical scanning conditions. Data were rebinned with Fourier rebinning into 2-dimensional (slice-oriented) datasets and reconstructed with an iterative reconstruction algorithm. RESULTS: The spatial resolution for a point source in the transaxial direction was 4.6 mm (full width at half maximum) at the center, and the axial resolution was 5.7 mm. For the NU2-1994 analysis, the sensitivity was 12.7 cps/Bq/mL (444 kcps/microCi/mL), the scatter fraction was 25%, and the peak noise equivalent count rate (NEC) for a uniform cylinder (diameter = 20 cm, length = 19 cm) was 49 kcps at an activity concentration of 11.2 kBq/mL. For the IEC protocol, the peak NEC was 41 kcps at 12.3 kBq/mL, and for the NU2-2001 protocol, the peak NEC was 14 kcps at 3.8 kBq/mL. The NU2-2001 NEC value differed significantly because of differences in the data analysis and the use of a 70-cm-long phantom. CONCLUSION: Compared with previous PENN PET scanners, the C-PET, with its curved detectors and improvements in pulse shaping, integration dead time, and triggering, has an improved count-rate capability and spatial resolution. With the refinements in the singles transmission technique and iterative reconstruction, image quality is improved and scan time is shortened. With single-event transmission scans interleaved between sequential emission scans, a whole-body study can be completed in <1 h. Overall, C-PET is a cost-effective PET scanner that performs well in a broad variety of clinical applications.  相似文献   

15.
Purpose The aim of the present study was to evaluate the quantitative and qualitative accuracy of 3D PET acquisitions for myocardial FDG studies. Methods Phantom studies were performed with both a homogeneous and an inhomogeneous phantom. Activity profiles were generated along the phantoms using 2D and several 3D reconstructions, varying the 3D scaling value to adjust the scatter correction algorithm. Furthermore, ten patients underwent a dynamic myocardial FDG PET scan, using an interleaved protocol consisting of frames with alternating 2D and 3D acquisition. For each myocardial study, 13 volumes of interest were defined, representing 13 myocardial segments. First, the optimal scaling value for the scatter correction algorithm was determined using data from the phantom and four patient studies. This scaling value was then applied to all ten patients. 2D and 3D acquisitions were compared for both static (i.e. activity concentrations in the last 2D and 3D frames) and dynamic imaging (calculation of the metabolic rate of glucose). Results For both phantom and patient studies, suboptimal results were obtained when the default scaling value for the scatter correction algorithm was used. After adjusting the scaling value, for all ten myocardial FDG studies, a very good correlation (r 2 = 0.99) was obtained between 2D and 3D data. With the present protocol no significant differences were observed in qualitative interpretation. Conclusion The 3D FDG acquisition mode is accurate and has clear advantages over the 2D mode for myocardial FDG studies. A prerequisite is, however, optimisation of the 3D scatter correction algorithm.  相似文献   

16.
The conventional protocol for whole-body positron emission tomography (PET) with fluorine-18 fluorodeoxyglucose (FDG) requires a total acquisition time of 40-60 min, which is inconvenient for many oncological patients owing to fatigue and discomfort. This study examined the feasibility of a short protocol for whole-body PET. A phantom containing six "hot" spheres of gradually increasing diameter (10-38 mm) was imaged using a dedicated PET scanner for 20, 40, 60, 80, 120 and 600 s at various count rates. Thirty-four patients with various neoplasms underwent whole-body emission scans for 1 min per bed position 1 h after intravenous injection of 370 MBq of FDG (short protocol). A standard simultaneous transmission-emission acquisition for 10 min per bed position was performed thereafter. The images were reconstructed using an iterative algorithm. At a count rate of 40 kcps, which is close to the average count rate obtained in a whole-body FDG PET study, the 60-s image visualised five spheres, of which the smallest was 13 mm in size. Despite the better image quality, lesion detection was not improved in images acquired for more than 60 s (80-600 s). Only three of the six spheres could be detected in images acquired for less than 60 s. In the patient study, the standard protocol visualised 120 tumour lesions, of which 93 (78%) could be detected using the short protocol. Among the non-visualised lesions, 22 (82%) were < or =1.5 cm in size and 17 (63%) were lymph nodes. It is concluded that the proposed short protocol for whole-body FDG PET has a reasonably high detection rate and may be suitable for patients who are unable to undergo scanning for a prolonged period. It may also be useful as a pre-scan guide before a standard whole-body acquisition.  相似文献   

17.
We compared 2-dimensional (2D) and 3-dimensional (3D) (82)Rb PET imaging in 3 different experiments: in a realistic heart-thorax phantom, in a uniformity-resolution phantom, and in 14 healthy volunteers. METHODS: A nonuniform heart-thorax phantom was filled with 111 MBq of (82)Rb injected into the left ventricular (LV) wall. In the LV wall of the cardiac phantom, 3 inserts-1, 2, and 3 cm in diameter-were placed to simulate infarcts. A standard rest cardiac PET imaging protocol in 2D and 3D modes was used. Following the same protocol, a uniformity-resolution phantom with uniformly distributed activity of 1,998 MBq and 740 MBq of (82)Rb in water was used to obtain 2D PET images and 3D PET images, respectively. All 2D volunteer studies were performed by injecting 2,220 MBq of (82)Rb intravenously. For half the volunteers, 3D studies were performed with a high dose (HD) (2,220 MBq) of (82)Rb; for the remainder of the 3D studies, a low dose (LD) (740 MBq) of (82)Rb was used. In the 2D and LD 3D studies, there was a delay of 2 min and 3 min, respectively, followed by a 6-min acquisition. In the HD 3D volunteer studies, there was a delay of 5 min followed by a 6-min acquisition. Circumferential profiles of the short-axis slices and the contrast of the inserts were used to evaluate the cardiac phantom PET images. The transaxial slices from the uniformity-resolution phantom were evaluated by visual inspection and by measuring uniformity. The human studies were evaluated by measuring the contrast between LV wall and LV cavity, using linear profiles and visual analysis. RESULTS: In the cardiac phantom study, circumferential profiles for the 2D and 3D images were similar. The contrast values for the 1-, 2-, and 3-cm inserts in the 2D study were 0.19 +/- 0.03, 0.34 +/- 0.05, and 0.61 +/- 0.03, respectively. The respective contrast values in the 3D study were 0.15 +/- 0.02, 0.36 +/- 0.04, and 0.52 +/- 0.05. In the uniformity-resolution phantom study, the coefficients of variation, calculated for a representative uniform slice, were 5.3% and 7.6% for the 2D and 3D studies, respectively. For the 7 volunteers on whom HD 3D was used, the mean 2D contrast was 0.33 +/- 0.08 and the mean HD 3D contrast was 0.35 +/- 0.08 (P = not statistically significant). For the other 7 volunteers, on whom LD 3D was used, the mean 2D contrast was 0.39 +/- 0.06 and the mean LD 3D contrast was 0.39 +/- 0.10 (P = not statistically significant). In the tomographic slices, the 2D and 3D images and polar plots were similar. CONCLUSION: When obtained with a PET system having a high counting-rate performance, 2D and 3D (82)Rb PET cardiac images are comparable. LD 3D imaging can make (82)Rb PET cardiac imaging more affordable.  相似文献   

18.
PURPOSE: Recent developments in the design of positron emission tomography (PET) scanners have made three-dimensional (3D) data acquisition attractive because of significantly higher sensitivity compared to the conventional 2D mode (with lead/tungsten septa extended). However, the increased count rate in 3D mode comes at the cost of increased scatter, randoms, and dead time. Several schemes to correct for these effects have been proposed and validated in phantom studies. In this study, we evaluated the overall improvement afforded by 3D imaging in quantitative human brain PET studies carried out at our institution.METHODS: Subjects were studied using sequential/interleaved 2D and 3D data acquisition with a GE Advance scanner. We calculated regional and global cerebral glucose metabolism with [(18)F]flourodeoxyglucose (FDG) and estimated rate constants for striatal [(18)F]fluorodopa (FDOPA) uptake.RESULTS: FDG: Global mean glucose metabolic rates were in almost complete agreement (within 1%) between the two modes whereas the regional differences ranged from -7.7% to +9% for all cortical structures. However, for small regions (<2 cm(2)) like caudate nuclei, the maximum difference was 14.7%. FDOPA: A significant improvement in image quality was evident in 3D mode and there was complete agreement between the estimated parameters in the two scanning modes for the same noise equivalent counts: Striatal-to-occipital ratio (SOR) and striatal FDOPA uptake (K(i)(FD)) had mean differences of less than 2% and 5%, respectively.CONCLUSIONS: 3D FDG studies can be done with either half the injected dose or half the scan duration to a comparable 2D study. 3D PET imaging has distinct advantages over 2D in the quantitative fluorodopa studies.  相似文献   

19.
The aim of this work was to compare the quantitative accuracy of iteratively reconstructed cardiac (18)F-FDG PET with that of filtered backprojection for both 2-dimensional (2D) and 3-dimensional (3D) acquisitions and to establish an optimal procedure for imaging myocardial viability with (18)F-FDG PET. METHODS: Eight patients underwent dynamic cardiac (18)F-FDG PET using an interleaved 2D/3D scan protocol, enabling comparison of 2D and 3D acquisitions within the same patient and study. A 10-min transmission scan was followed by a 10-min, 25-frame dynamic 3D scan and then by a series of 10 alternating 5-min 3D and 2D scans. Images were reconstructed with filtered backprojection (FBP) or attenuation-weighted ordered-subsets expectation maximization (OSEM), combined with Fourier rebinning (FORE) for 3D acquisitions, applying all usual corrections. Regions of interest (ROIs) were drawn in the myocardium, left ventricle, and ascending aorta, with the last 2 being used to define image-derived input functions (IDIFs). Patlak graphical analysis was used to compare net (18)F-FDG uptake in the myocardium, calculated from either 2D or 3D data, after reconstruction with FBP or OSEM. Either IDIFs or arterial sampling was used as the input function. The same analysis was performed on parametric images. RESULTS: A good correlation (r(2) > 0.99) was found between net (18)F-FDG uptake values for a myocardium ROI determined using each acquisition and reconstruction method and blood-sampling input functions. A similar result was found for parametric images. The ascending aorta was the best choice for IDIF definition. CONCLUSION: Good correlation and no bias of net (18)F-FDG uptake in relation to that based on FBP images, combined with less image noise, make 3D acquisition with FORE plus attenuation-weighted OSEM reconstruction the preferred choice for cardiac (18)F-FDG PET studies.  相似文献   

20.
OBJECTIVE: In FDG-PET examinations, optimization of the injected dose and duration of acquisition are important in determining the physical performance of PET or the PET/CT scanner. This study was intended to elucidate the influence of count rate on image quality. METHODS: Three PET/CT scanners (Biograph sensation 16, Discovery ST, and Aquiduo) were used in this study. Body and scatter phantoms (NEMA 2001) and a cylindrical phantom (for QC use) were also used. Data acquisition was performed repeatedly for about 6 h to achieve a fixed 15 million counts of true plus scatter. The count rate performance and image quality (signal-to-noise ratio and contrast) of each frame were analyzed after data acquisition. The relationship between the count rate and image quality was also analyzed. RESULTS: A positive correlation between the random fraction (ratio of random to prompt count rate) and signal-to-noise ratio was found in all PET/CT scanners, but with differing effects of the count rate's influence on image quality. Image contrast was not correlated with count rate. CONCLUSION: Acquisition parameters must be determined by considering each scanner's effect on how count rate influences image quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号