首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
FcγRIIB is an inhibitory receptor expressed throughout B cell development. Diminished expression or function is associated with lupus in mice and humans, in particular through an effect on autoantibody production and plasma cell (PC) differentiation. Here, we analyzed the effect of B cell–intrinsic FcγRIIB expression on B cell activation and PC differentiation. Loss of FcγRIIB on B cells in Fcgr2b–conditional KO (Fcgr2b-cKO) mice led to a spontaneous increase in autoantibody titers. This increase was most striking for IgG3, suggestive of increased extrafollicular responses. Marginal zone (MZ) B cells had the highest expression of FcγRIIB in both mice and humans. This high expression of FcγRIIB was linked to increased MZ B cell activation, Erk phosphorylation, and calcium flux in the absence of FcγRIIB triggering. We observed a marked increase in IgG3+ PCs and B cells during extrafollicular PC responses in Fcgr2b-cKO mice. The increased IgG3 response following immunization of Fcgr2b-cKO mice was lost in MZ-deficient Notch2 Fcgr2b–double KO mice. Importantly, patients with systemic lupus erythematosus (SLE) had a decrease in FcγRIIB expression that was strongest in MZ B cells. Thus, we present a model in which high FcγRIIB expression in MZ B cells prevented their hyperactivation and ensuing autoimmunity.  相似文献   

2.
The ζ family includes ζ, η, and FcεRIγ (Fcγ). Dimers of the ζ family proteins function as signal transducing subunits of the T cell antigen receptor (TCR), the pre-TCR, and a subset of Fc receptors. In mice lacking ζ/η chains, T cell development is impaired, yet low numbers of CD4+ and CD8+ T cells develop. This finding suggests either that pre-TCR and TCR complexes lacking a ζ family dimer can promote T cell maturation, or that in the absence of ζ/η, Fcγ serves as a subunit in TCR complexes. To elucidate the role of ζ family dimers in T cell development, we generated mice lacking expression of all of these proteins and compared their phenotype to mice lacking only ζ/η or Fcγ. The data reveal that surface complexes that are expressed in the absence of ζ family dimers are capable of transducing signals required for α/β–T cell development. Strikingly, T cells generated in both ζ/η−/− and ζ/η−/−–Fcγ−/− mice exhibit a memory phenotype and elaborate interferon γ. Finally, examination of different T cell populations reveals that ζ/η and Fcγ have distinct expression patterns that correlate with their thymus dependency. A possible function for the differential expression of ζ family proteins may be to impart distinctive signaling properties to TCR complexes expressed on specific T cell populations.  相似文献   

3.
Increased numbers of T cell receptor (TCR)-γ/δ cells have been observed in animal models of influenza and sendai virus infections, as well as in patients infected with human immunodeficiency virus and herpes simplex virus type 1 (HSV-1). However, a direct role for TCR-γ/δ cells in protective immunity for pathogenic viral infection has not been demonstrated. To define the role of TCR-γ/δ cells in anti–HSV-1 immunity, TCR-α−/− mice treated with anti– TCR-γ/δ monoclonal antibodies or TCR-γ/δ × TCR-α/β double-deficient mice were infected with HSV-1 by footpad or ocular routes of infection. In both models of HSV-1 infection, TCR-γ/δ cells limited severe HSV-1–induced epithelial lesions and greatly reduced mortality by preventing the development of lethal viral encephalitis. The observed protection resulted from TCR-γ/δ cell–mediated arrest of both viral replication and neurovirulence. The demonstration that TCR-γ/δ cells play an important protective role in murine HSV-1 infections supports their potential contribution to the immune responses in human HSV-1 infection. Thus, this study demonstrates that TCR-γ/δ cells may play an important regulatory role in human HSV-1 infections.  相似文献   

4.
To investigate the ability of FcγRIII(PMN), the GPI-anchored isoform of FcγRIII (CD16) in polymorphonuclear leukocytes (PMN), to mediate transmembrane signaling events, we measured changes in membrane potential with DiOC(5) and in intracellular calcium with indo-1. FcγR were ligated by anti-FcγRIII mAb 3G8 (IgG and Fab), anti-FcγRII mAb IV.3 (IgG and Fab), and human IgG aggregates. Cell bound mAbs were also crosslinked by goat F(ab’)(2) anti-mouse IgG. 3G8 IgG elicited a rapid change in [Ca(2+)](i), which was unaffected by EGTA, Vibrio cholerae toxin (CT), or Bordetella pertussis toxin (PT), and was abolished by BAPTA . Univalent receptor binding with 3G8 Fab gave no response but crosslinking with F(aV)2 GAM gave a rapid [Ca2,](i) response. Neither IV.3 Fab, IV.3 IgG, nor crosslinking of IV.3 Fab elicited a calcium signal. PI-PLC-treated PMN with the density of FcγRIII(PMN) reduced to that of FcγRII showed an unattenuated change in [Ca(2+)](i), with a 3G8 stimulus. The effects of IgG aggregates paralleled those of 3G8 mAb. These data indicate that multivalent ligation of FcγRIII(PMN) initiates an increase in [Ca(2+)];, derived from intracellular stores, that is distinct from both the FMLP- and FcγRII-induced responses. Ligand-dependent interaction with FcγRII is not required. Since FcγRIII(PMN) can internalize the FcγRIII-specific probe Con A-opsonized E and lyse anti-FcγRIII heteroantibody-opsonized chick E, this GPI-anchored molecule mediates both signal transduction and integrated cell responses.  相似文献   

5.
6.
The pre–T cell receptor (TCR) associates with CD3-transducing subunits and triggers the selective expansion and maturation of T cell precursors expressing a TCR-β chain. Recent experiments in pre-Tα chain-deficient mice have suggested that the pre-TCR may not be required for signaling allelic exclusion at the TCR-β locus. Using CD3-ε– and CD3-ζ/η–deficient mice harboring a productively rearranged TCR-β transgene, we showed that the CD3-γδε and CD3-ζ/η modules, and by inference the pre-TCR/CD3 complex, are each essential for the establishment of allelic exclusion at the endogenous TCR-β locus. Furthermore, using mutant mice lacking both the CD3-ε and CD3-ζ/η genes, we established that the CD3 gene products are dispensable for the onset of V to (D)J recombination (V, variable; D, diversity; J, joining) at the TCR-β, TCR-γ, and TCR-δ loci. Thus, the CD3 components are differentially involved in the sequential events that make the TCR-β locus first accessible to, and later insulated from, the action of the V(D)J recombinase.  相似文献   

7.
The B lymphocyte–induced maturation protein (Blimp-1) upregulates the expression of syndecan-1 and J chain and represses that of c-myc. We have transfected Blimp-1 into two sublines of the BCL1 B cell lymphoma that represent distinct stages of B cell development in secondary lymphoid tissues. After interleukin (IL)-2 and IL-5 stimulation, the BCL1 3B3 cells differentiate into centrocyte-like cells, whereas the BCL1 5B1b cells blast and appear to be blocked at the centroblast stage. This blasting effect and the increase in IgM secretion that follows it can be blocked by a dominant negative form of Blimp-1. At the same time, the ectopic expression of Blimp-1 in these partially activated cells induces an apoptotic response that also can be suppressed by the same dominant negative protein. A similar effect was noticed when Blimp-1 was expressed in the mature L10A and the immature WEHI-231 lines, indicating this may be a general effect at earlier stages of the B cell development, and distinct from the ability of Blimp-1 to induce maturation in late stages of differentiation. Truncation mutants indicate that the induction of the apoptotic response relies mainly on 69 amino acids within Blimp-1''s proline-rich domain. We propose that Blimp-1 expression defines a checkpoint beyond which fully activated B cells proceed to the plasma cell stage, whereas immature and partially activated cells are eliminated at this point.  相似文献   

8.
IL-7R-deficient mice have severely impaired expansion of early lymphocytes and lack γδ T cells. To elucidate the role of IL-7R on γδ T cell development, we analyzed the rearrangements of TCR-α, β, γ, and δ genes in the thymus of the IL-7R-deficient mice. Southern blot analysis with a Jγ1 probe revealed that more than 70% of Jγ1 and Jγ2 alleles are recombined to form distinct Vγ1.2–Jγ2 and Vγ2–Jγ1 fragments in control mice. On the contrary, no such recombination was detected in the mutant mice. The rearrangements in the TCR-α, β, and δ loci were comparably observed in control and mutant mice. PCR analysis indicated that the V–J recombination of all the Vγ genes is severely hampered in the mutant mice. The mRNA of RAG-1, RAG-2, Ku-80, and terminal deoxynucleotidyl transferase (TdT) genes was equally detected between control and mutant thymi, suggesting that the expression of common recombination machinery is not affected. These data demonstrated that the V–J recombination of the TCR γ genes is specifically blocked in the IL-7R-deficient mice and suggested the presence of highly specific regulation for TCR γ gene rearrangement.  相似文献   

9.
T cell activation by specific antigen results in a rapid and long-lasting downregulation of triggered T cell receptors (TCRs). In this work, we investigated the fate of downregulated TCR– CD3-ζ complexes. T cells stimulated by peptide-pulsed antigen-presenting cells (APCs) undergo an antigen dose-dependent decrease of the total cellular content of TCR-β, CD3-ε, and ζ chains, as detected by FACS® analysis on fixed and permeabilized T–APC conjugates and by Western blot analysis on cell lysates. The time course of CD3-ζ chain consumption overlaps with that of TCR downregulation, indicating that internalized TCR–CD3 complexes are promptly degraded. Inhibitors of lysosomal function (bafilomycin A1, folimycin) markedly reduced ζ chain degradation, leading to the accumulation of ζ chain in large Lamp1+ vesicles. These results indicate that in T cell–APC conjugates, triggered TCRs are rapidly removed from the cell surface and are degraded in the lysosomal compartment.  相似文献   

10.
Mac-1 (αmβ2), a leukocyte adhesion receptor, has been shown in vitro to functionally interact with Fcγ receptors to facilitate immune complex (IC)–stimulated polymorphonuclear neutrophil (PMN) functions. To investigate the relevance of Mac-1–FcγR interactions in IC-mediated injury in vivo, we induced a model of Fc-dependent anti–glomerular basement membrane (GBM) nephritis in wild-type and Mac-1–deficient mice by the intravenous injection of anti-GBM antibody. The initial glomerular PMN accumulation was equivalent in Mac-1 null and wild-type mice, but thereafter increased in wild-type and decreased in mutant mice. The absence of Mac-1 interactions with obvious ligands, intercellular adhesion molecule 1 (ICAM-1), and C3 complement, is not responsible for the decrease in neutrophil accumulation in Mac-1– deficient mice since glomerular PMN accumulation in mice deficient in these ligands was comparable to those in wild-type mice. In vitro studies showed that spreading of Mac-1–null PMNs to IC-coated dishes was equivalent to that of wild-type PMNs at 5–12 min but was markedly reduced thereafter, and was associated with an inability of mutant neutrophils to redistribute filamentous actin. This suggests that in vivo, Mac-1 is not required for the initiation of Fc-mediated PMN recruitment but that Mac-1–FcγR interactions are required for filamentous actin reorganization leading to sustained PMN adhesion, and this represents the first demonstration of the relevance of Mac-1–FcγR interactions in vivo. PMN-dependent proteinuria, maximal in wild-type mice at 8 h, was absent in Mac-1 mutant mice at all time points. Complement C3–deficient mice also had significantly decreased proteinuria compared to wild-type mice. Since Mac-1 on PMNs is the principal ligand for ic3b, an absence of Mac-1 interaction with C3 probably contributed to the abrogation of proteinuria in Mac-1–null mice.  相似文献   

11.
Experimental autoimmune myasthenia gravis (EAMG) is an animal model of human myasthenia gravis (MG). In mice, EAMG is induced by immunization with Torpedo californica acetylcholine receptor (AChR) in complete Freund's adjuvant (CFA). However, the role of cytokines in the pathogenesis of EAMG is not clear. Because EAMG is an antibody-mediated disease, it is of the prevailing notion that Th2 but not Th1 cytokines play a role in the pathogenesis of this disease. To test the hypothesis that the Th1 cytokine, interferon (IFN)-γ, plays a role in the development of EAMG, we immunized IFN-γ knockout (IFN-gko) (−/−) mice and wild-type (WT) (+/+) mice of H-2b haplotype with AChR in CFA. We observed that AChR-primed lymph node cells from IFN-gko mice proliferated normally to AChR and to its dominant pathogenic α146–162 sequence when compared with these cells from the WT mice. However, the IFN-gko mice had no signs of muscle weakness and remained resistant to clinical EAMG at a time when the WT mice exhibited severe muscle weakness and some died. The resistance of IFN-gko mice was associated with greatly reduced levels of circulating anti-AChR antibody levels compared with those in the WT mice. Comparatively, immune sera from IFN-gko mice showed a dramatic reduction in mouse AChR-specific IgG1 and IgG2a antibodies. However, keyhole limpet hemocyanin (KLH)–priming of IFN-gko mice readily elicited both T cell and antibody responses, suggesting that IFN-γ regulates the humoral immune response distinctly to self (AChR) versus foreign (KLH) antigens. We conclude that IFN-γ is required for the generation of a pathogenic anti-AChR humoral immune response and for conferring susceptibility of mice to clinical EAMG.  相似文献   

12.
Natural killer (NK) cells mediate defense against early murine cytomegalovirus (MCMV) infections in liver. The chemokine, macrophage inflammatory protein 1α (MIP-1α), can promote inflammatory responses. Our studies evaluated contributions of NK cells to early MCMV-induced liver inflammation and MIP-1α requirements for inflammation and delivery of antiviral defenses. NK cells were shown to be responsible for focal inflammation, and to be induced to migrate at high levels, in MCMV-infected livers. MIP-1α gene expression was elevated at coinciding times, and mice deficient in MIP-1α function were dramatically inhibited in both inflammatory and protective liver responses. The results precisely define MIP-1α–dependent steps required to achieve NK cell inflammation during, and mechanisms promoting defense against, viral infections in tissues.  相似文献   

13.
We have previously shown that a tyrosine to leucine replacement in the transmembrane region of T cell receptor (TCR)-β results in a deficient induction of CD95-L and apoptosis upon TCR triggering in a transfected T cell line. By contrast, interleukin (IL)-2 production and the expression of CD25 and CD69 were normally induced. Since the mutation in TCR-β also resulted in impaired association of CD3-ζ, it was proposed that this chain is specifically required for the induction of apoptosis. We now show that the deficient induction of CD95-L and apoptosis does not derive from a general lower production of second messengers, since intracellular Ca2+ fluxes and tyrosine phosphorylation of total proteins were elicited at wild-type levels. Unlike in T cell clones stimulated with partial agonists, both p21 and p18 forms of tyrosine-phosphorylated CD3-ζ were detected, although the overall level of tyrosine-phosphorylated CD3-ζ was low. More strikingly, inducible association of ZAP70 to CD3-ζ was strongly inhibited, despite a normal induction of ZAP70 tyrosine phosphorylation. Finally, ZAP70 was not concentrated near the plasma membrane in the apoptosis-deficient cells. These results suggest that CD3-ζ is necessary for engagement of a specific signaling pathway leading to CD95-L expression that also needs the recruitment of ZAP70.  相似文献   

14.
A study was made of the cellular origin of human immunoglobulins (γ2, γ1M, γ1A). The results indicated that two closely related families of cells form immunoglobulins in human lymphoid tissue: germinal (reticular) centers and plasma cells. Thus their cellular origin in addition to their known antigenic relations further justifies placing the immunoglobulins in one family of proteins. Immunoglobulins were also formed to a small extent in primitive reticular cells which resembled those of germinal centers but were separated from them. Possibly such cells were undergoing transition to the much more numerous plasma cells with which they were commonly associated. The mantles of small lymphocytes which surrounded germinal centers did not contain detectable quantities of immunoglobulins. While in general only one type of immunoglobulin was present in an individual cell or germinal center, γ2- and γ1M-globulin were identified on occasion in the same plasma cell and germinal center. A peculiarity of the fetal thymus gland was the presence of immunoglobulin, mainly γ1M, in a small number of cells of small and intermediate size and primitive reticular appearance and in Hassall's corpuscles.  相似文献   

15.
16.
In(OTf)3-catalyzed intramolecular hydroarylation of α-phenylallyl β-ketosulfones provides sulfonyl 1-benzosuberones and 1-tetralones in moderate to good yields in refluxing (CH2Cl)2 under open-vessel and easy-operation reaction conditions. A plausible mechanism is proposed and discussed. This highly regioselective protocol provides an atom-economic ring-closure route.

In(OTf)3-catalyzed intramolecular hydroarylation of α-phenylallyl β-ketosulfones provides sulfonyl 1-benzosuberones and 1-tetralones in moderate to good yields in refluxing (CH2Cl)2 under open-vessel and easy-operation reaction conditions.  相似文献   

17.
Nonobese diabetic (NOD) mouse thymocytes are hyporesponsive to T cell antigen receptor (TCR)-mediated stimulation of proliferation, and this T cell hyporesponsiveness may be causal to the onset of autoimmune diabetes in NOD mice. We previously showed that TCR-induced NOD T cell hyporesponsiveness is associated with a block in Ras activation and defective signaling along the PKC/Ras/MAPK pathway. Here, we report that several sequential changes in TCR-proximal signaling events may mediate this block in Ras activation. We demonstrate that NOD T cell hyporesponsiveness is associated with the (a) enhanced TCR-β–associated Fyn kinase activity and the differential activation of the Fyn–TCR-ζ–Cbl pathway, which may account for the impaired recruitment of ZAP70 to membrane-bound TCR-ζ; (b) relative inability of the murine son of sevenless (mSOS) Ras GDP releasing factor activity to translocate from the cytoplasm to the plasma membrane; and (c) exclusion of mSOS and PLC-γ1 from the TCR-ζ–associated Grb2/pp36–38/ZAP70 signaling complex. Our data suggest that altered tyrosine phosphorylation and targeting of the Grb2/pp36–38/ZAP70 complex to the plasma membrane and cytoskeleton and the deficient association of mSOS with this Grb2-containing complex may block the downstream activation of Ras and Ras-mediated amplification of TCR/CD3-mediated signals in hyporesponsive NOD T cells. These findings implicate mSOS as an important mediator of downregulation of Ras signaling in hyporesponsive NOD T cells.  相似文献   

18.
Xenotransplantation could overcome the severe shortage of allogeneic organs, a major factor limiting organ transplantation. Unfortunately, transplantation of organs from pigs, the most suitable potential donor species, results in hyperacute rejection in primate recipients, due to the presence of anti–Galα1-3Gal (Gal) natural antibodies (NAbs) in their sera. We evaluated the ability to tolerize anti-Gal NAb–producing B cells in α1,3-galactosyltransferase knockout (GalT KO) mice using bone marrow transplantation (BMT) from GalT+/+ wild-type (WT) mice. Lasting mixed chimerism was achieved in KO mice by cotransplantation of GalT KO and WT marrow after lethal irradiation. The levels of anti-Gal NAb in sera of mixed chimeras were reduced markedly 2 wk after BMT, and became undetectable at later time points. Immunization with Gal+/+ xenogeneic cells failed to stimulate anti-Gal antibody production in mixed chimeras, whereas the production of non–Gal-specific antixenoantigen antibodies was stimulated. An absence of anti-Gal–producing B cells was demonstrated by enzyme-linked immunospot assays in mixed KO+WT→ KO chimeras. Thus, mixed chimerism efficiently induces anti-Gal–specific B cell tolerance in addition to T cell tolerance, providing a single approach to overcoming both the humoral and the cellular immune barriers to discordant xenotransplantation.  相似文献   

19.
The commitment, differentiation, and expansion of mainstream α/β T cells during ontogeny depend on the highly controlled interplay of signals relayed by cytokines through their receptors on progenitor cells. The role of cytokines in the development of natural killer (NK)1+ natural T cells is less clearly understood. In an approach to define the role of cytokines in the commitment, differentiation, and expansion of NK1+ T cells, their development was studied in common cytokine receptor γ chain (γc) and interleukin (IL)-7 receptor α (IL-7Rα)–deficient mice. These mutations block mainstream α/β T cell ontogeny at an early prethymocyte stage. Natural T cells do not develop in γc-deficient mice; they are absent in the thymus and peripheral lymphoid organs such as the liver and the spleen. In contrast, NK1+ T cells develop in IL-7Rα–deficient mice in the thymus, and they are present in the liver and in the spleen. However, the absolute number of NK1+ T cells in the thymus of IL-7Rα–deficient mice is reduced to ~10%, compared to natural T cell number in the wild-type thymus. Additional data revealed that NK1+ T cell ontogeny is not impaired in IL-2– or IL-4–deficient mice, suggesting that neither IL-2, IL-4, nor IL-7 are required for their development. From these data, we conclude that commitment and/or differentiation to the NK1+ natural T cell lineage requires signal transduction through the γc, and once committed, their expansion requires signals relayed through the IL-7Rα.  相似文献   

20.
A highly efficient Friedel–Crafts alkylation of indole derivatives with β-(trifluoroacetyl)coumarins using Sc(OTf)3 as a catalyst has been developed, which gives regioselective 1,2-adducts to afford 1-(β-coumarinyl)-1-(β-indolyl)trifluoroethanols. A series of tertiary trifluoroethanols containing different indole and coumarin groups were synthesized in moderate to excellent yields (up to 95%) in the presence of 5 mol% catalyst in a short time (only 2 minutes at least). A mechanism of the reaction, in which the trace amount of water plays the role of proton transfer in catalyzing circulation was proposed and confirmed.

A Friedel–Crafts alkylation of indoles with β-(trifluoroacetyl)coumarins catalyzed by Sc(OTf)3 to afford 1-(β-coumarinyl)-1-(β-indolyl)trifluoroethanols in a short time and high yield was developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号